%global _empty_manifest_terminate_build 0 Name: python-roboticstoolbox-python Version: 1.1.0 Release: 1 Summary: A Python library for robotics education and research License: MIT License Copyright (c) 2020 jhavl Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. URL: https://pypi.org/project/roboticstoolbox-python/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/04/99/c460df149faac36e0a4f4a47111ac23ae25154d0e29065747ea972e78920/roboticstoolbox-python-1.1.0.tar.gz Requires: python3-numpy Requires: python3-spatialmath-python Requires: python3-spatialgeometry Requires: python3-pgraph-python Requires: python3-scipy Requires: python3-matplotlib Requires: python3-ansitable Requires: python3-swift-sim Requires: python3-rtb-data Requires: python3-progress Requires: python3-typing-extensions Requires: python3-pybullet Requires: python3-black Requires: python3-pytest Requires: python3-pytest-cov Requires: python3-flake8 Requires: python3-pyyaml Requires: python3-sympy Requires: python3-qpsolvers Requires: python3-quadprog Requires: python3-pybullet Requires: python3-bdsim Requires: python3-sphinx Requires: python3-sphinx-rtd-theme Requires: python3-sphinx-autorun Requires: python3-sphinx-autodoc-typehints Requires: python3-sphinx-favicon %description # Robotics Toolbox for Python [![A Python Robotics Package](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/py_collection.min.svg)](https://github.com/petercorke/robotics-toolbox-python) [![Powered by Spatial Maths](https://raw.githubusercontent.com/petercorke/spatialmath-python/master/.github/svg/sm_powered.min.svg)](https://github.com/petercorke/spatialmath-python) [![QUT Centre for Robotics Open Source](https://github.com/qcr/qcr.github.io/raw/master/misc/badge.svg)](https://qcr.github.io) [![PyPI version](https://badge.fury.io/py/roboticstoolbox-python.svg)](https://badge.fury.io/py/roboticstoolbox-python) [![Anaconda version](https://anaconda.org/conda-forge/roboticstoolbox-python/badges/version.svg)](https://anaconda.org/conda-forge/roboticstoolbox-python) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/roboticstoolbox-python.svg) [![Build Status](https://github.com/petercorke/robotics-toolbox-python/workflows/Test/badge.svg?branch=master)](https://github.com/petercorke/robotics-toolbox-python/actions?query=workflow%3ATest) [![Coverage](https://codecov.io/gh/petercorke/robotics-toolbox-python/branch/master/graph/badge.svg)](https://codecov.io/gh/petercorke/robotics-toolbox-python) [![PyPI - Downloads](https://img.shields.io/pypi/dw/roboticstoolbox-python)](https://pypistats.org/packages/roboticstoolbox-python) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
A Python implementation of the Robotics Toolbox for MATLAB®
## Contents - [Synopsis](#1) - [Getting going](#2) - [Tutorials](#3) - [Code Examples](#4) - [Toolbox Research Applications](#5) - [Toolbox ICRA Paper and Citation Info](#6) - [Using the Toolbox in your Open Source Code?](#7) - [Common Issues and Solutions](#8)
## Synopsis This toolbox brings robotics-specific functionality to Python, and leverages Python's advantages of portability, ubiquity and support, and the capability of the open-source ecosystem for linear algebra (numpy, scipy), graphics (matplotlib, three.js, WebGL), interactive development (jupyter, jupyterlab, mybinder.org), and documentation (sphinx). The Toolbox provides tools for representing the kinematics and dynamics of serial-link manipulators - you can easily create your own in Denavit-Hartenberg form, import a URDF file, or use over 30 supplied models for well-known contemporary robots from Franka-Emika, Kinova, Universal Robotics, Rethink as well as classical robots such as the Puma 560 and the Stanford arm. The Toolbox contains fast implementations of kinematic operations. The forward kinematics and the manipulator Jacobian can be computed in less than 1 microsecond while numerical inverse kinematics can be solved in as little as 4 microseconds. The toolbox also supports mobile robots with functions for robot motion models (unicycle, bicycle), path planning algorithms (bug, distance transform, D\*, PRM), kinodynamic planning (lattice, RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF). The Toolbox provides: - code that is mature and provides a point of comparison for other implementations of the same algorithms; - routines which are generally written in a straightforward manner which allows for easy understanding, perhaps at the expense of computational efficiency; - source code which can be read for learning and teaching; - backward compatability with the Robotics Toolbox for MATLAB The Toolbox leverages the [Spatial Maths Toolbox for Python](https://github.com/petercorke/spatialmath-python) to provide support for data types such as SO(n) and SE(n) matrices, quaternions, twists and spatial vectors.
## Getting going You will need Python >= 3.6 ### Using pip Install a snapshot from PyPI ```shell script pip3 install roboticstoolbox-python ``` Available options are: - `collision` install collision checking with [pybullet](https://pybullet.org) Put the options in a comma separated list like ```shell script pip3 install roboticstoolbox-python[optionlist] ``` [Swift](https://github.com/jhavl/swift), a web-based visualizer, is installed as part of Robotics Toolbox. ### From GitHub To install the bleeding-edge version from GitHub ```shell script git clone https://github.com/petercorke/robotics-toolbox-python.git cd robotics-toolbox-python pip3 install -e . ```
## Tutorials
Do you want to learn about manipulator kinematics, differential kinematics, inverse-kinematics and motion control? Have a look at our tutorial. This tutorial comes with two articles to cover the theory and 12 Jupyter Notebooks providing full code implementations and examples. Most of the Notebooks are also Google Colab compatible allowing them to run online.

