%global _empty_manifest_terminate_build 0 Name: python-pacmap Version: 0.7.0 Release: 1 Summary: The official implementation for PaCMAP: Pairwise Controlled Manifold Approximation Projection License: Apache Software License URL: https://github.com/YingfanWang/PaCMAP Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cc/8d/d0f13b0ee9a9087332251777981ef94722f966e236124563d3dc21828180/pacmap-0.7.0.tar.gz BuildArch: noarch Requires: python3-scikit-learn Requires: python3-numba Requires: python3-annoy Requires: python3-numpy %description # PaCMAP ## Introduction **Our work has been published at the Journal of Machine Learning Research(JMLR)!** PaCMAP (Pairwise Controlled Manifold Approximation) is a dimensionality reduction method that can be used for visualization, preserving both local and global structure of the data in original space. PaCMAP optimizes the low dimensional embedding using three kinds of pairs of points: neighbor pairs (pair_neighbors), mid-near pair (pair_MN), and further pairs (pair_FP). Previous dimensionality reduction techniques focus on either local structure (e.g. t-SNE, LargeVis and UMAP) or global structure (e.g. TriMAP), but not both, although with carefully tuning the parameter in their algorithms that controls the balance between global and local structure, which mainly adjusts the number of considered neighbors. Instead of considering more neighbors to attract for preserving glocal structure, PaCMAP dynamically uses a special group of pairs -- mid-near pairs, to first capture global structure and then refine local structure, which both preserve global and local structure. For a thorough background and discussion on this work, please read [our paper](https://jmlr.org/papers/v22/20-1061.html). ## Release Notes - 0.7.0 Now officially supports the `save` and `load` methods. `pacmap.save(reducer, common_prefix)` will save the PaCMAP instance (and the AnnoyIndex if `save_tree=True`) to the location specified by the `common_prefix`. The PaCMAP instance will be named as `{common_prefix}.pkl` and the Annoy Index will be named as `{common_fix}.ann`. Similarly, `pacmap.load(common_prefix)` loads the saved PaCMAP instance. - 0.6.0 Now officially supports the `transform` feature. The transform operation is useful for projecting a new dataset into an existing embedded space. - 0.5.0 Now support setting `random_state` when creating `pacmap.PaCMAP` instances for better reproducibility. Fix the default initialization to `PCA` to resolve inconsistency between code and description. **Setting the `random_state` will affect the numpy random seed in your local environment. However, you may still get different results even if the `random_state` parameter is set to be the same. This is because numba parallelization makes some of the functions undeterministic.** That being said, fixing the random state will always give you the same set of pairs and initialization, which ensure the difference is minimal. - 0.4.1 Now the default value for `n_neighbors` is 10. To enable automatic parameter selection, please set it to `None`. - 0.4 Now supports user-specified nearest neighbor pairs. See section `How to use user-specified nearest neighbor` below. The `fit` function and the `fit_transform` function now has an extra parameter `save_pairs` that decides whether the pairs sampled in this run will be saved to save time for reproducing experiments with other hyperparameters (default to `True`). - 0.3 Now supports user-specified matrix as initialization through `init` parameter. The matrix must be an numpy ndarray with the shape (N, 2). - 0.2 Adding adaptive default value for `n_neighbors`: for large datasets with sample size N > 10000, the default value will be set to 10 + 15 * (log10(N) - 4), rounding to the nearest integer. - 0.1 Initial Release ## Installation You can use pip to install pacmap from PyPI. It will automatically install the dependencies for you: ```bash pip install pacmap ``` ## Usage The `pacmap` package is designed to be compatible with `scikit-learn`, meaning that it has a similar interface with functions in the `sklearn.manifold` module. To run `pacmap` on your own dataset, you should install the package following the instructions in [installation](#installation), and then import the module. The following code clip includes a use case about how to use PaCMAP on the [COIL-20](https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php) dataset: ```python import pacmap import numpy as np import matplotlib.pyplot as plt # loading preprocessed coil_20 dataset # you can change it with any dataset that is in the ndarray format, with the shape (N, D) # where N is the number of samples and D is the dimension of each sample X = np.load("./data/coil_20.npy", allow_pickle=True) X = X.reshape(X.shape[0], -1) y = np.load("./data/coil_20_labels.npy", allow_pickle=True) # initializing the pacmap instance # Setting n_neighbors to "None" leads to a default choice shown below in "parameter" section embedding = pacmap.PaCMAP(n_components=2, n_neighbors=None, MN_ratio=0.5, FP_ratio=2.0) # fit the data (The index of transformed data corresponds to the index of the original data) X_transformed = embedding.fit_transform(X, init="pca") # visualize the embedding fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.scatter(X_transformed[:, 0], X_transformed[:, 1], cmap="Spectral", c=y, s=0.6) ``` ## Benchmarks The following images are visualizations of two datasets: [MNIST](http://yann.lecun.com/exdb/mnist/) (n=70,000, d=784) and [Mammoth](https://github.com/PAIR-code/understanding-umap/tree/master/raw_data) (n=10,000, d=3), generated by PaCMAP. The two visualizations demonstrate the local and global structure's preservation ability of PaCMAP respectively. ![MNIST](/images/MNIST.jpg?raw=true "PaCMAP's result on MNIST") ![Mammoth](/images/Mammoth.jpg?raw=true "PaCMAP's result on Mammoth") ## Parameters The list of the most important parameters is given below. Changing these values will affect the result of dimension reduction significantly, as specified in section 8.3 in our paper. - `n_components`: the number of dimension of the output. Default to 2. - `n_neighbors`: the number of neighbors considered in the k-Nearest Neighbor graph. Default to 10 for dataset whose sample size is smaller than 10000. For large dataset whose sample size (n) is larger than 10000, the default value is: 10 + 15 * (log10(n) - 4). - `MN_ratio`: the ratio of the number of mid-near pairs to the number of neighbors, `n_MN` = `n_neighbors * MN_ratio` . Default to 0.5. - `FP_ratio`: the ratio of the number of further pairs to the number of neighbors, `n_FP` = `n_neighbors * FP_ratio` Default to 2. The initialization is also important to the result, but it's a parameter of the `fit` and `fit_transform` function. - `init`: the initialization of the lower dimensional embedding. One of `"pca"` or `"random"`, or a user-provided numpy ndarray with the shape (N, 2). Default to `"random"`. Other parameters include: - `num_iters`: number of iterations. Default to 450. 450 iterations is enough for most dataset to converge. - `pair_neighbors`, `pair_MN` and `pair_FP`: pre-specified neighbor pairs, mid-near points, and further pairs. Allows user to use their own graphs. Default to `None`. - `verbose`: print the progress of pacmap. Default to `False` - `lr`: learning rate of the AdaGrad optimizer. Default to 1. - `apply_pca`: whether pacmap should apply PCA to the data before constructing the k-Nearest Neighbor graph. Using PCA to preprocess the data can largely accelerate the DR process without losing too much accuracy. Notice that this option does not affect the initialization of the optimization process. - `intermediate`: whether pacmap should also output the intermediate stages of the optimization process of the lower dimension embedding. If `True`, then the output will be a numpy array of the size (n, `n_components`, 13), where each slice is a "screenshot" of the output embedding at a particular number of steps, from [0, 10, 30, 60, 100, 120, 140, 170, 200, 250, 300, 350, 450]. ## Methods Similar to the scikit-learn API, the PaCMAP instance can generate embedding for a dataset via `fit`, `fit_transform` and `transform` method. We currently support numpy.ndarray format as our input. Specifically, to convert pandas DataFrame to ndarray format, please refer to the [pandas documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_numpy.html). For a more detailed walkthrough, please see the [demo](./demo/) directory. ## How to use user-specified nearest neighbor In version 0.4, we have provided a new option to allow users to use their own nearest neighbors when mapping large-scale datasets. Please see the [demo](./demo/specify_nn_demo.py) for