%global _empty_manifest_terminate_build 0 Name: python-bitmapist Version: 3.111 Release: 1 Summary: Implements a powerful analytics library using Redis bitmaps. License: BSD URL: https://github.com/Doist/bitmapist Source0: https://mirrors.aliyun.com/pypi/web/packages/41/a3/f006c058d2d33d2d8bd9b953dff010c48e5cd36d019953a63df93c1ea58b/bitmapist-3.111.tar.gz BuildArch: noarch Requires: python3-redis Requires: python3-dateutil Requires: python3-future Requires: python3-Mako %description ![bitmapist](https://raw.githubusercontent.com/Doist/bitmapist/master/static/bitmapist.png "bitmapist") [![Build Status](https://travis-ci.org/Doist/bitmapist.svg?branch=master)](https://travis-ci.org/Doist/bitmapist) **NEW!** Try out our new standalone [bitmapist-server](https://github.com/Doist/bitmapist-server), which improves memory efficiency 443 times and makes your setup much cheaper to run (and more scaleable). It's fully compatiable with bitmapist that runs on Redis. # bitmapist: a powerful analytics library for Redis This Python library makes it possible to implement real-time, highly scalable analytics that can answer following questions: * Has user 123 been online today? This week? This month? * Has user 123 performed action "X"? * How many users have been active this month? This hour? * How many unique users have performed action "X" this week? * How many % of users that were active last week are still active? * How many % of users that were active last month are still active this month? * What users performed action "X"? This library is very easy to use and enables you to create your own reports easily. Using Redis bitmaps you can store events for millions of users in a very little amount of memory (megabytes). You should be careful about using huge ids as this could require larger amounts of memory. Ids should be in range [0, 2^32). Additionally bitmapist can generate cohort graphs that can do following: * Cohort over user retention * How many % of users that were active last [days, weeks, months] are still active? * How many % of users that performed action X also performed action Y (and this over time) * And a lot of other things! If you want to read more about bitmaps please read following: * http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps/ * http://redis.io/commands/setbit * http://en.wikipedia.org/wiki/Bit_array * http://www.slideshare.net/crashlytics/crashlytics-on-redis-analytics # Installation Can be installed very easily via: $ pip install bitmapist # Ports * PHP port: https://github.com/jeremyFreeAgent/Bitter # Examples Setting things up: ```python from datetime import datetime, timedelta from bitmapist import setup_redis, delete_all_events, mark_event,\ MonthEvents, WeekEvents, DayEvents, HourEvents,\ BitOpAnd, BitOpOr now = datetime.utcnow() last_month = datetime.utcnow() - timedelta(days=30) ``` Mark user 123 as active and has played a song: ```python mark_event('active', 123) mark_event('song:played', 123) ``` Answer if user 123 has been active this month: ```python assert 123 in MonthEvents('active', now.year, now.month) assert 123 in MonthEvents('song:played', now.year, now.month) assert MonthEvents('active', now.year, now.month).has_events_marked() == True ``` How many users have been active this week?: ```python print(len(WeekEvents('active', now.year, now.isocalendar()[1]))) ``` Iterate over all users active this week: ```python for uid in WeekEvents('active'): print(uid) ``` If you're interested in "current events", you can omit extra `now.whatever` arguments. Events will be populated with current time automatically. For example, these two calls are equivalent: ```python MonthEvents('active') == MonthEvents('active', now.year, now.month) ``` Additionally, for the sake of uniformity, you can create an event from any datetime object with a `from_date` static method. ```python MonthEvents('active').from_date(now) == MonthEvents('active', now.year, now.month) ``` Get the list of these users (user ids): ```python print(list(WeekEvents('active', now.year, now.isocalendar()[1]))) ``` There are special methods `prev` and `next` returning "sibling" events and allowing you to walk through events in time without any sophisticated iterators. A `delta` method allows you to "jump" forward or backward for more than one step. Uniform API allows you to use all types of base events (from hour to year) with the same code. ```python current_month = MonthEvents() prev_month = current_month.prev() next_month = current_month.next() year_ago = current_month.delta(-12) ``` Every event object has `period_start` and `period_end` methods to find a time span of the event. This can be useful for caching values when the caching of "events in future" is not desirable: ```python ev = MonthEvent('active', dt) if ev.period_end() < now: cache.set('active_users_<...