## Code Examples We will load a model of the Franka-Emika Panda robot defined by a URDF file ```python import roboticstoolbox as rtb robot = rtb.models.Panda() print(robot) ERobot: panda (by Franka Emika), 7 joints (RRRRRRR), 1 gripper, geometry, collision ┌─────┬──────────────┬───────┬─────────────┬────────────────────────────────────────────────┐ │link │ link │ joint │ parent │ ETS: parent to link │ ├─────┼──────────────┼───────┼─────────────┼────────────────────────────────────────────────┤ │ 0 │ panda_link0 │ │ BASE │ │ │ 1 │ panda_link1 │ 0 │ panda_link0 │ SE3(0, 0, 0.333) ⊕ Rz(q0) │ │ 2 │ panda_link2 │ 1 │ panda_link1 │ SE3(-90°, -0°, 0°) ⊕ Rz(q1) │ │ 3 │ panda_link3 │ 2 │ panda_link2 │ SE3(0, -0.316, 0; 90°, -0°, 0°) ⊕ Rz(q2) │ │ 4 │ panda_link4 │ 3 │ panda_link3 │ SE3(0.0825, 0, 0; 90°, -0°, 0°) ⊕ Rz(q3) │ │ 5 │ panda_link5 │ 4 │ panda_link4 │ SE3(-0.0825, 0.384, 0; -90°, -0°, 0°) ⊕ Rz(q4) │ │ 6 │ panda_link6 │ 5 │ panda_link5 │ SE3(90°, -0°, 0°) ⊕ Rz(q5) │ │ 7 │ panda_link7 │ 6 │ panda_link6 │ SE3(0.088, 0, 0; 90°, -0°, 0°) ⊕ Rz(q6) │ │ 8 │ @panda_link8 │ │ panda_link7 │ SE3(0, 0, 0.107) │ └─────┴──────────────┴───────┴─────────────┴────────────────────────────────────────────────┘ ┌─────┬─────┬────────┬─────┬───────┬─────┬───────┬──────┐ │name │ q0 │ q1 │ q2 │ q3 │ q4 │ q5 │ q6 │ ├─────┼─────┼────────┼─────┼───────┼─────┼───────┼──────┤ │ qr │ 0° │ -17.2° │ 0° │ -126° │ 0° │ 115° │ 45° │ │ qz │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ └─────┴─────┴────────┴─────┴───────┴─────┴───────┴──────┘ ``` The symbol `@` indicates the link as an end-effector, a leaf node in the rigid-body tree (Python prompts are not shown to make it easy to copy+paste the code, console output is indented). We will compute the forward kinematics next ``` Te = robot.fkine(robot.qr) # forward kinematics print(Te) 0.995 0 0.09983 0.484 0 -1 0 0 0.09983 0 -0.995 0.4126 0 0 0 1 ``` We can solve inverse kinematics very easily. We first choose an SE(3) pose defined in terms of position and orientation (end-effector z-axis down (A=-Z) and finger orientation parallel to y-axis (O=+Y)). ```python from spatialmath import SE3 Tep = SE3.Trans(0.6, -0.3, 0.1) * SE3.OA([0, 1, 0], [0, 0, -1]) sol = robot.ik_lm_chan(Tep) # solve IK print(sol) (array([ 0.20592815, 0.86609481, -0.79473206, -1.68254794, 0.74872915, 2.21764746, -0.10255606]), 1, 114, 7, 2.890164057230228e-07) q_pickup = sol[0] print(robot.fkine(q_pickup)) # FK shows that desired end-effector pose was achieved 1 -8.913e-05 -0.0003334 0.5996 -8.929e-05 -1 -0.0004912 -0.2998 -0.0003334 0.0004912 -1 0.1001 0 0 0 1 ``` We can animate a path from the ready pose `qr` configuration to this pickup configuration ```python qt = rtb.jtraj(robot.qr, q_pickup, 50) robot.plot(qt.q, backend='pyplot', movie='panda1.gif') ```

where we have specified the matplotlib `pyplot` backend. Blue arrows show the joint axes and the coloured frame shows the end-effector pose. We can also plot the trajectory in the Swift simulator (a browser-based 3d-simulation environment built to work with the Toolbox) ```python robot.plot(qt.q) ```

