%global _empty_manifest_terminate_build 0 Name: python-pyclesperanto-prototype Version: 0.24.1 Release: 1 Summary: GPU-accelerated image processing in python using OpenCL License: BSD-3-Clause URL: https://github.com/clEsperanto/pyclesperanto_prototype Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ae/5e/713a9e6ab51e99ce555e153285a0f38a3edfe518ff553460282065df70fa/pyclesperanto_prototype-0.24.1.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-pyopencl Requires: python3-toolz Requires: python3-scikit-image Requires: python3-matplotlib Requires: python3-transforms3d %description # py-clesperanto [![Image.sc forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftag%2Fclesperanto.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&suffix=%20topics&logo=)](https://forum.image.sc/tag/clesperanto) [![website](https://img.shields.io/website?url=http%3A%2F%2Fclesperanto.net)](http://clesperanto.net) [![PyPI](https://img.shields.io/pypi/v/pyclesperanto-prototype.svg?color=green)](https://pypi.org/project/pyclesperanto-prototype) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyclesperanto-prototype/badges/version.svg)](https://anaconda.org/conda-forge/pyclesperanto-prototype) [![Contributors](https://img.shields.io/github/contributors-anon/clEsperanto/pyclesperanto_prototype)](https://github.com/clEsperanto/pyclesperanto_prototype/graphs/contributors) [![PyPI - Downloads](https://img.shields.io/pypi/dm/pyclesperanto_prototype)](https://pypistats.org/packages/pyclesperanto_prototype) [![GitHub stars](https://img.shields.io/github/stars/clEsperanto/pyclesperanto_prototype?style=social)](https://github.com/clEsperanto/pyclesperanto_prototype/) [![GitHub forks](https://img.shields.io/github/forks/clEsperanto/pyclesperanto_prototype?style=social)](https://github.com/clEsperanto/pyclesperanto_prototype/) [![License](https://img.shields.io/pypi/l/pyclesperanto_prototype.svg?color=green)](https://github.com/haesleinhuepf/pyclesperanto_prototype/raw/master/LICENSE) [![Python Version](https://img.shields.io/pypi/pyversions/pyclesperanto-prototype.svg?color=green)](https://python.org) [![tests](https://github.com/clesperanto/pyclesperanto_prototype/workflows/tests/badge.svg)](https://github.com/clesperanto/pyclesperanto_prototype/actions) [![codecov](https://codecov.io/gh/clesperanto/pyclesperanto_prototype/branch/master/graph/badge.svg)](https://codecov.io/gh/clesperanto/pyclesperanto_prototype) [![Development Status](https://img.shields.io/pypi/status/pyclesperanto_prototype.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha) [![DOI](https://zenodo.org/badge/248206619.svg)](https://zenodo.org/badge/latestdoi/248206619) py-clesperanto is a prototype for [clesperanto](http://clesperanto.net) - a multi-platform multi-language framework for GPU-accelerated image processing. We mostly use it in the life sciences for analysing 3- and 4-dimensional microsopy data, e.g. as we face it developmental biology when segmenting cells and studying their individual properties as well as properties of compounds of cells forming tissues. ![](https://github.com/clEsperanto/pyclesperanto_prototype/raw/master/docs/images/banner.png) Image data source: Daniela Vorkel, Myers lab, MPI-CBG, rendered using [napari](https://github.com/napari/napari) clesperanto uses [OpenCL kernels](https://github.com/clEsperanto/clij-opencl-kernels/tree/development/src/main/java/net/haesleinhuepf/clij/kernels) from [CLIJ](http://clij.github.io/). For users convenience, there are code generators available for [napari](https://clesperanto.github.io/napari_pyclesperanto_assistant/) and [Fiji](https://clij.github.io/assistant/). Also check out the [napari workflow optimizer](https://github.com/haesleinhuepf/napari-workflow-optimizer) for semi-automatic parameter tuning of clesperanto-functions. ## Reference The preliminary API reference is available [here](https://clesperanto.github.io/pyclesperanto_prototype/docs/_build/html/). Furthermore, parts of the [reference](https://clij.github.io/clij2-docs/reference__pyclesperanto) are also available within the CLIJ2 documentation. ## Installation * Get a conda/python environment, e.g. via [mamba-forge](https://github.com/conda-forge/miniforge#mambaforge). * If you never used python/conda environments before, please follow [these instructions](https://biapol.github.io/blog/mara_lampert/getting_started_with_mambaforge_and_python/readme.html) first. ``` conda create --name cle_39 python=3.9 conda activate cle_39 ``` * Install pyclesperanto-prototype using [mamba / conda](https://focalplane.biologists.com/2022/12/08/managing-scientific-python-environments-using-conda-mamba-and-friends/): ``` mamba install -c conda-forge pyclesperanto-prototype ``` OR using pip: ``` pip install pyclesperanto-prototype ``` ## Troubleshooting: Graphics cards drivers In case error messages contains "ImportError: DLL load failed while importing cl: The specified procedure could not be found" [see also](https://github.com/clEsperanto/pyclesperanto_prototype/issues/55) or "clGetPlatformIDs failed: PLATFORM_NOT_FOUND_KHR", please install recent drivers for your graphics card and/or OpenCL device. Select the right driver source depending on your hardware from this list: * [AMD drivers](https://www.amd.com/en/support) * [NVidia drivers](https://www.nvidia.com/download/index.aspx) * [Intel GPU drivers](https://www.intel.com/content/www/us/en/download/726609/intel-arc-graphics-windows-dch-driver.html) * [Microsoft Windows OpenCL support](https://www.microsoft.com/en-us/p/opencl-and-opengl-compatibility-pack/9nqpsl29bfff) Sometimes, mac-users need to install this: mamba install -c conda-forge ocl_icd_wrapper_apple Sometimes, linux users need to install this: mamba install -c conda-forge ocl-icd-system ## Computing on Central Processing units (CPUs) If no OpenCL-compatible GPU is available, pyclesperanto-prototype can make use of CPUs instead. Just install [oclgrind](https://github.com/jrprice/Oclgrind) or [pocl](http://portablecl.org/), e.g. using mamba / conda. Oclgrind is recommended for Windows systems, PoCL for Linux. MacOS typically comes with OpenCL support for CPUs. ``` mamba install oclgrind -c conda-forge ``` OR ``` mamba install pocl -c conda-forge ``` Owners of compatible