>', len(ev)) ``` As something new tracking hourly is disabled (to save memory!) To enable it as default do:: ```python import bitmapist bitmapist.TRACK_HOURLY = True ``` Additionally you can supply an extra argument to `mark_event` to bypass the default value:: ```python mark_event('active', 123, track_hourly=False) ``` ### Unique events Sometimes the date of the event makes little or no sense, for example, to filter out your premium accounts, or in A/B testing. There is a `UniqueEvents` model for this purpose. The model creates only one Redis key and doesn't depend on the date. You can combine unique events with other types of events. A/B testing example: ```python active_today = DailyEvents('active') a = UniqueEvents('signup_form:classic') b = UniqueEvents('signup_form:new') print("Active users, signed up with classic form", len(active & a)) print("Active users, signed up with new form", len(active & b)) ``` Generic filter example ```python def premium_up(uid): # called when user promoted to premium ... mark_unique('premium', uid) def premium_down(uid): # called when user loses the premium status ... unmark_unique('premium', uid) active_today = DailyEvents('active') premium = UniqueEvents('premium') # Add extra Karma for all premium users active today, # just because today is a special day for uid in premium & active_today: add_extra_karma(uid) ``` To get the best of two worlds you can mark unique event and regular bitmapist events at the same time. ```python def premium_up(uid): # called when user promoted to premium ... mark_event('premium', uid, track_unique=True) ``` ### Perform bit operations How many users that have been active last month are still active this month? ```python active_2_months = BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ) print(len(active_2_months)) # Is 123 active for 2 months? assert 123 in active_2_months ``` Alternatively, you can use standard Python syntax for bitwise operations. ```python last_month_event = MonthEvents('active', last_month.year, last_month.month) this_month_event = MonthEvents('active', now.year, now.month) active_two_months = last_month_event & this_month_event ``` Operators `&`, `|`, `^` and `~` supported. Work with nested bit operations (imagine what you can do with this ;-))! ```python active_2_months = BitOpAnd( BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ), MonthEvents('active', now.year, now.month) ) print(len(active_2_months)) assert 123 in active_2_months # Delete the temporary AND operation active_2_months.delete() ``` ### Deleting If you want to permanently remove marked events for any time period you can use the `delete()` method: ```python last_month_event = MonthEvents('active', last_month.year, last_month.month) last_month_event.delete() ``` If you want to remove all bitmapist events use: ```python bitmapist.delete_all_events() ``` When using Bit Operations (ie `BitOpAnd`) you can (and probably should) delete the results unless you want them cached. There are different ways to go about this: ```python active_2_months = BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ) # Delete the temporary AND operation active_2_months.delete() # delete all bit operations created in runtime up to this point bitmapist.delete_runtime_bitop_keys() # delete all bit operations (slow if you have many millions of keys in Redis) bitmapist.delete_temporary_bitop_keys() ``` # bitmapist cohort With bitmapist cohort you can get a form and a table rendering of the data you keep in bitmapist. If this sounds confusing [please look at Mixpanel](https://mixpanel.com/retention/). Here's a simple example of how to generate a form and a rendering of the data you have inside bitmapist: ```python from bitmapist import cohort html_form = cohort.render_html_form( action_url='/_Cohort', selections1=[ ('Are Active', 'user:active'), ], selections2=[ ('Task completed', 'task:complete'), ] ) print(html_form) dates_data = cohort.get_dates_data(select1='user:active', select2='task:complete', time_group='days') html_data = cohort.render_html_data(dates_data, time_group='days') print(html_data) # All