We can also experiment with velocity controllers in Swift. Here is a resolved-rate motion control example ```python import swift import roboticstoolbox as rp import spatialmath as sm import numpy as np env = swift.Swift() env.launch(realtime=True) panda = rp.models.Panda() panda.q = panda.qr Tep = panda.fkine(panda.q) * sm.SE3.Trans(0.2, 0.2, 0.45) arrived = False env.add(panda) dt = 0.05 while not arrived: v, arrived = rp.p_servo(panda.fkine(panda.q), Tep, 1) panda.qd = np.linalg.pinv(panda.jacobe(panda.q)) @ v env.step(dt) # Uncomment to stop the browser tab from closing # env.hold() ```

### Run some examples The [`notebooks`](https://github.com/petercorke/robotics-toolbox-python/tree/master/notebooks) folder contains some tutorial Jupyter notebooks which you can browse on GitHub. Additionally, have a look in the [`examples`](https://github.com/petercorke/robotics-toolbox-python/tree/master/roboticstoolbox/examples) folder for many ready to run examples.
## Toolbox Research Applications The toolbox is incredibly useful for developing and prototyping algorithms for research, thanks to the exhaustive set of well documented and mature robotic functions exposed through clean and painless APIs. Additionally, the ease at which a user can visualize their algorithm supports a rapid prototyping paradigm. ### Publication List J. Haviland, N. Sünderhauf and P. Corke, "**A Holistic Approach to Reactive Mobile Manipulation**," in _IEEE Robotics and Automation Letters_, doi: 10.1109/LRA.2022.3146554. In the video, the robot is controlled using the Robotics toolbox for Python and features a recording from the [Swift](https://github.com/jhavl/swift) Simulator. [[Arxiv Paper](https://arxiv.org/abs/2109.04749)] [[IEEE Xplore](https://ieeexplore.ieee.org/abstract/document/9695298)] [[Project Website](https://jhavl.github.io/holistic/)] [[Video](https://youtu.be/-DXBQPeLIV4)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/holistic_mm_non_holonomic.py)]

J. Haviland and P. Corke, "**NEO: A Novel Expeditious Optimisation Algorithm for Reactive Motion Control of Manipulators**," in _IEEE Robotics and Automation Letters_, doi: 10.1109/LRA.2021.3056060. In the video, the robot is controlled using the Robotics toolbox for Python and features a recording from the [Swift](https://github.com/jhavl/swift) Simulator. [[Arxiv Paper](https://arxiv.org/abs/2010.08686)] [[IEEE Xplore](https://ieeexplore.ieee.org/document/9343718)] [[Project Website](https://jhavl.github.io/neo/)] [[Video](https://youtu.be/jSLPJBr8QTY)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/neo.py)]

**A Purely-Reactive Manipulability-Maximising Motion Controller**, J. Haviland and P. Corke. In the video, the robot is controlled using the Robotics toolbox for Python. [[Paper](https://arxiv.org/abs/2002.11901)] [[Project Website](https://jhavl.github.io/mmc/)] [[Video](https://youtu.be/Vu_rcPlaADI)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/mmc.py)]



