%global _empty_manifest_terminate_build 0 Name: python-dnnlab Version: 2.2.5 Release: 1 Summary: DnnLab License: Apache Software License URL: https://pypi.org/project/dnnlab/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4e/05/13de5b2635ea6158bcc084e433ac34cb5ea1e7a6c523e13b5747217137d7/dnnlab-2.2.5.tar.gz BuildArch: noarch Requires: python3-Cython Requires: python3-numpy Requires: python3-pycocotools Requires: python3-Click Requires: python3-opencv-python Requires: python3-imgaug Requires: python3-matplotlib %description # DnnLab Dnnlab is a small framework for deep learning models based on TensorFlow. It provides custom training loops for: * Generative Models (GAN, cGan, cycleGAN) * Image Detection (custom YOLO) Additonaly custom Keras Layer: * Non-Local-Blocks (Self-Attention) * Squeeze and Excitation Blocks (SEBlocks) * YOLO-Decoding Layer Input pipeline functionality: * YOLO (Tfrecords to Datasets) * YOLO data augmentation * Generative Models (Tfrecords to Datasets) TensorBoard output: * YOLO coco metrics (Precision (mAP) & Recall) * YOLO loss (loss_class, loss_conf, loss_xywh, total_loss) * YOLO bounding boxes * Generative Models (Loss & Images) ## Requirements TensorFlow 2.3.0 ## Installation Run the following to install: ```python pip install dnnlab ``` %package -n python3-dnnlab Summary: DnnLab Provides: python-dnnlab BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-dnnlab # DnnLab Dnnlab is a small framework for deep learning models based on TensorFlow. It provides custom training loops for: * Generative Models (GAN, cGan, cycleGAN) * Image Detection (custom YOLO) Additonaly custom Keras Layer: * Non-Local-Blocks (Self-Attention) * Squeeze and Excitation Blocks (SEBlocks) * YOLO-Decoding Layer Input pipeline functionality: * YOLO (Tfrecords to Datasets) * YOLO data augmentation * Generative Models (Tfrecords to Datasets) TensorBoard output: * YOLO coco metrics (Precision (mAP) & Recall) * YOLO loss (loss_class, loss_conf, loss_xywh, total_loss) * YOLO bounding boxes * Generative Models (Loss & Images) ## Requirements TensorFlow 2.3.0 ## Installation Run the following to install: ```python pip install dnnlab ``` %package help Summary: Development documents and examples for dnnlab Provides: python3-dnnlab-doc %description help # DnnLab Dnnlab is a small framework for deep learning models based on TensorFlow. It provides custom training loops for: * Generative Models (GAN, cGan, cycleGAN) * Image Detection (custom YOLO) Additonaly custom Keras Layer: * Non-Local-Blocks (Self-Attention) * Squeeze and Excitation Blocks (SEBlocks) * YOLO-Decoding Layer Input pipeline functionality: * YOLO (Tfrecords to Datasets) * YOLO data augmentation * Generative Models (Tfrecords to Datasets) TensorBoard output: * YOLO coco metrics (Precision (mAP) & Recall) * YOLO loss (loss_class, loss_conf, loss_xywh, total_loss) * YOLO bounding boxes * Generative Models (Loss & Images) ## Requirements TensorFlow 2.3.0 ## Installation Run the following to install: ```python pip install dnnlab ``` %prep %autosetup -n dnnlab-2.2.5 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-dnnlab -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 2.2.5-1 - Package Spec generated