the arguments should come from the FORM element (html_form) # but to make things more clear I have filled them in directly ``` This will render something similar to this: ![bitmapist cohort screenshot](https://raw.githubusercontent.com/Doist/bitmapist/master/static/cohort_screenshot.png "bitmapist cohort screenshot") ## Contributing Please see our guide [here](./CONTRIBUTING.md) ## Local Development We use Poetry for dependency management & packaging. Please see [here for setup instructions](https://python-poetry.org/docs/#installation). Once you have Poetry installed, you can run the following to install the dependencies in a virtual environment: ```bash poetry install ``` ## Testing To run our tests will need to ensure a local redis server is installed. We use pytest to run unittests which you can run in a poetry shell with ```bash poetry run pytest ``` ## Releasing new versions - Bump version in `pyproject.toml` - Update the CHANGELOG - Commit the changes with a commit message "Version X.X.X" - Tag the current commit with `vX.X.X` - Create a new release on GitHub named `vX.X.X` - GitHub Actions will publish the new version to PIP for you ## Legal Copyright: 2012 by Doist Ltd. License: BSD %package -n python3-bitmapist Summary: Implements a powerful analytics library using Redis bitmaps. Provides: python-bitmapist BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-bitmapist ![bitmapist](https://raw.githubusercontent.com/Doist/bitmapist/master/static/bitmapist.png "bitmapist") [![Build Status](https://travis-ci.org/Doist/bitmapist.svg?branch=master)](https://travis-ci.org/Doist/bitmapist) **NEW!** Try out our new standalone [bitmapist-server](https://github.com/Doist/bitmapist-server), which improves memory efficiency 443 times and makes your setup much cheaper to run (and more scaleable). It's fully compatiable with bitmapist that runs on Redis. # bitmapist: a powerful analytics library for Redis This Python library makes it possible to implement real-time, highly scalable analytics that can answer following questions: * Has user 123 been online today? This week? This month? * Has user 123 performed action "X"? * How many users have been active this month? This hour? * How many unique users have performed action "X" this week? * How many % of users that were active last week are still active? * How many % of users that were active last month are still active this month? * What users performed action "X"? This library is very easy to use and enables you to create your own reports easily. Using Redis bitmaps you can store events for millions of users in a very little amount of memory (megabytes). You should be careful about using huge ids as this could require larger amounts of memory. Ids should be in range [0, 2^32). Additionally bitmapist can generate cohort graphs that can do following: * Cohort over user retention * How many % of users that were active last [days, weeks, months] are still active? * How many % of users that performed action X also performed action Y (and this over time) * And a lot of other things! If you want to read more about bitmaps please read following: * http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps/ * http://redis.io/commands/setbit * http://en.wikipedia.org/wiki/Bit_array * http://www.slideshare.net/crashlytics/crashlytics-on-redis-analytics # Installation Can be installed very easily via: $ pip install bitmapist # Ports * PHP port: https://github.com/jeremyFreeAgent/Bitter # Examples Setting things up: ```python from datetime import datetime, timedelta from bitmapist import setup_redis, delete_all_events, mark_event,\ MonthEvents, WeekEvents, DayEvents, HourEvents,\ BitOpAnd, BitOpOr now = datetime.utcnow() last_month = datetime.utcnow() - timedelta(days=30) ``` Mark user 123 as active and has played a song: ```python mark_event('active', 123) mark_event('song:played', 123) ``` Answer if user 123 has been active this month: ```python assert 123 in MonthEvents('active', now.year, now.month) assert 123 in MonthEvents('song:played', now.year, now.month) assert MonthEvents('active', now.year, now.month).has_events_marked() == True ``` How many users have been active this week?: ```python print(len(WeekEvents('active', now.year, now.isocalendar()[1]))) ``` Iterate over all users active this week: ```python for uid in WeekEvents('active'): print(uid) ``` If you're interested in "current events", you can omit extra `now.whatever` arguments. Events