%global _empty_manifest_terminate_build 0 Name: python-string-kernels Version: 1.1.2 Release: 1 Summary: Polynomial String Kernel and linear time String Kernel. Supports multithreading and is compatible with Scikit-Learn SVMs. License: Academic Free License (AFL) URL: https://github.com/weekend37/string-kernels Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ff/e7/04765217cdeced887f495c6833a93227d89f8342b1254f8979d294cb8874/string-kernels-1.1.2.tar.gz BuildArch: noarch %description # String Kernels This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1).

It offers - Linear time computation of two effective string kernels. - Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in). - Multithreading. ## Usage To install the package, execute from the command line ``` pip install string-kernels ``` And then you're all set! Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via ```python from sklearn import svm from stringkernels.kernels import string_kernel model = svm.SVC(kernel=string_kernel()) ``` and the polynomial string kernel, ```python from sklearn import svm from stringkernels.kernels import polynomial_string_kernel model = svm.SVC(kernel=polynomial_string_kernel()) ``` For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage. If you end up using this in your research we kindly ask you to cite us! :) %package -n python3-string-kernels Summary: Polynomial String Kernel and linear time String Kernel. Supports multithreading and is compatible with Scikit-Learn SVMs. Provides: python-string-kernels BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-string-kernels # String Kernels This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1).

It offers - Linear time computation of two effective string kernels. - Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in). - Multithreading. ## Usage To install the package, execute from the command line ``` pip install string-kernels ``` And then you're all set! Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via ```python from sklearn import svm from stringkernels.kernels import string_kernel model = svm.SVC(kernel=string_kernel()) ``` and the polynomial string kernel, ```python from sklearn import svm from stringkernels.kernels import polynomial_string_kernel model = svm.SVC(kernel=polynomial_string_kernel()) ``` For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage. If you end up using this in your research we kindly ask you to cite us! :) %package help Summary: Development documents and examples for string-kernels Provides: python3-string-kernels-doc %description help # String Kernels This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1).

It offers - Linear time computation of two effective string kernels. - Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in). - Multithreading. ## Usage To install the package, execute from the command line ``` pip install string-kernels ``` And then you're all set! Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via ```python from sklearn import svm from stringkernels.kernels import string_kernel model = svm.SVC(kernel=string_kernel()) ``` and the polynomial string kernel, ```python from sklearn import svm from stringkernels.kernels import polynomial_string_kernel model = svm.SVC(kernel=polynomial_string_kernel()) ``` For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage. If you end up using this in your research we kindly ask you to cite us! :) %prep %autosetup -n string-kernels-1.1.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-string-kernels -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 31 2023 Python_Bot - 1.1.2-1 - Package Spec generated