## Toolbox ICRA Paper and Citation Info Check out our ICRA 2021 paper on [IEEE Xplore](https://ieeexplore.ieee.org/document/9561366) or get the PDF from [Peter's website](https://bit.ly/3ChcyNp). If the toolbox helped you in your research, please cite ``` @inproceedings{rtb, title={Not your grandmother’s toolbox--the Robotics Toolbox reinvented for Python}, author={Corke, Peter and Haviland, Jesse}, booktitle={2021 IEEE International Conference on Robotics and Automation (ICRA)}, pages={11357--11363}, year={2021}, organization={IEEE} } ```
## Using the Toolbox in your Open Source Code? If you are using the Toolbox in your open source code, feel free to add our badge to your readme! For the powered by robotics toolbox badge [![Powered by the Robotics Toolbox](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/rtb_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) copy the following ``` [![Powered by the Robotics Toolbox](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/rtb_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) ``` For the powered by python robotics badge [![Powered by Python Robotics](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/pr_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) copy the following ``` [![Powered by Python Robotics](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/pr_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) ```
## Common Issues and Solutions See the common issues with fixes [here](https://github.com/petercorke/robotics-toolbox-python/wiki/Common-Issues). %package -n python3-roboticstoolbox-python Summary: A Python library for robotics education and research Provides: python-roboticstoolbox-python BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip BuildRequires: python3-cffi BuildRequires: gcc BuildRequires: gdb %description -n python3-roboticstoolbox-python # Robotics Toolbox for Python [![A Python Robotics Package](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/py_collection.min.svg)](https://github.com/petercorke/robotics-toolbox-python) [![Powered by Spatial Maths](https://raw.githubusercontent.com/petercorke/spatialmath-python/master/.github/svg/sm_powered.min.svg)](https://github.com/petercorke/spatialmath-python) [![QUT Centre for Robotics Open Source](https://github.com/qcr/qcr.github.io/raw/master/misc/badge.svg)](https://qcr.github.io) [![PyPI version](https://badge.fury.io/py/roboticstoolbox-python.svg)](https://badge.fury.io/py/roboticstoolbox-python) [![Anaconda version](https://anaconda.org/conda-forge/roboticstoolbox-python/badges/version.svg)](https://anaconda.org/conda-forge/roboticstoolbox-python) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/roboticstoolbox-python.svg) [![Build Status](https://github.com/petercorke/robotics-toolbox-python/workflows/Test/badge.svg?branch=master)](https://github.com/petercorke/robotics-toolbox-python/actions?query=workflow%3ATest) [![Coverage](https://codecov.io/gh/petercorke/robotics-toolbox-python/branch/master/graph/badge.svg)](https://codecov.io/gh/petercorke/robotics-toolbox-python) [![PyPI - Downloads](https://img.shields.io/pypi/dw/roboticstoolbox-python)](https://pypistats.org/packages/roboticstoolbox-python) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
A Python implementation of the Robotics Toolbox for MATLAB®
## Contents - [Synopsis](#1) - [Getting going](#2) - [Tutorials](#3) - [Code Examples](#4) - [Toolbox Research Applications](#5) - [Toolbox ICRA Paper and Citation Info](#6) - [Using the Toolbox in your Open Source Code?](#7) - [Common Issues and Solutions](#8)
## Synopsis This toolbox brings robotics-specific functionality to Python, and leverages Python's advantages of portability, ubiquity and support, and the capability of the open-source ecosystem for linear algebra (numpy, scipy), graphics (matplotlib, three.js, WebGL), interactive development (jupyter, jupyterlab, mybinder.org), and documentation (sphinx). The Toolbox provides tools for representing the kinematics and dynamics of serial-link manipulators - you can easily create your own in Denavit-Hartenberg form, import a URDF file, or use over 30 supplied models for well-known contemporary robots from Franka-Emika, Kinova, Universal Robotics, Rethink as well as classical robots such as the Puma 560 and the Stanford arm. The Toolbox contains fast implementations of kinematic operations. The forward kinematics and the manipulator Jacobian can be computed in less than 1 microsecond while numerical inverse kinematics can be solved in as little as 4 microseconds. The toolbox also supports mobile robots with functions for robot motion models (unicycle, bicycle), path planning algorithms (bug, distance transform, D\*, PRM), kinodynamic planning (lattice, RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF). The Toolbox provides: - code that is mature and provides a point of comparison for other implementations of the same algorithms; - routines which are generally written in a straightforward manner which allows for easy understanding, perhaps at the expense of computational efficiency; - source code which can be read for learning and teaching; - backward compatability with the Robotics Toolbox for MATLAB The Toolbox leverages the [Spatial Maths Toolbox for Python](https://github.com/petercorke/spatialmath-python) to provide support for data types such as SO(n) and SE(n) matrices, quaternions, twists and spatial vectors.
## Getting going You will need Python >= 3.6 ### Using pip Install a snapshot from PyPI ```shell script pip3 install roboticstoolbox-python ``` Available options are: - `collision` install collision checking with [pybullet](https://pybullet.org) Put the options in a comma separated list like ```shell script pip3 install roboticstoolbox-python[optionlist] ``` [Swift](https://github.com/jhavl/swift), a web-based visualizer, is installed as part of Robotics Toolbox. ### From GitHub To install the bleeding-edge version from GitHub ```shell script git clone https://github.com/petercorke/robotics-toolbox-python.git cd robotics-toolbox-python pip3 install -e . ```
## Tutorials
Do you want to learn about manipulator kinematics, differential kinematics, inverse-kinematics and motion control? Have a look at our tutorial. This tutorial comes with two articles to cover the theory and 12 Jupyter Notebooks providing full code implementations and examples. Most of the Notebooks are also Google Colab compatible allowing them to run online.