Intel Xeon CPUs can also install a driver to use them for computing: * [Intel CPU OpenCL drivers](https://www.intel.com/content/www/us/en/developer/articles/tool/opencl-drivers.html#latest_CPU_runtime) ## Example code A basic image processing workflow loads blobs.gif and counts the number of objects: ```python import pyclesperanto_prototype as cle from skimage.io import imread, imsave # initialize / select GPU with "TX" in their name device = cle.select_device("TX") print("Used GPU: ", device) # load data image = imread('https://imagej.nih.gov/ij/images/blobs.gif') # process the image inverted = cle.subtract_image_from_scalar(image, scalar=255) blurred = cle.gaussian_blur(inverted, sigma_x=1, sigma_y=1) binary = cle.threshold_otsu(blurred) labeled = cle.connected_components_labeling_box(binary) # The maximium intensity in a label image corresponds to the number of objects num_labels = labeled.max() print(f"Number of objects in the image: {num_labels}") # save image to disc imsave("result.tif", labeled) ``` ## Example gallery
[Select GPU](https://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/select_GPU.py)
[Image processing in Jupyter Notebooks](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/interoperability/jupyter.ipynb)
[Counting blobs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/count_blobs.ipynb)
[Voronoi-Otsu labeling](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/voronoi_otsu_labeling.ipynb)
[3D Image segmentation ](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/Segmentation_3D.ipynb)
[Cell segmentation based on membranes](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/segmentation_2d_membranes.ipynb)
[Counting nuclei according to expression in multiple channels](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/counting_nuclei_multichannel.ipynb)
[Differentiating nuclei according to signal intensity](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/differentiate_nuclei_intensity.ipynb)
[Detecting beads and measuring their size](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/bead_segmentation.ipynb)
[Label statistics](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/label_statistics.ipynb)
[Parametric maps](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tissues/parametric_maps.ipynb)
[Measure intensity along lines](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/intensities_along_lines.ipynb)
[Crop and paste images](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/crop_and_paste_images.ipynb)
[Inspecting 3D image data](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/inspecting_3d_images.ipynb)
[Rotation, scaling, translation, affine transforms](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/transforms/affine_transforms.ipynb)
[Deskewing](https://github.com/clEsperanto/pyclesperanto_prototype/blob/master/demo/transforms/deskew.ipynb)
[Multiply vectors and matrices](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/multiply_vectors_and_matrices.ipynb)
[Matrix multiplication](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/multiply_matrices.ipynb)
* [Working with spots, pointlist and matrices](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/spots_pointlists_matrices_tables.ipynb) * [Lists of nonzero pixel coordinates](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/nonzero.ipynb)
[Mesh between centroids](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_between_centroids.ipynb)
[Mesh between touching neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_between_touching_neighbors.ipynb)
[Mesh with distances](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_with_distances.ipynb)
[Mesh nearest_neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_nearest_neighbors.ipynb)
[Export to igraph and networkx](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/ipgraph_networkx.ipynb)
[Neighborhood definitions](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/neighborhood_definitions.ipynb)
[Tissue neighborhood quantification](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tissues/tissue_neighborhood_quantification.ipynb)
[Neighbors of neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/neighbors_of_neighbors.ipynb)
[Voronoi diagrams](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/voronoi_diagrams.ipynb)
[Shape descriptors based on neighborhood graphs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/shape_descriptors_based_on_neighborhood_graphs.ipynb)
[Measuring distances between labels in two label images](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/distance_to_other_labels.ipynb)
[Tribolium morphometry + Napari](https://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium.py)
[Tribolium morphometry](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium_morphometry2.ipynb) [(archived version)](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium_morphometry.ipynb)
[napari+dask timelapse processing](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/napari_gui/napari_dask.ipynb)
## Technical insights
[Browsing operations](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/browse_operations.ipynb)
[Interactive widgets](https://colab.research.google.com/github/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/browse_operations.ipynb)
[Automatic workflow optimization](https://colab.research.google.com/github/clEsperanto/pyclesperanto_prototype/tree/master/demo/optimization/optimize_blobs_segmentation.ipynb)
[Tracing memory consumtion on NVidia GPUs](https://github.com/clEsperanto/pyclesperanto_prototype/blob/master/demo/optimization/memory_management.ipynb)
[Exploring and switching between GPUs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/switching_gpus.ipynb)
[Interoperability with cupy](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/interoperability_cupy.ipynb) [Using the cupy backend](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/select_backend.ipynb)
[Big data handling with Dask GPU clusters](./demo/interoperability/dask.ipynb)
## Related projects
[napari-pyclesperanto-assistant](https://github.com/clesperanto/napari_pyclesperanto_assistant): A graphical user interface for general purpose GPU-accelerated image processing and analysis in napari.
