%global _empty_manifest_terminate_build 0 Name: python-objax Version: 1.7.0 Release: 1 Summary: Objax is a machine learning framework that provides an Object Oriented layer for JAX. License: Apache Software License URL: https://github.com/google/objax Source0: https://mirrors.nju.edu.cn/pypi/web/packages/bb/4f/dc2af2b8dfa76997fa65b9b261a63edd8c92badad2a12155f77792c24b48/objax-1.7.0.tar.gz BuildArch: noarch Requires: python3-scipy Requires: python3-numpy Requires: python3-pillow Requires: python3-jaxlib Requires: python3-jax Requires: python3-tensorboard Requires: python3-parameterized %description # Objax [**Tutorials**](https://objax.readthedocs.io/en/latest/notebooks/Objax_Basics.html) | [**Install**](https://objax.readthedocs.io/en/latest/installation_setup.html) | [**Documentation**](https://objax.readthedocs.io/en/latest/) | [**Philosophy**](https://objax.readthedocs.io/en/latest/index.html#objax-philosophy) This is not an officially supported Google product. Objax is an open source machine learning framework that accelerates research and learning thanks to a minimalist object-oriented design and a readable code base. Its name comes from the contraction of Object and [JAX](https://github.com/google/jax) -- a popular high-performance framework. Objax is designed **by researchers for researchers** with a focus on simplicity and understandability. Its users should be able to easily read, understand, extend, and modify it to fit their needs. This is the developer repository of Objax, there is very little user documentation here, for the full documentation go to [objax.readthedocs.io](https://objax.readthedocs.io/). You can find READMEs in the subdirectory of this project, for example: * [Sample Code](examples/README.md) * [Writing documentation](docs/README.md) ## User installation guide You install Objax using `pip` as follows: ```bash pip install --upgrade objax ``` Objax supports GPUs but assumes that you already have some version of CUDA installed. Here are the extra steps required to install CUDA-enabled jaxlib (jaxlib releases require CUDA 11.2 or newer): ```bash RELEASE_URL="https://storage.googleapis.com/jax-releases/jax_cuda_releases.html" JAX_VERSION=`python3 -c 'import jax; print(jax.__version__)'` pip uninstall -y jaxlib pip install -f $RELEASE_URL jax[cuda]==$JAX_VERSION ``` For more installation options, see https://github.com/google/jax#pip-installation-gpu-cuda ### Useful environment configurations Here are a few useful options: ```bash # Prevent JAX from taking the whole GPU memory # (useful if you want to run several programs on a single GPU) export XLA_PYTHON_CLIENT_PREALLOCATE=false ``` ### Testing your installation You can test your installation by running the code below: ```python import jax import objax print(f'Number of GPUs {jax.device_count()}') x = objax.random.normal(shape=(100, 4)) m = objax.nn.Linear(nin=4, nout=5) print('Matrix product shape', m(x).shape) # (100, 5) x = objax.random.normal(shape=(100, 3, 32, 32)) m = objax.nn.Conv2D(nin=3, nout=4, k=3) print('Conv2D return shape', m(x).shape) # (100, 4, 32, 32) ``` Typically if you get errors running this using CUDA, it probably means your installation of CUDA or CuDNN has issues. ### Runing code examples Clone the code repository: ```bash git clone https://github.com/google/objax.git cd objax/examples ``` ### Citing Objax To cite this repository: ``` @software{objax2020github, author = {{Objax Developers}}, title = {{Objax}}, url = {https://github.com/google/objax}, version = {1.2.0}, year = {2020}, } ``` ## Developer documentation Here is information about [development setup](https://objax.readthedocs.io/en/latest/dev/setup.html) and a [guide on adding new code](https://objax.readthedocs.io/en/latest/dev/adding_module.html). %package -n python3-objax Summary: Objax is a machine learning framework that provides an Object Oriented layer for JAX. Provides: python-objax BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-objax # Objax [**Tutorials**](https://objax.readthedocs.io/en/latest/notebooks/Objax_Basics.html) | [**Install**](https://objax.readthedocs.io/en/latest/installation_setup.html) | [**Documentation**](https://objax.readthedocs.io/en/latest/) | [**Philosophy**](https://objax.readthedocs.io/en/latest/index.html#objax-philosophy) This is not an officially supported Google product. Objax is an open source machine learning framework that accelerates research and learning thanks to a minimalist object-oriented design and a readable code base. Its name comes from the contraction of Object and [JAX](https://github.com/google/jax) -- a popular high-performance framework. Objax is designed **by researchers for researchers** with a focus on simplicity and understandability. Its users should be able to easily read, understand, extend, and modify it to fit their needs. This is the developer repository of Objax, there is very little user documentation here, for the full documentation go to [objax.readthedocs.io](https://objax.readthedocs.io/). You can find READMEs in the subdirectory of this project, for example: * [Sample Code](examples/README.md) * [Writing documentation](docs/README.md) ## User installation guide You install Objax using `pip` as follows: ```bash pip install --upgrade objax ``` Objax supports GPUs but assumes that you already have some version of CUDA installed. Here are the extra steps required to install CUDA-enabled jaxlib (jaxlib releases require CUDA 11.2 or newer): ```bash RELEASE_URL="https://storage.googleapis.com/jax-releases/jax_cuda_releases.html" JAX_VERSION=`python3 -c 'import jax; print(jax.