%global _empty_manifest_terminate_build 0 Name: python-ServeIt Version: 0.0.9 Release: 1 Summary: Machine learning prediction serving License: MIT License URL: https://github.com/rtlee9/serveit Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f6/83/bda15c52f95b802f7da9165d076e6f4d9601a385b278f81fb8a2706072cb/ServeIt-0.0.9.tar.gz BuildArch: noarch Requires: python3-flask Requires: python3-flask-restful Requires: python3-meinheld Requires: python3-check-manifest Requires: python3-coverage %description |Build Status| |Codacy Grade Badge| |Codacy Coverage Badge| |PyPI version| ServeIt lets you serve model predictions and supplementary information from a RESTful API using your favorite Python ML library in as little as one line of code: from serveit.server import ModelServer from sklearn.linear_model import LogisticRegression from sklearn.datasets import load_iris # fit logistic regression on Iris data clf = LogisticRegression() data = load_iris() clf.fit(data.data, data.target) # initialize server with a model and start serving predictions ModelServer(clf, clf.predict).serve() Your new API is now accepting ``POST`` requests at ``localhost:5000/predictions``! Please see the `examples `__ directory for detailed examples across domains (e.g., regression, image classification), including live examples. Features ^^^^^^^^ Current ServeIt features include: 1. Model inference serving via RESTful API endpoint 2. Extensible library for inference-time data loading, preprocessing, input validation, and postprocessing 3. Supplementary information endpoint creation 4. Automatic JSON serialization of responses 5. Configurable request and response logging (work in progress) Supported libraries ^^^^^^^^^^^^^^^^^^^ The following libraries are currently supported: \* Scikit-Learn \* Keras \* PyTorch %package -n python3-ServeIt Summary: Machine learning prediction serving Provides: python-ServeIt BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-ServeIt |Build Status| |Codacy Grade Badge| |Codacy Coverage Badge| |PyPI version| ServeIt lets you serve model predictions and supplementary information from a RESTful API using your favorite Python ML library in as little as one line of code: from serveit.server import ModelServer from sklearn.linear_model import LogisticRegression from sklearn.datasets import load_iris # fit logistic regression on Iris data clf = LogisticRegression() data = load_iris() clf.fit(data.data, data.target) # initialize server with a model and start serving predictions ModelServer(clf, clf.predict).serve() Your new API is now accepting ``POST`` requests at ``localhost:5000/predictions``! Please see the `examples `__ directory for detailed examples across domains (e.g., regression, image classification), including live examples. Features ^^^^^^^^ Current ServeIt features include: 1. Model inference serving via RESTful API endpoint 2. Extensible library for inference-time data loading, preprocessing, input validation, and postprocessing 3. Supplementary information endpoint creation 4. Automatic JSON serialization of responses 5. Configurable request and response logging (work in progress) Supported libraries ^^^^^^^^^^^^^^^^^^^ The following libraries are currently supported: \* Scikit-Learn \* Keras \* PyTorch %package help Summary: Development documents and examples for ServeIt Provides: python3-ServeIt-doc %description help |Build Status| |Codacy Grade Badge| |Codacy Coverage Badge| |PyPI version| ServeIt lets you serve model predictions and supplementary information from a RESTful API using your favorite Python ML library in as little as one line of code: from serveit.server import ModelServer from sklearn.linear_model import LogisticRegression from sklearn.datasets import load_iris # fit logistic regression on Iris data clf = LogisticRegression() data = load_iris() clf.fit(data.data, data.target) # initialize server with a model and start serving predictions ModelServer(clf, clf.predict).serve() Your new API is now accepting ``POST`` requests at ``localhost:5000/predictions``! Please see the `examples `__ directory for detailed examples across domains (e.g., regression, image classification), including live examples. Features ^^^^^^^^ Current ServeIt features include: 1. Model inference serving via RESTful API endpoint 2. Extensible library for inference-time data loading, preprocessing, input validation, and postprocessing 3. Supplementary information endpoint creation 4. Automatic JSON serialization of responses 5. Configurable request and response logging (work in progress) Supported libraries ^^^^^^^^^^^^^^^^^^^ The following libraries are currently supported: \* Scikit-Learn \* Keras \* PyTorch %prep %autosetup -n ServeIt-0.0.9 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-ServeIt -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 0.0.9-1 - Package Spec generated