[napari-accelerated-pixel-and-object-classification](https://github.com/haesleinhuepf/napari-accelerated-pixel-and-object-classification): GPU-accelerated Random Forest Classifiers for pixel and labeled object classification
[napari-clusters-plotter](https://github.com/BiAPoL/napari-clusters-plotter): Clustering of objects according to their quantitative properties
## Benchmarking We implemented some basic benchmarking notebooks allowing to see performance differences between pyclesperanto and some other image processing libraries, typically using the CPU. Such benchmarking results vary heavily depending on image size, kernel size, used operations, parameters and used hardware. Feel free to use those notebooks, adapt them to your use-case scenario and benchmark on your target hardware. If you have different scenarios or use-cases, you are very welcome to submit your notebook as pull-request! * [Affine transforms](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/affine_transforms.ipynb) * [Background subtraction](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/top_hat.ipynb) * [Gaussian blur](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/gaussian_blur.ipynb) * [Convolution](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/convolution.ipynb) * [Otsu's thresholding](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/threshold_otsu.ipynb) * [Connected component labeling](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/connected_component_labeling.ipynb) * [Extend labels](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/extend_labels.ipynb) * [Statistics of labeled pixels / regionprops](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/statistics_of_labeled_pixels.ipynb) * [Histograms](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/histograms.ipynb) * [Matrix multiplication](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/matrix_multiplication.ipynb) * [Pixel-wise comparison](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/pixelwise_comparison.ipynb) * [Intensity projections](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/intensity_projections.ipynb) * [Axis transposition](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/transpose.ipynb) * [Nonzero](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/nonzero.ipynb) ## See also There are other libraries for code acceleration and GPU-acceleration for image processing. * [numba](https://numba.pydata.org/) * [cupy](https://cupy.dev) * [cucim](https://github.com/rapidsai/cucim) * [clij](https://clij.github.io) ## Feedback welcome! clesperanto is developed in the open because we believe in the open source community. See our [community guidelines](https://clij.github.io/clij2-docs/community_guidelines). Feel free to drop feedback as [github issue](https://github.com/clEsperanto/pyclesperanto_prototype/issues) or via [image.sc](https://image.sc) %package -n python3-pyclesperanto-prototype Summary: GPU-accelerated image processing in python using OpenCL Provides: python-pyclesperanto-prototype BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pyclesperanto-prototype # py-clesperanto [![Image.sc forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftag%2Fclesperanto.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&suffix=%20topics&logo=)](https://forum.image.sc/tag/clesperanto) [![website](https://img.shields.io/website?url=http%3A%2F%2Fclesperanto.net)](http://clesperanto.net) [![PyPI](https://img.shields.io/pypi/v/pyclesperanto-prototype.svg?color=green)](https://pypi.org/project/pyclesperanto-prototype) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyclesperanto-prototype/badges/version.svg)](https://anaconda.org/conda-forge/pyclesperanto-prototype) [![Contributors](https://img.shields.io/github/contributors-anon/clEsperanto/pyclesperanto_prototype)](https://github.com/clEsperanto/pyclesperanto_prototype/graphs/contributors) [![PyPI - Downloads](https://img.shields.io/pypi/dm/pyclesperanto_prototype)](https://pypistats.org/packages/pyclesperanto_prototype) [![GitHub stars](https://img.shields.io/github/stars/clEsperanto/pyclesperanto_prototype?style=social)](https://github.com/clEsperanto/pyclesperanto_prototype/) [![GitHub forks](https://img.shields.io/github/forks/clEsperanto/pyclesperanto_prototype?style=social)](https://github.com/clEsperanto/pyclesperanto_prototype/) [![License](https://img.shields.io/pypi/l/pyclesperanto_prototype.svg?color=green)](https://github.com/haesleinhuepf/pyclesperanto_prototype/raw/master/LICENSE) [![Python Version](https://img.shields.io/pypi/pyversions/pyclesperanto-prototype.svg?color=green)](https://python.org) [![tests](https://github.com/clesperanto/pyclesperanto_prototype/workflows/tests/badge.svg)](https://github.com/clesperanto/pyclesperanto_prototype/actions) [![codecov](https://codecov.io/gh/clesperanto/pyclesperanto_prototype/branch/master/graph/badge.svg)](https://codecov.io/gh/clesperanto/pyclesperanto_prototype) [![Development Status](https://img.shields.io/pypi/status/pyclesperanto_prototype.