%global _empty_manifest_terminate_build 0 Name: python-zcls Version: 0.15.2 Release: 1 Summary: Object Classification Training/Inferring Framework License: Apache Software License URL: https://github.com/ZJCV/ZCls Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3e/15/876fb33b680e48a85458526d74df5e16ab8cfead90e511e5adc07eff11e2/zcls-0.15.2.tar.gz BuildArch: noarch Requires: python3-albumentations Requires: python3-Pillow-SIMD Requires: python3-lmdb Requires: python3-numpy Requires: python3-opencv-python Requires: python3-psutil Requires: python3-resnest Requires: python3-six Requires: python3-tabulate Requires: python3-thop Requires: python3-torch Requires: python3-torchvision Requires: python3-tqdm Requires: python3-yacs Requires: python3-tensorboard %description
«ZCls» is a classification model training/inferring framework
*Refer to [roadmap](https://zcls.readthedocs.io/en/latest/roadmap/) for details* ## Table of Contents - [Table of Contents](#table-of-contents) - [Background](#background) - [Installation](#installation) - [Usage](#usage) - [Maintainers](#maintainers) - [Thanks](#thanks) - [Contributing](#contributing) - [License](#license) ## Background In the fields of object detection/object segmentation/action recognition, there have been many training frameworks with high integration and perfect process, such as [facebookresearch/detectron2](https://github.com/facebookresearch/detectron2), [open-mmlab/mmaction2](https://github.com/open-mmlab/mmaction2) ... Object classification is the most developed and theoretically basic field in deeplearning. Referring to the existing training framework, a training/inferring framework based on object classification model is implemented. I hope ZCls can bring you a better realization. ## Installation See [INSTALL](https://zcls.readthedocs.io/en/latest/install/) ## Usage How to train, see [Get Started with ZCls](https://zcls.readthedocs.io/en/latest/get-started/) Use builtin datasets, see [Use Builtin Datasets](https://zcls.readthedocs.io/en/latest/builtin-datasets/) Use custom datasets, see [Use Custom Datasets](https://zcls.readthedocs.io/en/latest/) Use pretrained model, see [Use Pretrained Model](https://zcls.readthedocs.io/en/latest/pretrained-model/) ## Maintainers * zhujian - *Initial work* - [zjykzj](https://github.com/zjykzj) ## Thanks ``` @misc{ding2021diverse, title={Diverse Branch Block: Building a Convolution as an Inception-like Unit}, author={Xiaohan Ding and Xiangyu Zhang and Jungong Han and Guiguang Ding}, year={2021}, eprint={2103.13425}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{ding2021repvgg, title={RepVGG: Making VGG-style ConvNets Great Again}, author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, year={2021}, eprint={2101.03697}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{fan2020pyslowfast, author = {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and Christoph Feichtenhofer}, title = {PySlowFast}, howpublished = {\url{https://github.com/facebookresearch/slowfast}}, year = {2020} } @misc{zhang2020resnest, title={ResNeSt: Split-Attention Networks}, author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola}, year={2020}, eprint={2004.08955}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{han2020ghostnet, title={GhostNet: More Features from Cheap Operations}, author={Kai Han and Yunhe Wang and Qi Tian and Jianyuan Guo and Chunjing Xu and Chang Xu}, year={2020}, eprint={1911.11907}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` *For more thanks, check [THANKS](./THANKS)* ## Contributing Anyone's participation is welcome! Open an [issue](https://github.com/ZJCV/ZCls/issues) or submit PRs. Small note: * Git submission specifications should be complied with [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0-beta.4/) * If versioned, please conform to the [Semantic Versioning 2.0.0](https://semver.org) specification * If editing the README, please conform to the [standard-readme](https://github.com/RichardLitt/standard-readme) specification. ## License [Apache License 2.0](LICENSE) © 2020 zjykzj %package -n python3-zcls Summary: Object Classification Training/Inferring Framework Provides: python-zcls BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-zcls
«ZCls» is a classification model training/inferring framework
*Refer to [roadmap](https://zcls.readthedocs.io/en/latest/roadmap/) for details* ## Table of Contents - [Table of Contents](#table-of-contents) - [Background](#background) - [Installation](#installation) - [Usage](#usage) - [Maintainers](#maintainers) - [Thanks](#thanks) - [Contributing](#contributing) - [License](#license) ## Background In the fields of object detection/object segmentation/action recognition, there have been many training frameworks with high integration and perfect process, such as [facebookresearch/detectron2](https://github.com/facebookresearch/detectron2), [open-mmlab/mmaction2](https://github.com/open-mmlab/mmaction2) ... Object classification is the most developed and theoretically basic field in deeplearning. Referring to the existing training framework, a training/inferring framework based on object classification model is implemented. I hope ZCls can bring you a better realization. ## Installation See [INSTALL](https://zcls.readthedocs.io/en/latest/install/) ## Usage How to train, see [Get Started with ZCls](https://zcls.readthedocs.io/en/latest/get-started/) Use builtin datasets, see [Use Builtin Datasets](https://zcls.readthedocs.io/en/latest/builtin-datasets/) Use custom datasets, see [Use Custom