a detailed walkthrough about how to use PaCMAP with the user-specified nearest neighbors. ## Reproducing our experiments We have provided the code we use to run experiment for better reproducibility. The code are separated into three parts, in three folders, respectively: - `data`, which includes all the datasets we used, preprocessed into the file format each DR method use. Notice that since the Mouse single cell RNA sequence dataset is too big (~4GB), you may need to download from the [link](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93374) here. MNIST and FMNIST dataset is compressed, and you need to unzip them before using. COIL-100 dataset is still too large after compressed, please preprocess it using the file Preprocessing.ipynb on your own. - `experiments`, which includes all the scripts we use to produce DR results. - `evaluation`, which includes all the scripts we use to evaluate DR results, stated in Section 8 in our paper. After downloading the code, you may need to specify some of the paths in the script to make them fully functional. ## Citation If you used PaCMAP in your publication, or you used the implementation in this repository, please cite our paper using the following bibtex: ```bibtex @article{JMLR:v22:20-1061, author = {Yingfan Wang and Haiyang Huang and Cynthia Rudin and Yaron Shaposhnik}, title = {Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization}, journal = {Journal of Machine Learning Research}, year = {2021}, volume = {22}, number = {201}, pages = {1-73}, url = {http://jmlr.org/papers/v22/20-1061.html} } ``` ## License Please see the license file. %package -n python3-pacmap Summary: The official implementation for PaCMAP: Pairwise Controlled Manifold Approximation Projection Provides: python-pacmap BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pacmap # PaCMAP ## Introduction **Our work has been published at the Journal of Machine Learning Research(JMLR)!** PaCMAP (Pairwise Controlled Manifold Approximation) is a dimensionality reduction method that can be used for visualization, preserving both local and global structure of the data in original space. PaCMAP optimizes the low dimensional embedding using three kinds of pairs of points: neighbor pairs (pair_neighbors), mid-near pair (pair_MN), and further pairs (pair_FP). Previous dimensionality reduction techniques focus on either local structure (e.g. t-SNE, LargeVis and UMAP) or global structure (e.g. TriMAP), but not both, although with carefully tuning the parameter in their algorithms that controls the balance between global and local structure, which mainly adjusts the number of considered neighbors. Instead of considering more neighbors to attract for preserving glocal structure, PaCMAP dynamically uses a special group of pairs -- mid-near pairs, to first capture global structure and then refine local structure, which both preserve global and local structure. For a thorough background and discussion on this work, please read [our paper](https://jmlr.org/papers/v22/20-1061.html). ## Release Notes - 0.7.0 Now officially supports the `save` and `load` methods. `pacmap.save(reducer, common_prefix)` will save the PaCMAP instance (and the AnnoyIndex if `save_tree=True`) to the location specified by the `common_prefix`. The PaCMAP instance will be named as `{common_prefix}.pkl` and the Annoy Index will be named as `{common_fix}.ann`. Similarly, `pacmap.load(common_prefix)` loads the saved PaCMAP instance. - 0.6.0 Now officially supports the `transform` feature. The transform operation is useful for projecting a new dataset into an existing embedded space. - 0.5.0 Now support setting `random_state` when creating `pacmap.PaCMAP` instances for better reproducibility. Fix the default initialization to `PCA` to resolve inconsistency between code and description. **Setting the `random_state` will affect the numpy random seed in your local environment. However, you may still get different results even if the `random_state` parameter is set to be the same. This is because numba parallelization makes some of the functions undeterministic.** That being said, fixing the random state will always give you the same set of pairs and initialization, which ensure the difference is minimal. - 0.4.1 Now the default value for `n_neighbors` is 10. To enable automatic parameter selection, please set it to `None`. - 0.4 Now supports user-specified nearest neighbor pairs. See section `How to use user-specified nearest neighbor` below. The `fit` function and the `fit_transform` function now has an extra parameter `save_pairs` that decides whether the pairs sampled in this run will be saved to save time for reproducing experiments with other hyperparameters (default to `True`). - 0.3 Now supports user-specified matrix as initialization through `init` parameter. The matrix must be an numpy ndarray with the shape (N, 2). - 0.2 Adding adaptive default value for `n_neighbors`: for large datasets with sample size N > 10000, the default value will be set to 10 + 15 * (log10(N) - 4), rounding to the nearest integer. - 0.1 Initial Release ## Installation You can use pip to install pacmap from PyPI. It will automatically install the dependencies for you: ```bash pip install pacmap ``` ## Usage The `pacmap` package is designed to be compatible with `scikit-learn`, meaning that it has a similar interface with functions in the `sklearn.manifold` module. To run `pacmap` on your own dataset, you should install the package following the instructions in [installation](#installation), and then import the module. The following code clip includes a use case about how to use PaCMAP on the [COIL-20](https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php) dataset: ```python import pacmap import numpy as np import matplotlib.pyplot as plt # loading preprocessed coil_20 dataset # you can change it with any dataset that is in the ndarray format, with the shape (N, D) # where N is the number of samples and D is the dimension of each sample X = np.load("./data/coil_20.npy", allow_pickle=True) X = X.reshape(X.shape[0], -1) y = np.load("./data/coil_20_labels.npy", allow_pickle=True) # initializing the pacmap instance # Setting n_neighbors to "None" leads to a default choice shown below in "parameter" section embedding = pacmap.PaCMAP(n_components=2, n_neighbors=None, MN_ratio=0.5, FP_ratio=2.0) # fit the data (The index of transformed data corresponds to the index of the original data) X_transformed = embedding.fit_transform(X, init="pca") # visualize the embedding fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.scatter(X_transformed[:, 0], X_transformed[:, 1], cmap="Spectral", c=y, s=0.6) ``` ## Benchmarks The following images are visualizations of two datasets: [MNIST](http://yann.lecun.com/exdb/mnist/) (n=70,000, d=784) and [Mammoth](https://github.com/PAIR-code/understanding-umap/tree/master/raw_data) (n=10,000, d=3), generated by PaCMAP. The two visualizations demonstrate the local and global structure's preservation ability of PaCMAP respectively. ![MNIST](/images/MNIST.jpg?raw=true "PaCMAP's result on MNIST") ![Mammoth](/images/Mammoth.jpg?raw=true "PaCMAP's result on Mammoth") ## Parameters The list of the most important parameters is given below. Changing these values will affect the result of dimension reduction significantly, as specified in section 8.3 in our paper. - `n_components`: the number of dimension of the output. Default to 2. - `n_neighbors`: the number of neighbors considered in the k-Nearest Neighbor graph. Default to 10 for dataset whose sample size is smaller than 10000. For large dataset whose sample size (n) is larger than 10000, the default value is: 10 + 15 * (log10(n) - 4). - `MN_ratio`: the ratio of the number of mid-near pairs to the number of neighbors, `n_MN` = `n_neighbors * MN_ratio` . Default to 0.5. - `FP_ratio`: the ratio of the number of further pairs to the number of neighbors, `n_FP` = `n_neighbors * FP_ratio` Default to 2. The initialization is also important to the result, but it's a parameter of the `fit` and `fit_transform` function. - `init`: the initialization of the lower dimensional embedding. One of `"pca"` or `"random"`, or a user-provided numpy ndarray with the shape (N, 2). Default to `"random"`. Other parameters include: - `num_iters`: number of iterations. Default to 450. 