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha) [![DOI](https://zenodo.org/badge/248206619.svg)](https://zenodo.org/badge/latestdoi/248206619) py-clesperanto is a prototype for [clesperanto](http://clesperanto.net) - a multi-platform multi-language framework for GPU-accelerated image processing. We mostly use it in the life sciences for analysing 3- and 4-dimensional microsopy data, e.g. as we face it developmental biology when segmenting cells and studying their individual properties as well as properties of compounds of cells forming tissues. ![](https://github.com/clEsperanto/pyclesperanto_prototype/raw/master/docs/images/banner.png) Image data source: Daniela Vorkel, Myers lab, MPI-CBG, rendered using [napari](https://github.com/napari/napari) clesperanto uses [OpenCL kernels](https://github.com/clEsperanto/clij-opencl-kernels/tree/development/src/main/java/net/haesleinhuepf/clij/kernels) from [CLIJ](http://clij.github.io/). For users convenience, there are code generators available for [napari](https://clesperanto.github.io/napari_pyclesperanto_assistant/) and [Fiji](https://clij.github.io/assistant/). Also check out the [napari workflow optimizer](https://github.com/haesleinhuepf/napari-workflow-optimizer) for semi-automatic parameter tuning of clesperanto-functions. ## Reference The preliminary API reference is available [here](https://clesperanto.github.io/pyclesperanto_prototype/docs/_build/html/). Furthermore, parts of the [reference](https://clij.github.io/clij2-docs/reference__pyclesperanto) are also available within the CLIJ2 documentation. ## Installation * Get a conda/python environment, e.g. via [mamba-forge](https://github.com/conda-forge/miniforge#mambaforge). * If you never used python/conda environments before, please follow [these instructions](https://biapol.github.io/blog/mara_lampert/getting_started_with_mambaforge_and_python/readme.html) first. ``` conda create --name cle_39 python=3.9 conda activate cle_39 ``` * Install pyclesperanto-prototype using [mamba / conda](https://focalplane.biologists.com/2022/12/08/managing-scientific-python-environments-using-conda-mamba-and-friends/): ``` mamba install -c conda-forge pyclesperanto-prototype ``` OR using pip: ``` pip install pyclesperanto-prototype ``` ## Troubleshooting: Graphics cards drivers In case error messages contains "ImportError: DLL load failed while importing cl: The specified procedure could not be found" [see also](https://github.com/clEsperanto/pyclesperanto_prototype/issues/55) or "clGetPlatformIDs failed: PLATFORM_NOT_FOUND_KHR", please install recent drivers for your graphics card and/or OpenCL device. Select the right driver source depending on your hardware from this list: * [AMD drivers](https://www.amd.com/en/support) * [NVidia drivers](https://www.nvidia.com/download/index.aspx) * [Intel GPU drivers](https://www.intel.com/content/www/us/en/download/726609/intel-arc-graphics-windows-dch-driver.html) * [Microsoft Windows OpenCL support](https://www.microsoft.com/en-us/p/opencl-and-opengl-compatibility-pack/9nqpsl29bfff) Sometimes, mac-users need to install this: mamba install -c conda-forge ocl_icd_wrapper_apple Sometimes, linux users need to install this: mamba install -c conda-forge ocl-icd-system ## Computing on Central Processing units (CPUs) If no OpenCL-compatible GPU is available, pyclesperanto-prototype can make use of CPUs instead. Just install [oclgrind](https://github.com/jrprice/Oclgrind) or [pocl](http://portablecl.org/), e.g. using mamba / conda. Oclgrind is recommended for Windows systems, PoCL for Linux. MacOS typically comes with OpenCL support for CPUs. ``` mamba install oclgrind -c conda-forge ``` OR ``` mamba install pocl -c conda-forge ``` Owners of compatible Intel Xeon CPUs can also install a driver to use them for computing: * [Intel CPU OpenCL drivers](https://www.intel.com/content/www/us/en/developer/articles/tool/opencl-drivers.html#latest_CPU_runtime) ## Example code A basic image processing workflow loads blobs.gif and counts the number of objects: ```python import pyclesperanto_prototype as cle from skimage.io import imread, imsave # initialize / select GPU with "TX" in their name device = cle.select_device("TX") print("Used GPU: ", device) # load data image = imread('https://imagej.nih.gov/ij/images/blobs.gif') # process the image inverted = cle.subtract_image_from_scalar(image, scalar=255) blurred = cle.gaussian_blur(inverted, sigma_x=1, sigma_y=1) binary = cle.threshold_otsu(blurred) labeled = cle.connected_components_labeling_box(binary) # The maximium intensity in a label image corresponds to the number of objects num_labels = labeled.max() print(f"Number of objects in the image: {num_labels}") # save image to disc imsave("result.tif", labeled) ``` ## Example gallery
[Select GPU](https://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/select_GPU.py)
[Image processing in Jupyter Notebooks](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/interoperability/jupyter.ipynb)