## Code Examples We will load a model of the Franka-Emika Panda robot defined by a URDF file ```python import roboticstoolbox as rtb robot = rtb.models.Panda() print(robot) ERobot: panda (by Franka Emika), 7 joints (RRRRRRR), 1 gripper, geometry, collision ┌─────┬──────────────┬───────┬─────────────┬────────────────────────────────────────────────┐ │link │ link │ joint │ parent │ ETS: parent to link │ ├─────┼──────────────┼───────┼─────────────┼────────────────────────────────────────────────┤ │ 0 │ panda_link0 │ │ BASE │ │ │ 1 │ panda_link1 │ 0 │ panda_link0 │ SE3(0, 0, 0.333) ⊕ Rz(q0) │ │ 2 │ panda_link2 │ 1 │ panda_link1 │ SE3(-90°, -0°, 0°) ⊕ Rz(q1) │ │ 3 │ panda_link3 │ 2 │ panda_link2 │ SE3(0, -0.316, 0; 90°, -0°, 0°) ⊕ Rz(q2) │ │ 4 │ panda_link4 │ 3 │ panda_link3 │ SE3(0.0825, 0, 0; 90°, -0°, 0°) ⊕ Rz(q3) │ │ 5 │ panda_link5 │ 4 │ panda_link4 │ SE3(-0.0825, 0.384, 0; -90°, -0°, 0°) ⊕ Rz(q4) │ │ 6 │ panda_link6 │ 5 │ panda_link5 │ SE3(90°, -0°, 0°) ⊕ Rz(q5) │ │ 7 │ panda_link7 │ 6 │ panda_link6 │ SE3(0.088, 0, 0; 90°, -0°, 0°) ⊕ Rz(q6) │ │ 8 │ @panda_link8 │ │ panda_link7 │ SE3(0, 0, 0.107) │ └─────┴──────────────┴───────┴─────────────┴────────────────────────────────────────────────┘ ┌─────┬─────┬────────┬─────┬───────┬─────┬───────┬──────┐ │name │ q0 │ q1 │ q2 │ q3 │ q4 │ q5 │ q6 │ ├─────┼─────┼────────┼─────┼───────┼─────┼───────┼──────┤ │ qr │ 0° │ -17.2° │ 0° │ -126° │ 0° │ 115° │ 45° │ │ qz │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ └─────┴─────┴────────┴─────┴───────┴─────┴───────┴──────┘ ``` The symbol `@` indicates the link as an end-effector, a leaf node in the rigid-body tree (Python prompts are not shown to make it easy to copy+paste the code, console output is indented). We will compute the forward kinematics next ``` Te = robot.fkine(robot.qr) # forward kinematics print(Te) 0.995 0 0.09983 0.484 0 -1 0 0 0.09983 0 -0.995 0.4126 0 0 0 1 ``` We can solve inverse kinematics very easily. We first choose an SE(3) pose defined in terms of position and orientation (end-effector z-axis down (A=-Z) and finger orientation parallel to y-axis (O=+Y)). ```python from spatialmath import SE3 Tep = SE3.Trans(0.6, -0.3, 0.1) * SE3.OA([0, 1, 0], [0, 0, -1]) sol = robot.ik_lm_chan(Tep) # solve IK print(sol) (array([ 0.20592815, 0.86609481, -0.79473206, -1.68254794, 0.74872915, 2.21764746, -0.10255606]), 1, 114, 7, 2.890164057230228e-07) q_pickup = sol[0] print(robot.fkine(q_pickup)) # FK shows that desired end-effector pose was achieved 1 -8.913e-05 -0.0003334 0.5996 -8.929e-05 -1 -0.0004912 -0.2998 -0.0003334 0.0004912 -1 0.1001 0 0 0 1 ``` We can animate a path from the ready pose `qr` configuration to this pickup configuration ```python qt = rtb.jtraj(robot.qr, q_pickup, 50) robot.plot(qt.q, backend='pyplot', movie='panda1.gif') ```

where we have specified the matplotlib `pyplot` backend. Blue arrows show the joint axes and the coloured frame shows the end-effector pose. We can also plot the trajectory in the Swift simulator (a browser-based 3d-simulation environment built to work with the Toolbox) ```python robot.plot(qt.q) ```

We can also experiment with velocity controllers in Swift. Here is a resolved-rate motion control example ```python import swift import roboticstoolbox as rp import spatialmath as sm import numpy as np env = swift.Swift() env.launch(realtime=True) panda = rp.models.Panda() panda.q = panda.qr Tep = panda.fkine(panda.q) * sm.SE3.Trans(0.2, 0.2, 0.45) arrived = False env.add(panda) dt = 0.05 while not arrived: v, arrived = rp.p_servo(panda.fkine(panda.q), Tep, 1) panda.qd = np.linalg.pinv(panda.jacobe(panda.q)) @ v env.step(dt) # Uncomment to stop the browser tab from closing # env.hold() ```

### Run some examples The [`notebooks`](https://github.com/petercorke/robotics-toolbox-python/tree/master/notebooks) folder contains some tutorial Jupyter notebooks which you can browse on GitHub. Additionally, have a look in the [`examples`](https://github.com/petercorke/robotics-toolbox-python/tree/master/roboticstoolbox/examples) folder for many ready to run examples.
## Toolbox Research Applications The toolbox is incredibly useful for developing and prototyping algorithms for research, thanks to the exhaustive set of well documented and mature robotic functions exposed through clean and painless APIs. Additionally, the ease at which a user can visualize their algorithm supports a rapid prototyping paradigm. ### Publication List J. Haviland, N. Sünderhauf and P. Corke, "**A Holistic Approach to Reactive Mobile Manipulation**," in _IEEE Robotics and Automation Letters_, doi: 10.1109/LRA.2022.3146554. In the video, the robot is controlled using the Robotics toolbox for Python and features a recording from the [Swift](https://github.com/jhavl/swift) Simulator. [[Arxiv Paper](https://arxiv.org/abs/2109.04749)] [[IEEE Xplore](https://ieeexplore.ieee.org/abstract/document/9695298)] [[Project Website](https://jhavl.github.io/holistic/)] [[Video](https://youtu.be/-DXBQPeLIV4)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/holistic_mm_non_holonomic.py)]

J. Haviland and P. Corke, "**NEO: A Novel Expeditious Optimisation Algorithm for Reactive Motion Control of Manipulators**," in _IEEE Robotics and Automation Letters_, doi: 10.1109/LRA.2021.3056060. In the video, the robot is controlled using the Robotics toolbox for Python and features a recording from the [Swift](https://github.com/jhavl/swift) Simulator. [[Arxiv Paper](https://arxiv.org/abs/2010.08686)] [[IEEE Xplore](https://ieeexplore.ieee.org/document/9343718)] [[Project Website](https://jhavl.github.io/neo/)] [[Video](https://youtu.be/jSLPJBr8QTY)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/neo.py)]