Datasets](https://zcls.readthedocs.io/en/latest/) Use pretrained model, see [Use Pretrained Model](https://zcls.readthedocs.io/en/latest/pretrained-model/) ## Maintainers * zhujian - *Initial work* - [zjykzj](https://github.com/zjykzj) ## Thanks ``` @misc{ding2021diverse, title={Diverse Branch Block: Building a Convolution as an Inception-like Unit}, author={Xiaohan Ding and Xiangyu Zhang and Jungong Han and Guiguang Ding}, year={2021}, eprint={2103.13425}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{ding2021repvgg, title={RepVGG: Making VGG-style ConvNets Great Again}, author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, year={2021}, eprint={2101.03697}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{fan2020pyslowfast, author = {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and Christoph Feichtenhofer}, title = {PySlowFast}, howpublished = {\url{https://github.com/facebookresearch/slowfast}}, year = {2020} } @misc{zhang2020resnest, title={ResNeSt: Split-Attention Networks}, author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola}, year={2020}, eprint={2004.08955}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{han2020ghostnet, title={GhostNet: More Features from Cheap Operations}, author={Kai Han and Yunhe Wang and Qi Tian and Jianyuan Guo and Chunjing Xu and Chang Xu}, year={2020}, eprint={1911.11907}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` *For more thanks, check [THANKS](./THANKS)* ## Contributing Anyone's participation is welcome! Open an [issue](https://github.com/ZJCV/ZCls/issues) or submit PRs. Small note: * Git submission specifications should be complied with [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0-beta.4/) * If versioned, please conform to the [Semantic Versioning 2.0.0](https://semver.org) specification * If editing the README, please conform to the [standard-readme](https://github.com/RichardLitt/standard-readme) specification. ## License [Apache License 2.0](LICENSE) © 2020 zjykzj %package help Summary: Development documents and examples for zcls Provides: python3-zcls-doc %description help
«ZCls» is a classification model training/inferring framework
*Refer to [roadmap](https://zcls.readthedocs.io/en/latest/roadmap/) for details* ## Table of Contents - [Table of Contents](#table-of-contents) - [Background](#background) - [Installation](#installation) - [Usage](#usage) - [Maintainers](#maintainers) - [Thanks](#thanks) - [Contributing](#contributing) - [License](#license) ## Background In the fields of object detection/object segmentation/action recognition, there have been many training frameworks with high integration and perfect process, such as [facebookresearch/detectron2](https://github.com/facebookresearch/detectron2), [open-mmlab/mmaction2](https://github.com/open-mmlab/mmaction2) ... Object classification is the most developed and theoretically basic field in deeplearning. Referring to the existing training framework, a training/inferring framework based on object classification model is implemented. I hope ZCls can bring you a better realization. ## Installation See [INSTALL](https://zcls.readthedocs.io/en/latest/install/) ## Usage How to train, see [Get Started with ZCls](https://zcls.readthedocs.io/en/latest/get-started/) Use builtin datasets, see [Use Builtin Datasets](https://zcls.readthedocs.io/en/latest/builtin-datasets/) Use custom datasets, see [Use Custom Datasets](https://zcls.readthedocs.io/en/latest/) Use pretrained model, see [Use Pretrained Model](https://zcls.readthedocs.io/en/latest/pretrained-model/) ## Maintainers * zhujian - *Initial work* - [zjykzj](https://github.com/zjykzj) ## Thanks ``` @misc{ding2021diverse, title={Diverse Branch Block: Building a Convolution as an Inception-like Unit}, author={Xiaohan Ding and Xiangyu Zhang and Jungong Han and Guiguang Ding}, year={2021}, eprint={2103.13425}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{ding2021repvgg, title={RepVGG: Making VGG-style ConvNets Great Again}, author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, year={2021}, eprint={2101.03697}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{fan2020pyslowfast, author = {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and Christoph Feichtenhofer}, title = {PySlowFast}, howpublished = {\url{https://github.com/facebookresearch/slowfast}}, year = {2020} } @misc{zhang2020resnest, title={ResNeSt: Split-Attention Networks}, author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola}, year={2020}, eprint={2004.08955}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{han2020ghostnet, title={GhostNet: More Features from Cheap Operations}, author={Kai Han and Yunhe Wang and Qi Tian and Jianyuan Guo and Chunjing Xu and Chang Xu}, year={2020}, eprint={1911.11907}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` *For more thanks, check [THANKS](./THANKS)* ## Contributing Anyone's participation is welcome! Open an [issue](https://github.com/ZJCV/ZCls/issues) or submit PRs. Small note: * Git submission specifications should be complied with [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0-beta.4/) * If versioned, please conform to the [Semantic Versioning 2.0.0](https://semver.org) specification * If editing the README, please conform to the [standard-readme](https://github.com/RichardLitt/standard-readme) specification. ## License [Apache License 2.0](LICENSE) © 2020 zjykzj %prep %autosetup -n zcls-0.15.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-zcls -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot