%global _empty_manifest_terminate_build 0 Name: python-chinese-whispers Version: 0.8.1 Release: 1 Summary: An implementation of the Chinese Whispers clustering algorithm. License: MIT URL: https://github.com/nlpub/chinese-whispers-python Source0: https://mirrors.aliyun.com/pypi/web/packages/1b/1d/816d337e9dd30f0948c86266b00d47fb2a4cc15c0bcdcb450575f3f7dfaa/chinese_whispers-0.8.1.tar.gz BuildArch: noarch Requires: python3-networkx %description # Chinese Whispers for Python This is an implementation of the [Chinese Whispers](https://doi.org/10.3115/1654758.1654774) clustering algorithm in Python. Since this library is based on [NetworkX](https://networkx.github.io/), it is simple to use. [![Unit Tests][github_tests_badge]][github_tests_link] [![Read the Docs][rtfd_badge]][rtfd_link] [![PyPI Version][pypi_badge]][pypi_link] [github_tests_badge]: https://github.com/nlpub/chinese-whispers-python/workflows/Unit%20Tests/badge.svg?branch=master [github_tests_link]: https://github.com/nlpub/chinese-whispers-python/actions?query=workflow%3A%22Unit+Tests%22 [rtfd_badge]: https://readthedocs.org/projects/chinese-whispers/badge/ [rtfd_link]: https://chinese-whispers.readthedocs.io/ [pypi_badge]: https://badge.fury.io/py/chinese-whispers.svg [pypi_link]: https://pypi.python.org/pypi/chinese-whispers Given a NetworkX graph `G`, this library can [cluster](https://en.wikipedia.org/wiki/Cluster_analysis) it using the following code: ```python from chinese_whispers import chinese_whispers chinese_whispers(G, weighting='top', iterations=20) ``` As the result, each node of the input graph is provided with the `label` attribute that stores the cluster label. The library also offers a convenient command-line interface (CLI) for clustering graphs represented in the ABC tab-separated format (source`\t`target`\t`weight). ```shell # Write karate_club.tsv (just as example) python3 -c 'import networkx as nx; nx.write_weighted_edgelist(nx.karate_club_graph(), "karate_club.tsv", delimiter="\t")' # Using as CLI chinese-whispers karate_club.tsv # Using as module (same CLI as above) python3 -mchinese_whispers karate_club.tsv ``` A more complete usage example is available in the [example notebook](https://github.com/nlpub/chinese-whispers-python/blob/master/example.ipynb) and at . In case you require higher performance, please consider our Java implementation that also includes other graph clustering algorithms: . ## Citation * [Ustalov, D.](https://github.com/dustalov), [Panchenko, A.](https://github.com/alexanderpanchenko), [Biemann, C.](https://www.inf.uni-hamburg.de/en/inst/ab/lt/people/chris-biemann.html), [Ponzetto, S.P.](https://www.uni-mannheim.de/dws/people/professors/prof-dr-simone-paolo-ponzetto/): [Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction](https://doi.org/10.1162/COLI_a_00354). Computational Linguistics 45(3), 423–479 (2019) ```bibtex @article{Ustalov:19:cl, author = {Ustalov, Dmitry and Panchenko, Alexander and Biemann, Chris and Ponzetto, Simone Paolo}, title = {{Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction}}, journal = {Computational Linguistics}, year = {2019}, volume = {45}, number = {3}, pages = {423--479}, doi = {10.1162/COLI_a_00354}, publisher = {MIT Press}, issn = {0891-2017}, language = {english}, } ``` ## Copyright Copyright (c) 2018–2022 [Dmitry Ustalov](https://github.com/dustalov). See [LICENSE](LICENSE) for details. %package -n python3-chinese-whispers Summary: An implementation of the Chinese Whispers clustering algorithm. Provides: python-chinese-whispers BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-chinese-whispers # Chinese Whispers for Python This is an implementation of the [Chinese Whispers](https://doi.org/10.3115/1654758.1654774) clustering algorithm in Python. Since this library is based on [NetworkX](https://networkx.github.io/), it is simple to use. [![Unit Tests][github_tests_badge]][github_tests_link] [![Read the Docs][rtfd_badge]][rtfd_link] [![PyPI Version][pypi_badge]][pypi_link] [github_tests_badge]: https://github.com/nlpub/chinese-whispers-python/workflows/Unit%20Tests/badge.svg?branch=master [github_tests_link]: https://github.com/nlpub/chinese-whispers-python/actions?query=workflow%3A%22Unit+Tests%22 [rtfd_badge]: https://readthedocs.org/projects/chinese-whispers/badge/ [rtfd_link]: https://chinese-whispers.readthedocs.io/ [pypi_badge]: https://badge.fury.io/py/chinese-whispers.svg [pypi_link]: https://pypi.python.org/pypi/chinese-whispers Given a NetworkX graph `G`, this library can [cluster](https://en.wikipedia.org/wiki/Cluster_analysis) it using the following code: ```python from chinese_whispers import chinese_whispers chinese_whispers(G, weighting='top', iterations=20) ``` As the result, each node of the input graph is provided with the `label` attribute that stores the cluster label. The library also offers a convenient command-line interface (CLI) for clustering graphs represented