**A Purely-Reactive Manipulability-Maximising Motion Controller**, J. Haviland and P. Corke. In the video, the robot is controlled using the Robotics toolbox for Python. [[Paper](https://arxiv.org/abs/2002.11901)] [[Project Website](https://jhavl.github.io/mmc/)] [[Video](https://youtu.be/Vu_rcPlaADI)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/mmc.py)]



## Toolbox ICRA Paper and Citation Info Check out our ICRA 2021 paper on [IEEE Xplore](https://ieeexplore.ieee.org/document/9561366) or get the PDF from [Peter's website](https://bit.ly/3ChcyNp). If the toolbox helped you in your research, please cite ``` @inproceedings{rtb, title={Not your grandmother’s toolbox--the Robotics Toolbox reinvented for Python}, author={Corke, Peter and Haviland, Jesse}, booktitle={2021 IEEE International Conference on Robotics and Automation (ICRA)}, pages={11357--11363}, year={2021}, organization={IEEE} } ```
## Using the Toolbox in your Open Source Code? If you are using the Toolbox in your open source code, feel free to add our badge to your readme! For the powered by robotics toolbox badge [![Powered by the Robotics Toolbox](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/rtb_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) copy the following ``` [![Powered by the Robotics Toolbox](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/rtb_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) ``` For the powered by python robotics badge [![Powered by Python Robotics](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/pr_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) copy the following ``` [![Powered by Python Robotics](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/pr_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) ```
## Common Issues and Solutions See the common issues with fixes [here](https://github.com/petercorke/robotics-toolbox-python/wiki/Common-Issues). %package help Summary: Development documents and examples for roboticstoolbox-python Provides: python3-roboticstoolbox-python-doc %description help # Robotics Toolbox for Python [![A Python Robotics Package](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/py_collection.min.svg)](https://github.com/petercorke/robotics-toolbox-python) [![Powered by Spatial Maths](https://raw.githubusercontent.com/petercorke/spatialmath-python/master/.github/svg/sm_powered.min.svg)](https://github.com/petercorke/spatialmath-python) [![QUT Centre for Robotics Open Source](https://github.com/qcr/qcr.github.io/raw/master/misc/badge.svg)](https://qcr.github.io) [![PyPI version](https://badge.fury.io/py/roboticstoolbox-python.svg)](https://badge.fury.io/py/roboticstoolbox-python) [![Anaconda version](https://anaconda.org/conda-forge/roboticstoolbox-python/badges/version.svg)](https://anaconda.org/conda-forge/roboticstoolbox-python) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/roboticstoolbox-python.svg) [![Build Status](https://github.com/petercorke/robotics-toolbox-python/workflows/Test/badge.svg?branch=master)](https://github.com/petercorke/robotics-toolbox-python/actions?query=workflow%3ATest) [![Coverage](https://codecov.io/gh/petercorke/robotics-toolbox-python/branch/master/graph/badge.svg)](https://codecov.io/gh/petercorke/robotics-toolbox-python) [![PyPI - Downloads](https://img.shields.io/pypi/dw/roboticstoolbox-python)](https://pypistats.org/packages/roboticstoolbox-python) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
A Python implementation of the Robotics Toolbox for MATLAB®
## Contents - [Synopsis](#1) - [Getting going](#2) - [Tutorials](#3) - [Code Examples](#4) - [Toolbox Research Applications](#5) - [Toolbox ICRA Paper and Citation Info](#6) - [Using the Toolbox in your Open Source Code?](#7) - [Common Issues and Solutions](#8)
## Synopsis This toolbox brings robotics-specific functionality to Python, and leverages Python's advantages of portability, ubiquity and support, and the capability of the open-source ecosystem for linear algebra (numpy, scipy), graphics (matplotlib, three.js, WebGL), interactive development (jupyter, jupyterlab, mybinder.org), and documentation (sphinx). The Toolbox provides tools for representing the kinematics and dynamics of serial-link manipulators - you can easily create your own in Denavit-Hartenberg form, import a URDF file, or use over 30 supplied models for well-known contemporary robots from Franka-Emika, Kinova, Universal Robotics, Rethink as well as classical robots such as the Puma 560 and the Stanford arm. The Toolbox contains fast implementations of kinematic operations. The forward kinematics and the manipulator Jacobian can be computed in less than 1 microsecond while numerical inverse kinematics can be solved in as little as 4 microseconds. The toolbox also supports mobile robots with functions for robot motion models (unicycle, bicycle), path planning algorithms (bug, distance transform, D\*, PRM), kinodynamic planning (lattice, RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF). The Toolbox provides: - code that is mature and provides a point of comparison for other implementations of the same algorithms; - routines which are generally written in a straightforward manner which allows for easy understanding, perhaps at the expense of computational efficiency; - source code which can be read for learning and teaching; - backward compatability with the Robotics Toolbox for MATLAB The Toolbox leverages the [Spatial Maths Toolbox for Python](https://github.com/petercorke/spatialmath-python) to provide support for data types such as SO(n) and SE(n) matrices, quaternions, twists and spatial vectors.
## Getting going You will need Python >= 3.6 ### Using pip Install a snapshot from PyPI ```shell script pip3 install roboticstoolbox-python ``` Available options are: - `collision` install collision checking with [pybullet](https://pybullet.org) Put the options in a comma separated list like ```shell script pip3 install roboticstoolbox-python[optionlist] ``` [Swift](https://github.com/jhavl/swift), a web-based visualizer, is installed as part of Robotics Toolbox. ### From GitHub To install the bleeding-edge version from GitHub ```shell script git clone https://github.com/petercorke/robotics-toolbox-python.git cd robotics-toolbox-python pip3 install -e . ```
## Tutorials
Do you want to learn about manipulator kinematics, differential kinematics, inverse-kinematics and motion control? Have a look at our tutorial. This tutorial comes with two articles to cover the theory and 12 Jupyter Notebooks providing full code implementations and examples. Most of the Notebooks are also Google Colab compatible allowing them to run online.