[Counting blobs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/count_blobs.ipynb)
[Voronoi-Otsu labeling](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/voronoi_otsu_labeling.ipynb)
[3D Image segmentation ](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/Segmentation_3D.ipynb)
[Cell segmentation based on membranes](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/segmentation_2d_membranes.ipynb)
[Counting nuclei according to expression in multiple channels](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/counting_nuclei_multichannel.ipynb)
[Differentiating nuclei according to signal intensity](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/differentiate_nuclei_intensity.ipynb)
[Detecting beads and measuring their size](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/bead_segmentation.ipynb)
[Label statistics](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/label_statistics.ipynb)
[Parametric maps](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tissues/parametric_maps.ipynb)
[Measure intensity along lines](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/intensities_along_lines.ipynb)
[Crop and paste images](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/crop_and_paste_images.ipynb)
[Inspecting 3D image data](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/inspecting_3d_images.ipynb)
[Rotation, scaling, translation, affine transforms](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/transforms/affine_transforms.ipynb)
[Deskewing](https://github.com/clEsperanto/pyclesperanto_prototype/blob/master/demo/transforms/deskew.ipynb)
[Multiply vectors and matrices](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/multiply_vectors_and_matrices.ipynb)
[Matrix multiplication](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/multiply_matrices.ipynb)
* [Working with spots, pointlist and matrices](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/spots_pointlists_matrices_tables.ipynb) * [Lists of nonzero pixel coordinates](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/nonzero.ipynb)
[Mesh between centroids](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_between_centroids.ipynb)
[Mesh between touching neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_between_touching_neighbors.ipynb)
[Mesh with distances](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_with_distances.ipynb)
[Mesh nearest_neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_nearest_neighbors.ipynb)
[Export to igraph and networkx](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/ipgraph_networkx.ipynb)
[Neighborhood definitions](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/neighborhood_definitions.ipynb)
[Tissue neighborhood quantification](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tissues/tissue_neighborhood_quantification.ipynb)
[Neighbors of neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/neighbors_of_neighbors.ipynb)
[Voronoi diagrams](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/voronoi_diagrams.ipynb)
[Shape descriptors based on neighborhood graphs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/shape_descriptors_based_on_neighborhood_graphs.ipynb)
[Measuring distances between labels in two label images](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/distance_to_other_labels.ipynb)
[Tribolium morphometry + Napari](https://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium.py)
[Tribolium morphometry](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium_morphometry2.ipynb) [(archived version)](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium_morphometry.ipynb)
[napari+dask timelapse processing](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/napari_gui/napari_dask.ipynb)
## Technical insights
[Browsing operations](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/browse_operations.ipynb)
[Interactive widgets](https://colab.research.google.com/github/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/browse_operations.ipynb)
[Automatic workflow optimization](https://colab.research.google.com/github/clEsperanto/pyclesperanto_prototype/tree/master/demo/optimization/optimize_blobs_segmentation.ipynb)
[Tracing memory consumtion on NVidia GPUs](https://github.com/clEsperanto/pyclesperanto_prototype/blob/master/demo/optimization/memory_management.ipynb)
[Exploring and switching between GPUs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/switching_gpus.ipynb)
[Interoperability with cupy](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/interoperability_cupy.ipynb) [Using the cupy backend](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/select_backend.ipynb)
[Big data handling with Dask GPU clusters](./demo/interoperability/dask.ipynb)
## Related projects
[napari-pyclesperanto-assistant](https://github.com/clesperanto/napari_pyclesperanto_assistant): A graphical user interface for general purpose GPU-accelerated image processing and analysis in napari.