in the ABC tab-separated format (source`\t`target`\t`weight). ```shell # Write karate_club.tsv (just as example) python3 -c 'import networkx as nx; nx.write_weighted_edgelist(nx.karate_club_graph(), "karate_club.tsv", delimiter="\t")' # Using as CLI chinese-whispers karate_club.tsv # Using as module (same CLI as above) python3 -mchinese_whispers karate_club.tsv ``` A more complete usage example is available in the [example notebook](https://github.com/nlpub/chinese-whispers-python/blob/master/example.ipynb) and at . In case you require higher performance, please consider our Java implementation that also includes other graph clustering algorithms: . ## Citation * [Ustalov, D.](https://github.com/dustalov), [Panchenko, A.](https://github.com/alexanderpanchenko), [Biemann, C.](https://www.inf.uni-hamburg.de/en/inst/ab/lt/people/chris-biemann.html), [Ponzetto, S.P.](https://www.uni-mannheim.de/dws/people/professors/prof-dr-simone-paolo-ponzetto/): [Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction](https://doi.org/10.1162/COLI_a_00354). Computational Linguistics 45(3), 423–479 (2019) ```bibtex @article{Ustalov:19:cl, author = {Ustalov, Dmitry and Panchenko, Alexander and Biemann, Chris and Ponzetto, Simone Paolo}, title = {{Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction}}, journal = {Computational Linguistics}, year = {2019}, volume = {45}, number = {3}, pages = {423--479}, doi = {10.1162/COLI_a_00354}, publisher = {MIT Press}, issn = {0891-2017}, language = {english}, } ``` ## Copyright Copyright (c) 2018–2022 [Dmitry Ustalov](https://github.com/dustalov). See [LICENSE](LICENSE) for details. %package help Summary: Development documents and examples for chinese-whispers Provides: python3-chinese-whispers-doc %description help # Chinese Whispers for Python This is an implementation of the [Chinese Whispers](https://doi.org/10.3115/1654758.1654774) clustering algorithm in Python. Since this library is based on [NetworkX](https://networkx.github.io/), it is simple to use. [![Unit Tests][github_tests_badge]][github_tests_link] [![Read the Docs][rtfd_badge]][rtfd_link] [![PyPI Version][pypi_badge]][pypi_link] [github_tests_badge]: https://github.com/nlpub/chinese-whispers-python/workflows/Unit%20Tests/badge.svg?branch=master [github_tests_link]: https://github.com/nlpub/chinese-whispers-python/actions?query=workflow%3A%22Unit+Tests%22 [rtfd_badge]: https://readthedocs.org/projects/chinese-whispers/badge/ [rtfd_link]: https://chinese-whispers.readthedocs.io/ [pypi_badge]: https://badge.fury.io/py/chinese-whispers.svg [pypi_link]: https://pypi.python.org/pypi/chinese-whispers Given a NetworkX graph `G`, this library can [cluster](https://en.wikipedia.org/wiki/Cluster_analysis) it using the following code: ```python from chinese_whispers import chinese_whispers chinese_whispers(G, weighting='top', iterations=20) ``` As the result, each node of the input graph is provided with the `label` attribute that stores the cluster label. The library also offers a convenient command-line interface (CLI) for clustering graphs represented in the ABC tab-separated format (source`\t`target`\t`weight). ```shell # Write karate_club.tsv (just as example) python3 -c 'import networkx as nx; nx.write_weighted_edgelist(nx.karate_club_graph(), "karate_club.tsv", delimiter="\t")' # Using as CLI chinese-whispers karate_club.tsv # Using as module (same CLI as above) python3 -mchinese_whispers karate_club.tsv ``` A more complete usage example is available in the [example notebook](https://github.com/nlpub/chinese-whispers-python/blob/master/example.ipynb) and at . In case you require higher performance, please consider our Java implementation that also includes other graph clustering algorithms: . ## Citation * [Ustalov, D.](https://github.com/dustalov), [Panchenko, A.](https://github.com/alexanderpanchenko), [Biemann, C.](https://www.inf.uni-hamburg.de/en/inst/ab/lt/people/chris-biemann.html), [Ponzetto, S.P.](https://www.uni-mannheim.de/dws/people/professors/prof-dr-simone-paolo-ponzetto/): [Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction](https://doi.org/10.1162/COLI_a_00354). Computational Linguistics 45(3), 423–479 (2019) ```bibtex @article{Ustalov:19:cl, author = {Ustalov, Dmitry and Panchenko, Alexander and Biemann, Chris and Ponzetto, Simone Paolo}, title = {{Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction}}, journal = {Computational Linguistics}, year = {2019}, volume = {45}, number = {3}, pages = {423--479}, doi = {10.1162/COLI_a_00354}, publisher = {MIT Press}, issn = {0891-2017}, language = {english}, } ``` ## Copyright Copyright (c) 2018–2022 [Dmitry Ustalov](https://github.com/dustalov). See [LICENSE](LICENSE) for details. %prep %autosetup -n chinese_whispers-0.8.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-chinese-whispers -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 0.8.1-1 - Package Spec generated