## Code Examples We will load a model of the Franka-Emika Panda robot defined by a URDF file ```python import roboticstoolbox as rtb robot = rtb.models.Panda() print(robot) ERobot: panda (by Franka Emika), 7 joints (RRRRRRR), 1 gripper, geometry, collision ┌─────┬──────────────┬───────┬─────────────┬────────────────────────────────────────────────┐ │link │ link │ joint │ parent │ ETS: parent to link │ ├─────┼──────────────┼───────┼─────────────┼────────────────────────────────────────────────┤ │ 0 │ panda_link0 │ │ BASE │ │ │ 1 │ panda_link1 │ 0 │ panda_link0 │ SE3(0, 0, 0.333) ⊕ Rz(q0) │ │ 2 │ panda_link2 │ 1 │ panda_link1 │ SE3(-90°, -0°, 0°) ⊕ Rz(q1) │ │ 3 │ panda_link3 │ 2 │ panda_link2 │ SE3(0, -0.316, 0; 90°, -0°, 0°) ⊕ Rz(q2) │ │ 4 │ panda_link4 │ 3 │ panda_link3 │ SE3(0.0825, 0, 0; 90°, -0°, 0°) ⊕ Rz(q3) │ │ 5 │ panda_link5 │ 4 │ panda_link4 │ SE3(-0.0825, 0.384, 0; -90°, -0°, 0°) ⊕ Rz(q4) │ │ 6 │ panda_link6 │ 5 │ panda_link5 │ SE3(90°, -0°, 0°) ⊕ Rz(q5) │ │ 7 │ panda_link7 │ 6 │ panda_link6 │ SE3(0.088, 0, 0; 90°, -0°, 0°) ⊕ Rz(q6) │ │ 8 │ @panda_link8 │ │ panda_link7 │ SE3(0, 0, 0.107) │ └─────┴──────────────┴───────┴─────────────┴────────────────────────────────────────────────┘ ┌─────┬─────┬────────┬─────┬───────┬─────┬───────┬──────┐ │name │ q0 │ q1 │ q2 │ q3 │ q4 │ q5 │ q6 │ ├─────┼─────┼────────┼─────┼───────┼─────┼───────┼──────┤ │ qr │ 0° │ -17.2° │ 0° │ -126° │ 0° │ 115° │ 45° │ │ qz │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ └─────┴─────┴────────┴─────┴───────┴─────┴───────┴──────┘ ``` The symbol `@` indicates the link as an end-effector, a leaf node in the rigid-body tree (Python prompts are not shown to make it easy to copy+paste the code, console output is indented). We will compute the forward kinematics next ``` Te = robot.fkine(robot.qr) # forward kinematics print(Te) 0.995 0 0.09983 0.484 0 -1 0 0 0.09983 0 -0.995 0.4126 0 0 0 1 ``` We can solve inverse kinematics very easily. We first choose an SE(3) pose defined in terms of position and orientation (end-effector z-axis down (A=-Z) and finger orientation parallel to y-axis (O=+Y)). ```python from spatialmath import SE3 Tep = SE3.Trans(0.6, -0.3, 0.1) * SE3.OA([0, 1, 0], [0, 0, -1]) sol = robot.ik_lm_chan(Tep) # solve IK print(sol) (array([ 0.20592815, 0.86609481, -0.79473206, -1.68254794, 0.74872915, 2.21764746, -0.10255606]), 1, 114, 7, 2.890164057230228e-07) q_pickup = sol[0] print(robot.fkine(q_pickup)) # FK shows that desired end-effector pose was achieved 1 -8.913e-05 -0.0003334 0.5996 -8.929e-05 -1 -0.0004912 -0.2998 -0.0003334 0.0004912 -1 0.1001 0 0 0 1 ``` We can animate a path from the ready pose `qr` configuration to this pickup configuration ```python qt = rtb.jtraj(robot.qr, q_pickup, 50) robot.plot(qt.q, backend='pyplot', movie='panda1.gif') ```

where we have specified the matplotlib `pyplot` backend. Blue arrows show the joint axes and the coloured frame shows the end-effector pose. We can also plot the trajectory in the Swift simulator (a browser-based 3d-simulation environment built to work with the Toolbox) ```python robot.plot(qt.q) ```