450 iterations is enough for most dataset to converge. - `pair_neighbors`, `pair_MN` and `pair_FP`: pre-specified neighbor pairs, mid-near points, and further pairs. Allows user to use their own graphs. Default to `None`. - `verbose`: print the progress of pacmap. Default to `False` - `lr`: learning rate of the AdaGrad optimizer. Default to 1. - `apply_pca`: whether pacmap should apply PCA to the data before constructing the k-Nearest Neighbor graph. Using PCA to preprocess the data can largely accelerate the DR process without losing too much accuracy. Notice that this option does not affect the initialization of the optimization process. - `intermediate`: whether pacmap should also output the intermediate stages of the optimization process of the lower dimension embedding. If `True`, then the output will be a numpy array of the size (n, `n_components`, 13), where each slice is a "screenshot" of the output embedding at a particular number of steps, from [0, 10, 30, 60, 100, 120, 140, 170, 200, 250, 300, 350, 450]. ## Methods Similar to the scikit-learn API, the PaCMAP instance can generate embedding for a dataset via `fit`, `fit_transform` and `transform` method. We currently support numpy.ndarray format as our input. Specifically, to convert pandas DataFrame to ndarray format, please refer to the [pandas documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_numpy.html). For a more detailed walkthrough, please see the [demo](./demo/) directory. ## How to use user-specified nearest neighbor In version 0.4, we have provided a new option to allow users to use their own nearest neighbors when mapping large-scale datasets. Please see the [demo](./demo/specify_nn_demo.py) for a detailed walkthrough about how to use PaCMAP with the user-specified nearest neighbors. ## Reproducing our experiments We have provided the code we use to run experiment for better reproducibility. The code are separated into three parts, in three folders, respectively: - `data`, which includes all the datasets we used, preprocessed into the file format each DR method use. Notice that since the Mouse single cell RNA sequence dataset is too big (~4GB), you may need to download from the [link](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93374) here. MNIST and FMNIST dataset is compressed, and you need to unzip them before using. COIL-100 dataset is still too large after compressed, please preprocess it using the file Preprocessing.ipynb on your own. - `experiments`, which includes all the scripts we use to produce DR results. - `evaluation`, which includes all the scripts we use to evaluate DR results, stated in Section 8 in our paper. After downloading the code, you may need to specify some of the paths in the script to make them fully functional. ## Citation If you used PaCMAP in your publication, or you used the implementation in this repository, please cite our paper using the following bibtex: ```bibtex @article{JMLR:v22:20-1061, author = {Yingfan Wang and Haiyang Huang and Cynthia Rudin and Yaron Shaposhnik}, title = {Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization}, journal = {Journal of Machine Learning Research}, year = {2021}, volume = {22}, number = {201}, pages = {1-73}, url = {http://jmlr.org/papers/v22/20-1061.html} } ``` ## License Please see the license file. %package help Summary: Development documents and examples for pacmap Provides: python3-pacmap-doc %description help # PaCMAP ## Introduction **Our work has been published at the Journal of Machine Learning Research(JMLR)!** PaCMAP (Pairwise Controlled Manifold Approximation) is a dimensionality reduction method that can be used for visualization, preserving both local and global structure of the data in original space. PaCMAP optimizes the low dimensional embedding using three kinds of pairs of points: neighbor pairs (pair_neighbors), mid-near pair (pair_MN), and further pairs (pair_FP). Previous dimensionality reduction techniques focus on either local structure (e.g. t-SNE, LargeVis and UMAP) or global structure (e.g. TriMAP), but not both, although with carefully tuning the parameter in their algorithms that controls the balance between global and local structure, which mainly adjusts the number of considered neighbors. Instead of considering more neighbors to attract for preserving glocal structure, PaCMAP dynamically uses a special group of pairs -- mid-near pairs, to first capture global structure and then refine local structure, which both preserve global and local structure. For a thorough background and discussion on this work, please read [our paper](https://jmlr.org/papers/v22/20-1061.html). ## Release Notes - 0.7.0 Now officially supports the `save` and `load` methods. `pacmap.save(reducer, common_prefix)` will save the PaCMAP instance (and the AnnoyIndex if `save_tree=True`) to the location specified by the `common_prefix`. The PaCMAP instance will be named as `{common_prefix}.pkl` and the Annoy Index will be named as `{common_fix}.ann`. Similarly, `pacmap.load(common_prefix)` loads the saved PaCMAP instance. - 0.6.0 Now officially supports the `transform` feature. The transform operation is useful for projecting a new dataset into an existing embedded space. - 0.5.0 Now support setting `random_state` when creating `pacmap.PaCMAP` instances for better reproducibility. Fix the default initialization to `PCA` to resolve inconsistency between code and description. **Setting the `random_state` will affect the numpy random seed in your local environment. However, you may still get different results even if the `random_state` parameter is set to be the same. This is because numba parallelization makes some of the functions undeterministic.** That being said, fixing the random state will always give you the same set of pairs and initialization, which ensure the difference is minimal. - 0.4.1 Now the default value for `n_neighbors` is 10. To enable automatic parameter selection, please set it to `None`. - 0.4 Now supports user-specified nearest neighbor pairs. See section `How to use user-specified nearest neighbor` below. The `fit` function and the `fit_transform` function now has an extra parameter `save_pairs` that decides whether the pairs sampled in this run will be saved to save time for reproducing experiments with other hyperparameters (default to `True`). - 0.3 Now supports user-specified matrix as initialization through `init` parameter. The matrix must be an numpy ndarray with the shape (N, 2). - 0.2 Adding adaptive default value for `n_neighbors`: for large datasets with sample size N > 10000, the default value will be set to 10 + 15 * (log10(N) - 4), rounding to the nearest integer. - 0.1 Initial Release ## Installation You can use pip to install pacmap from PyPI. It will automatically install the dependencies for you: ```bash pip install pacmap ``` ## Usage The `pacmap` package is designed to be compatible with `scikit-learn`, meaning that it has a similar interface with functions in the `sklearn.manifold` module. To run `pacmap` on your own dataset, you should install the package following the instructions in [installation](#installation), and then import the module. The following code clip includes a use case about how to use PaCMAP on the [COIL-20](https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php) dataset: ```python import pacmap import numpy as np import matplotlib.pyplot as plt # loading preprocessed coil_20 dataset # you can change it with any dataset that is in the ndarray format, with the shape (N, D) # where N is the number of samples and D is the dimension of each sample X = np.load("./data/coil_20.npy", allow_pickle=True) X = X.reshape(X.shape[0], -1) y = np.load("./data/coil_20_labels.npy", allow_pickle=True) # initializing the pacmap instance # Setting n_neighbors to "None" leads to a default choice shown below in "parameter" section embedding = pacmap.PaCMAP(n_components=2, n_neighbors=None, MN_ratio=0.5, FP_ratio=2.0) # fit the data (The index of transformed data corresponds to the index of the original data) X_transformed = embedding.fit_transform(X, init="pca") # visualize the embedding fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.scatter(X_transformed[:, 0], X_transformed[:, 1], cmap="Spectral", c=y, s=0.6) ``` ## Benchmarks The following images are visualizations of two datasets: [MNIST](http://yann.lecun.com/exdb/mnist/) (n=70,000, d=784) and [Mammoth](https://github.com/PAIR-code/understanding-umap/tree/master/raw_data) (n=10,000, d=3), generated by PaCMAP. The two visualizations demonstrate the local and global structure's preservation ability of PaCMAP respectively. ![MNIST](/images/MNIST.jpg?raw=true "PaCMAP's result on MNIST") ![Mammoth](/images/Mammoth.jpg?raw=true "PaCMAP's result on Mammoth") ## Parameters The list of the most important parameters is given below. Changing these values will affect the result of dimension reduction significantly, as specified in section 8.3 in our paper. - `n_components`: the number of dimension of the output. Default to 2. - `n_neighbors`: the number of neighbors considered in