[napari-accelerated-pixel-and-object-classification](https://github.com/haesleinhuepf/napari-accelerated-pixel-and-object-classification): GPU-accelerated Random Forest Classifiers for pixel and labeled object classification
[napari-clusters-plotter](https://github.com/BiAPoL/napari-clusters-plotter): Clustering of objects according to their quantitative properties
## Benchmarking We implemented some basic benchmarking notebooks allowing to see performance differences between pyclesperanto and some other image processing libraries, typically using the CPU. Such benchmarking results vary heavily depending on image size, kernel size, used operations, parameters and used hardware. Feel free to use those notebooks, adapt them to your use-case scenario and benchmark on your target hardware. If you have different scenarios or use-cases, you are very welcome to submit your notebook as pull-request! * [Affine transforms](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/affine_transforms.ipynb) * [Background subtraction](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/top_hat.ipynb) * [Gaussian blur](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/gaussian_blur.ipynb) * [Convolution](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/convolution.ipynb) * [Otsu's thresholding](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/threshold_otsu.ipynb) * [Connected component labeling](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/connected_component_labeling.ipynb) * [Extend labels](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/extend_labels.ipynb) * [Statistics of labeled pixels / regionprops](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/statistics_of_labeled_pixels.ipynb) * [Histograms](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/histograms.ipynb) * [Matrix multiplication](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/matrix_multiplication.ipynb) * [Pixel-wise comparison](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/pixelwise_comparison.ipynb) * [Intensity projections](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/intensity_projections.ipynb) * [Axis transposition](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/transpose.ipynb) * [Nonzero](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/nonzero.ipynb) ## See also There are other libraries for code acceleration and GPU-acceleration for image processing. * [numba](https://numba.pydata.org/) * [cupy](https://cupy.dev) * [cucim](https://github.com/rapidsai/cucim) * [clij](https://clij.github.io) ## Feedback welcome! clesperanto is developed in the open because we believe in the open source community. See our [community guidelines](https://clij.github.io/clij2-docs/community_guidelines). Feel free to drop feedback as [github issue](https://github.com/clEsperanto/pyclesperanto_prototype/issues) or via [image.sc](https://image.sc) %package help Summary: Development documents and examples for pyclesperanto-prototype Provides: python3-pyclesperanto-prototype-doc %description help # py-clesperanto [![Image.sc forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftag%2Fclesperanto.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&suffix=%20topics&logo=)](https://forum.image.sc/tag/clesperanto) [![website](https://img.shields.io/website?url=http%3A%2F%2Fclesperanto.net)](http://clesperanto.net) [![PyPI](https://img.shields.io/pypi/v/pyclesperanto-prototype.svg?color=green)](https://pypi.org/project/pyclesperanto-prototype) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyclesperanto-prototype/badges/version.svg)](https://anaconda.org/conda-forge/pyclesperanto-prototype) [![Contributors](https://img.shields.io/github/contributors-anon/clEsperanto/pyclesperanto_prototype)](https://github.com/clEsperanto/pyclesperanto_prototype/graphs/contributors) [![PyPI - Downloads](https://img.shields.io/pypi/dm/pyclesperanto_prototype)](https://pypistats.org/packages/pyclesperanto_prototype) [![GitHub stars](https://img.shields.io/github/stars/clEsperanto/pyclesperanto_prototype?style=social)](https://github.com/clEsperanto/pyclesperanto_prototype/) [![GitHub forks](https://img.shields.io/github/forks/clEsperanto/pyclesperanto_prototype?style=social)](https://github.com/clEsperanto/pyclesperanto_prototype/) [![License](https://img.shields.io/pypi/l/pyclesperanto_prototype.svg?color=green)](https://github.com/haesleinhuepf/pyclesperanto_prototype/raw/master/LICENSE) [![Python Version](https://img.shields.io/pypi/pyversions/pyclesperanto-prototype.svg?color=green)](https://python.org) [![tests](https://github.com/clesperanto/pyclesperanto_prototype/workflows/tests/badge.svg)](https://github.com/clesperanto/pyclesperanto_prototype/actions) [![codecov](https://codecov.io/gh/clesperanto/pyclesperanto_prototype/branch/master/graph/badge.svg)](https://codecov.io/gh/clesperanto/pyclesperanto_prototype) [![Development Status](https://img.shields.io/pypi/status/pyclesperanto_prototype.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha) [![DOI](https://zenodo.org/badge/248206619.svg)](https://zenodo.org/badge/latestdoi/248206619) py-clesperanto is a prototype for [clesperanto](http://clesperanto.net) - a multi-platform multi-language framework for GPU-accelerated image processing. We mostly use it in the life sciences for analysing 3- and 4-dimensional microsopy data, e.g. as we face it developmental biology when segmenting cells and studying their individual properties as well as properties of compounds of cells forming tissues. ![](https://github.com/clEsperanto/pyclesperanto_prototype/raw/master/docs/images/banner.png) Image data source: Daniela Vorkel, Myers lab, MPI-CBG, rendered using [napari](https://github.com/napari/napari) clesperanto uses [OpenCL kernels](https://github.com/clEsperanto/clij-opencl-kernels/tree/development/src/main/java/net/haesleinhuepf/clij/kernels) from [CLIJ](http://clij.github.io/). For users convenience, there are code generators available for [napari](https://clesperanto.github.io/napari_pyclesperanto_assistant/) and [Fiji](https://clij.github.io/assistant/). Also check out the [napari workflow optimizer](https://github.com/haesleinhuepf/napari-workflow-optimizer) for semi-automatic parameter tuning of clesperanto-functions. ## Reference The preliminary API reference is available [here](https://clesperanto.github.io/pyclesperanto_prototype/docs/_build/html/). Furthermore, parts of the [reference](https://clij.github.io/clij2-docs/reference__pyclesperanto) are also available within the CLIJ2 documentation. ## Installation * Get a conda/python environment, e.g. via [mamba-forge](https://github.com/conda-forge/miniforge#mambaforge). * If you never used python/conda environments before, please follow [these instructions](https://biapol.github.io/blog/mara_lampert/getting_started_with_mambaforge_and_python/readme.html) first. ``` conda create --name cle_39 python=3.9 conda activate cle_39 ``` * Install pyclesperanto-prototype using [mamba / conda](https://focalplane.biologists.com/2022/12/08/managing-scientific-python-environments-using-conda-mamba-and-friends/): ``` mamba install -c conda-forge pyclesperanto-prototype ``` OR using pip: ``` pip install pyclesperanto-prototype ``` ## Troubleshooting: Graphics cards drivers In case error messages contains "ImportError: DLL load failed while importing cl: The specified procedure could not be found" [see also](https://github.com/clEsperanto/pyclesperanto_prototype/issues/55) or "clGetPlatformIDs failed: PLATFORM_NOT_FOUND_KHR", please install recent drivers for your graphics card and/or OpenCL device. Select the right driver source depending on your hardware from this list: * [AMD drivers](https://www.amd.com/en/support) * [NVidia drivers](https://www.nvidia.com/download/index.aspx) * [Intel GPU drivers](https://www.intel.com/content/www/us/en/download/726609/intel-arc-graphics-windows-dch-driver.html) * [Microsoft Windows OpenCL support](https://www.microsoft.com/en-us/p/opencl-and-opengl-compatibility-pack/9nqpsl29bfff) Sometimes, mac-users need to install this: mamba install -c conda-forge ocl_icd_wrapper_apple Sometimes, linux users need to install this: mamba install -c conda-forge ocl-icd-system ## Computing on Central Processing units (CPUs) If no OpenCL-compatible GPU is available, pyclesperanto-prototype can make use of CPUs instead. Just install [oclgrind](https://github.com/jrprice/Oclgrind) or [pocl](http://portablecl.org/), e.g. using mamba / conda. Oclgrind is recommended for Windows systems, PoCL for Linux. MacOS typically comes with OpenCL support for CPUs. ``` mamba install oclgrind -c conda-forge ``` OR ``` mamba install pocl -c conda-forge ``` Owners of compatible Intel Xeon CPUs can also install a driver to use them for computing: * [Intel CPU OpenCL drivers](https://www.intel.com/content/www/us/en/developer/articles/tool/opencl-drivers.html#latest_CPU_runtime) ## Example code A basic image processing workflow loads blobs.gif and counts the number of objects: ```python import pyclesperanto_prototype as cle from skimage.io import imread, imsave # initialize / select GPU with "TX" in their name device = cle.select_device("TX") print("Used GPU: ", device) # load data image = imread('https://imagej.nih.gov/ij/images/blobs.gif') # process the image inverted = cle.subtract_image_from_scalar(image, scalar=255) blurred = cle.gaussian_blur(inverted, sigma_x=1, sigma_y=1) binary = cle.threshold_otsu(blurred) labeled = cle.connected_components_labeling_box(binary) # The maximium intensity in a label image corresponds to the number of objects num_labels = labeled.max() print(f"Number of objects in the image: {num_labels}") # save image to disc imsave("result.tif", labeled) ``` ## Example gallery
[Select GPU](https://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/select_GPU.py)
[Image processing in Jupyter Notebooks](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/interoperability/jupyter.ipynb)
[Counting blobs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/count_blobs.ipynb)
[Voronoi-Otsu labeling](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/voronoi_otsu_labeling.ipynb)
[3D Image segmentation ](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/Segmentation_3D.ipynb)
[Cell segmentation based on membranes](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/segmentation_2d_membranes.ipynb)
[Counting nuclei according to expression in multiple channels](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/counting_nuclei_multichannel.ipynb)
[Differentiating nuclei according to signal intensity](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/differentiate_nuclei_intensity.ipynb)
[Detecting beads and measuring their size](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/segmentation/bead_segmentation.ipynb)
[Label statistics](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/label_statistics.ipynb)
[Parametric maps](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tissues/parametric_maps.ipynb)
[Measure intensity along lines](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/measurement/intensities_along_lines.ipynb)
[Crop and paste images](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/crop_and_paste_images.ipynb)
[Inspecting 3D image data](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/inspecting_3d_images.ipynb)
[Rotation, scaling, translation, affine transforms](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/transforms/affine_transforms.ipynb)
[Deskewing](https://github.com/clEsperanto/pyclesperanto_prototype/blob/master/demo/transforms/deskew.ipynb)
[Multiply vectors and matrices](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/multiply_vectors_and_matrices.ipynb)
[Matrix multiplication](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/multiply_matrices.ipynb)
* [Working with spots, pointlist and matrices](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/spots_pointlists_matrices_tables.ipynb) * [Lists of nonzero pixel coordinates](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/nonzero.ipynb)
[Mesh between centroids](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_between_centroids.ipynb)