We can also experiment with velocity controllers in Swift. Here is a resolved-rate motion control example ```python import swift import roboticstoolbox as rp import spatialmath as sm import numpy as np env = swift.Swift() env.launch(realtime=True) panda = rp.models.Panda() panda.q = panda.qr Tep = panda.fkine(panda.q) * sm.SE3.Trans(0.2, 0.2, 0.45) arrived = False env.add(panda) dt = 0.05 while not arrived: v, arrived = rp.p_servo(panda.fkine(panda.q), Tep, 1) panda.qd = np.linalg.pinv(panda.jacobe(panda.q)) @ v env.step(dt) # Uncomment to stop the browser tab from closing # env.hold() ```

### Run some examples The [`notebooks`](https://github.com/petercorke/robotics-toolbox-python/tree/master/notebooks) folder contains some tutorial Jupyter notebooks which you can browse on GitHub. Additionally, have a look in the [`examples`](https://github.com/petercorke/robotics-toolbox-python/tree/master/roboticstoolbox/examples) folder for many ready to run examples.
## Toolbox Research Applications The toolbox is incredibly useful for developing and prototyping algorithms for research, thanks to the exhaustive set of well documented and mature robotic functions exposed through clean and painless APIs. Additionally, the ease at which a user can visualize their algorithm supports a rapid prototyping paradigm. ### Publication List J. Haviland, N. Sünderhauf and P. Corke, "**A Holistic Approach to Reactive Mobile Manipulation**," in _IEEE Robotics and Automation Letters_, doi: 10.1109/LRA.2022.3146554. In the video, the robot is controlled using the Robotics toolbox for Python and features a recording from the [Swift](https://github.com/jhavl/swift) Simulator. [[Arxiv Paper](https://arxiv.org/abs/2109.04749)] [[IEEE Xplore](https://ieeexplore.ieee.org/abstract/document/9695298)] [[Project Website](https://jhavl.github.io/holistic/)] [[Video](https://youtu.be/-DXBQPeLIV4)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/holistic_mm_non_holonomic.py)]

J. Haviland and P. Corke, "**NEO: A Novel Expeditious Optimisation Algorithm for Reactive Motion Control of Manipulators**," in _IEEE Robotics and Automation Letters_, doi: 10.1109/LRA.2021.3056060. In the video, the robot is controlled using the Robotics toolbox for Python and features a recording from the [Swift](https://github.com/jhavl/swift) Simulator. [[Arxiv Paper](https://arxiv.org/abs/2010.08686)] [[IEEE Xplore](https://ieeexplore.ieee.org/document/9343718)] [[Project Website](https://jhavl.github.io/neo/)] [[Video](https://youtu.be/jSLPJBr8QTY)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/neo.py)]

**A Purely-Reactive Manipulability-Maximising Motion Controller**, J. Haviland and P. Corke. In the video, the robot is controlled using the Robotics toolbox for Python. [[Paper](https://arxiv.org/abs/2002.11901)] [[Project Website](https://jhavl.github.io/mmc/)] [[Video](https://youtu.be/Vu_rcPlaADI)] [[Code Example](https://github.com/petercorke/robotics-toolbox-python/blob/master/roboticstoolbox/examples/mmc.py)]



## Toolbox ICRA Paper and Citation Info Check out our ICRA 2021 paper on [IEEE Xplore](https://ieeexplore.ieee.org/document/9561366) or get the PDF from [Peter's website](https://bit.ly/3ChcyNp). If the toolbox helped you in your research, please cite ``` @inproceedings{rtb, title={Not your grandmother’s toolbox--the Robotics Toolbox reinvented for Python}, author={Corke, Peter and Haviland, Jesse}, booktitle={2021 IEEE International Conference on Robotics and Automation (ICRA)}, pages={11357--11363}, year={2021}, organization={IEEE} } ```
## Using the Toolbox in your Open Source Code? If you are using the Toolbox in your open source code, feel free to add our badge to your readme! For the powered by robotics toolbox badge [![Powered by the Robotics Toolbox](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/rtb_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) copy the following ``` [![Powered by the Robotics Toolbox](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/rtb_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) ``` For the powered by python robotics badge [![Powered by Python Robotics](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/pr_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) copy the following ``` [![Powered by Python Robotics](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/pr_powered.min.svg)](https://github.com/petercorke/robotics-toolbox-python) ```
## Common Issues and Solutions See the common issues with fixes [here](https://github.com/petercorke/robotics-toolbox-python/wiki/Common-Issues). %prep %autosetup -n roboticstoolbox-python-1.1.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-roboticstoolbox-python -f filelist.lst %dir %{python3_sitearch}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 1.1.0-1 - Package Spec generated