the k-Nearest Neighbor graph. Default to 10 for dataset whose sample size is smaller than 10000. For large dataset whose sample size (n) is larger than 10000, the default value is: 10 + 15 * (log10(n) - 4). - `MN_ratio`: the ratio of the number of mid-near pairs to the number of neighbors, `n_MN` = `n_neighbors * MN_ratio` . Default to 0.5. - `FP_ratio`: the ratio of the number of further pairs to the number of neighbors, `n_FP` = `n_neighbors * FP_ratio` Default to 2. The initialization is also important to the result, but it's a parameter of the `fit` and `fit_transform` function. - `init`: the initialization of the lower dimensional embedding. One of `"pca"` or `"random"`, or a user-provided numpy ndarray with the shape (N, 2). Default to `"random"`. Other parameters include: - `num_iters`: number of iterations. Default to 450. 450 iterations is enough for most dataset to converge. - `pair_neighbors`, `pair_MN` and `pair_FP`: pre-specified neighbor pairs, mid-near points, and further pairs. Allows user to use their own graphs. Default to `None`. - `verbose`: print the progress of pacmap. Default to `False` - `lr`: learning rate of the AdaGrad optimizer. Default to 1. - `apply_pca`: whether pacmap should apply PCA to the data before constructing the k-Nearest Neighbor graph. Using PCA to preprocess the data can largely accelerate the DR process without losing too much accuracy. Notice that this option does not affect the initialization of the optimization process. - `intermediate`: whether pacmap should also output the intermediate stages of the optimization process of the lower dimension embedding. If `True`, then the output will be a numpy array of the size (n, `n_components`, 13), where each slice is a "screenshot" of the output embedding at a particular number of steps, from [0, 10, 30, 60, 100, 120, 140, 170, 200, 250, 300, 350, 450]. ## Methods Similar to the scikit-learn API, the PaCMAP instance can generate embedding for a dataset via `fit`, `fit_transform` and `transform` method. We currently support numpy.ndarray format as our input. Specifically, to convert pandas DataFrame to ndarray format, please refer to the [pandas documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_numpy.html). For a more detailed walkthrough, please see the [demo](./demo/) directory. ## How to use user-specified nearest neighbor In version 0.4, we have provided a new option to allow users to use their own nearest neighbors when mapping large-scale datasets. Please see the [demo](./demo/specify_nn_demo.py) for a detailed walkthrough about how to use PaCMAP with the user-specified nearest neighbors. ## Reproducing our experiments We have provided the code we use to run experiment for better reproducibility. The code are separated into three parts, in three folders, respectively: - `data`, which includes all the datasets we used, preprocessed into the file format each DR method use. Notice that since the Mouse single cell RNA sequence dataset is too big (~4GB), you may need to download from the [link](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93374) here. MNIST and FMNIST dataset is compressed, and you need to unzip them before using. COIL-100 dataset is still too large after compressed, please preprocess it using the file Preprocessing.ipynb on your own. - `experiments`, which includes all the scripts we use to produce DR results. - `evaluation`, which includes all the scripts we use to evaluate DR results, stated in Section 8 in our paper. After downloading the code, you may need to specify some of the paths in the script to make them fully functional. ## Citation If you used PaCMAP in your publication, or you used the implementation in this repository, please cite our paper using the following bibtex: ```bibtex @article{JMLR:v22:20-1061, author = {Yingfan Wang and Haiyang Huang and Cynthia Rudin and Yaron Shaposhnik}, title = {Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization}, journal = {Journal of Machine Learning Research}, year = {2021}, volume = {22}, number = {201}, pages = {1-73}, url = {http://jmlr.org/papers/v22/20-1061.html} } ``` ## License Please see the license file. %prep %autosetup -n pacmap-0.7.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pacmap -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 10 2023 Python_Bot - 0.7.0-1 - Package Spec generated