[Mesh between touching neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_between_touching_neighbors.ipynb)
[Mesh with distances](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_with_distances.ipynb)
[Mesh nearest_neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/mesh_nearest_neighbors.ipynb)
[Export to igraph and networkx](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/ipgraph_networkx.ipynb)
[Neighborhood definitions](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/neighborhood_definitions.ipynb)
[Tissue neighborhood quantification](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tissues/tissue_neighborhood_quantification.ipynb)
[Neighbors of neighbors](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/neighbors_of_neighbors.ipynb)
[Voronoi diagrams](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/voronoi_diagrams.ipynb)
[Shape descriptors based on neighborhood graphs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/shape_descriptors_based_on_neighborhood_graphs.ipynb)
[Measuring distances between labels in two label images](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/neighbors/distance_to_other_labels.ipynb)
[Tribolium morphometry + Napari](https://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium.py)
[Tribolium morphometry](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium_morphometry2.ipynb) [(archived version)](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/tribolium_morphometry/tribolium_morphometry.ipynb)
[napari+dask timelapse processing](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/napari_gui/napari_dask.ipynb)
## Technical insights
[Browsing operations](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/browse_operations.ipynb)
[Interactive widgets](https://colab.research.google.com/github/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/browse_operations.ipynb)
[Automatic workflow optimization](https://colab.research.google.com/github/clEsperanto/pyclesperanto_prototype/tree/master/demo/optimization/optimize_blobs_segmentation.ipynb)
[Tracing memory consumtion on NVidia GPUs](https://github.com/clEsperanto/pyclesperanto_prototype/blob/master/demo/optimization/memory_management.ipynb)
[Exploring and switching between GPUs](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/switching_gpus.ipynb)
[Interoperability with cupy](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/interoperability_cupy.ipynb) [Using the cupy backend](http://github.com/clEsperanto/pyclesperanto_prototype/tree/master/demo/basics/select_backend.ipynb)
[Big data handling with Dask GPU clusters](./demo/interoperability/dask.ipynb)
## Related projects
[napari-pyclesperanto-assistant](https://github.com/clesperanto/napari_pyclesperanto_assistant): A graphical user interface for general purpose GPU-accelerated image processing and analysis in napari.
[napari-accelerated-pixel-and-object-classification](https://github.com/haesleinhuepf/napari-accelerated-pixel-and-object-classification): GPU-accelerated Random Forest Classifiers for pixel and labeled object classification
[napari-clusters-plotter](https://github.com/BiAPoL/napari-clusters-plotter): Clustering of objects according to their quantitative properties
## Benchmarking We implemented some basic benchmarking notebooks allowing to see performance differences between pyclesperanto and some other image processing libraries, typically using the CPU. Such benchmarking results vary heavily depending on image size, kernel size, used operations, parameters and used hardware. Feel free to use those notebooks, adapt them to your use-case scenario and benchmark on your target hardware. If you have different scenarios or use-cases, you are very welcome to submit your notebook as pull-request! * [Affine transforms](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/affine_transforms.ipynb) * [Background subtraction](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/top_hat.ipynb) * [Gaussian blur](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/gaussian_blur.ipynb) * [Convolution](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/convolution.ipynb) * [Otsu's thresholding](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/threshold_otsu.ipynb) * [Connected component labeling](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/connected_component_labeling.ipynb) * [Extend labels](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/extend_labels.ipynb) * [Statistics of labeled pixels / regionprops](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/statistics_of_labeled_pixels.ipynb) * [Histograms](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/histograms.ipynb) * [Matrix multiplication](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/matrix_multiplication.ipynb) * [Pixel-wise comparison](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/pixelwise_comparison.ipynb) * [Intensity projections](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/intensity_projections.ipynb) * [Axis transposition](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/transpose.ipynb) * [Nonzero](http://github.com/clEsperanto/pyclesperanto_prototype/blob/master/benchmarks/nonzero.ipynb) ## See also There are other libraries for code acceleration and GPU-acceleration for image processing. * [numba](https://numba.pydata.org/) * [cupy](https://cupy.dev) * [cucim](https://github.com/rapidsai/cucim) * [clij](https://clij.github.io) ## Feedback welcome! clesperanto is developed in the open because we believe in the open source community. See our [community guidelines](https://clij.github.io/clij2-docs/community_guidelines). Feel free to drop feedback as [github issue](https://github.com/clEsperanto/pyclesperanto_prototype/issues) or via [image.sc](https://image.sc) %prep %autosetup -n pyclesperanto-prototype-0.24.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pyclesperanto-prototype -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 10 2023 Python_Bot - 0.24.1-1 - Package Spec generated