__version__)'` pip uninstall -y jaxlib pip install -f $RELEASE_URL jax[cuda]==$JAX_VERSION ``` For more installation options, see https://github.com/google/jax#pip-installation-gpu-cuda ### Useful environment configurations Here are a few useful options: ```bash # Prevent JAX from taking the whole GPU memory # (useful if you want to run several programs on a single GPU) export XLA_PYTHON_CLIENT_PREALLOCATE=false ``` ### Testing your installation You can test your installation by running the code below: ```python import jax import objax print(f'Number of GPUs {jax.device_count()}') x = objax.random.normal(shape=(100, 4)) m = objax.nn.Linear(nin=4, nout=5) print('Matrix product shape', m(x).shape) # (100, 5) x = objax.random.normal(shape=(100, 3, 32, 32)) m = objax.nn.Conv2D(nin=3, nout=4, k=3) print('Conv2D return shape', m(x).shape) # (100, 4, 32, 32) ``` Typically if you get errors running this using CUDA, it probably means your installation of CUDA or CuDNN has issues. ### Runing code examples Clone the code repository: ```bash git clone https://github.com/google/objax.git cd objax/examples ``` ### Citing Objax To cite this repository: ``` @software{objax2020github, author = {{Objax Developers}}, title = {{Objax}}, url = {https://github.com/google/objax}, version = {1.2.0}, year = {2020}, } ``` ## Developer documentation Here is information about [development setup](https://objax.readthedocs.io/en/latest/dev/setup.html) and a [guide on adding new code](https://objax.readthedocs.io/en/latest/dev/adding_module.html). %package help Summary: Development documents and examples for objax Provides: python3-objax-doc %description help # Objax [**Tutorials**](https://objax.readthedocs.io/en/latest/notebooks/Objax_Basics.html) | [**Install**](https://objax.readthedocs.io/en/latest/installation_setup.html) | [**Documentation**](https://objax.readthedocs.io/en/latest/) | [**Philosophy**](https://objax.readthedocs.io/en/latest/index.html#objax-philosophy) This is not an officially supported Google product. Objax is an open source machine learning framework that accelerates research and learning thanks to a minimalist object-oriented design and a readable code base. Its name comes from the contraction of Object and [JAX](https://github.com/google/jax) -- a popular high-performance framework. Objax is designed **by researchers for researchers** with a focus on simplicity and understandability. Its users should be able to easily read, understand, extend, and modify it to fit their needs. This is the developer repository of Objax, there is very little user documentation here, for the full documentation go to [objax.readthedocs.io](https://objax.readthedocs.io/). You can find READMEs in the subdirectory of this project, for example: * [Sample Code](examples/README.md) * [Writing documentation](docs/README.md) ## User installation guide You install Objax using `pip` as follows: ```bash pip install --upgrade objax ``` Objax supports GPUs but assumes that you already have some version of CUDA installed. Here are the extra steps required to install CUDA-enabled jaxlib (jaxlib releases require CUDA 11.2 or newer): ```bash RELEASE_URL="https://storage.googleapis.com/jax-releases/jax_cuda_releases.html" JAX_VERSION=`python3 -c 'import jax; print(jax.__version__)'` pip uninstall -y jaxlib pip install -f $RELEASE_URL jax[cuda]==$JAX_VERSION ``` For more installation options, see https://github.com/google/jax#pip-installation-gpu-cuda ### Useful environment configurations Here are a few useful options: ```bash # Prevent JAX from taking the whole GPU memory # (useful if you want to run several programs on a single GPU) export XLA_PYTHON_CLIENT_PREALLOCATE=false ``` ### Testing your installation You can test your installation by running the code below: ```python import jax import objax print(f'Number of GPUs {jax.device_count()}') x = objax.random.normal(shape=(100, 4)) m = objax.nn.Linear(nin=4, nout=5) print('Matrix product shape', m(x).shape) # (100, 5) x = objax.random.normal(shape=(100, 3, 32, 32)) m = objax.nn.Conv2D(nin=3, nout=4, k=3) print('Conv2D return shape', m(x).shape) # (100, 4, 32, 32) ``` Typically if you get errors running this using CUDA, it probably means your installation of CUDA or CuDNN has issues. ### Runing code examples Clone the code repository: ```bash git clone https://github.com/google/objax.git cd objax/examples ``` ### Citing Objax To cite this repository: ``` @software{objax2020github, author = {{Objax Developers}}, title = {{Objax}}, url = {https://github.com/google/objax}, version = {1.2.0}, year = {2020}, } ``` ## Developer documentation Here is information about [development setup](https://objax.readthedocs.io/en/latest/dev/setup.html) and a [guide on adding new code](https://objax.readthedocs.io/en/latest/dev/adding_module.html). %prep %autosetup -n objax-1.7.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-objax -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.7.0-1 - Package Spec generated