will be populated with current time automatically. For example, these two calls are equivalent: ```python MonthEvents('active') == MonthEvents('active', now.year, now.month) ``` Additionally, for the sake of uniformity, you can create an event from any datetime object with a `from_date` static method. ```python MonthEvents('active').from_date(now) == MonthEvents('active', now.year, now.month) ``` Get the list of these users (user ids): ```python print(list(WeekEvents('active', now.year, now.isocalendar()[1]))) ``` There are special methods `prev` and `next` returning "sibling" events and allowing you to walk through events in time without any sophisticated iterators. A `delta` method allows you to "jump" forward or backward for more than one step. Uniform API allows you to use all types of base events (from hour to year) with the same code. ```python current_month = MonthEvents() prev_month = current_month.prev() next_month = current_month.next() year_ago = current_month.delta(-12) ``` Every event object has `period_start` and `period_end` methods to find a time span of the event. This can be useful for caching values when the caching of "events in future" is not desirable: ```python ev = MonthEvent('active', dt) if ev.period_end() < now: cache.set('active_users_<...>', len(ev)) ``` As something new tracking hourly is disabled (to save memory!) To enable it as default do:: ```python import bitmapist bitmapist.TRACK_HOURLY = True ``` Additionally you can supply an extra argument to `mark_event` to bypass the default value:: ```python mark_event('active', 123, track_hourly=False) ``` ### Unique events Sometimes the date of the event makes little or no sense, for example, to filter out your premium accounts, or in A/B testing. There is a `UniqueEvents` model for this purpose. The model creates only one Redis key and doesn't depend on the date. You can combine unique events with other types of events. A/B testing example: ```python active_today = DailyEvents('active') a = UniqueEvents('signup_form:classic') b = UniqueEvents('signup_form:new') print("Active users, signed up with classic form", len(active & a)) print("Active users, signed up with new form", len(active & b)) ``` Generic filter example ```python def premium_up(uid): # called when user promoted to premium ... mark_unique('premium', uid) def premium_down(uid): # called when user loses the premium status ... unmark_unique('premium', uid) active_today = DailyEvents('active') premium = UniqueEvents('premium') # Add extra Karma for all premium users active today, # just because today is a special day for uid in premium & active_today: add_extra_karma(uid) ``` To get the best of two worlds you can mark unique event and regular bitmapist events at the same time. ```python def premium_up(uid): # called when user promoted to premium ... mark_event('premium', uid, track_unique=True) ``` ### Perform bit operations How many users that have been active last month are still active this month? ```python active_2_months = BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ) print(len(active_2_months)) # Is 123 active for 2 months? assert 123 in active_2_months ``` Alternatively, you can use standard Python syntax for bitwise operations. ```python last_month_event = MonthEvents('active', last_month.year, last_month.month) this_month_event = MonthEvents('active', now.year, now.month) active_two_months = last_month_event & this_month_event ``` Operators `&`, `|`, `^` and `~` supported. Work with nested bit operations (imagine what you can do with this ;-))! ```python active_2_months = BitOpAnd( BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ), MonthEvents('active', now.year, now.month) ) print(len(active_2_months)) assert 123 in active_2_months # Delete the temporary AND operation active_2_months.delete() ``` ### Deleting If you want to permanently remove marked events for any time period you can use the `delete()` method: ```python last_month_event = MonthEvents('active', last_month.year, last_month.month) last_month_event.delete() ``` If you want to remove all bitmapist events use: ```python bitmapist.delete_all_events() ``` When using Bit Operations (ie `BitOpAnd`) you can (and probably should) delete the results unless you want them cached. There are different ways to go about this: ```python active_2_months = BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ) # Delete the temporary AND operation active_2_months.delete() # delete all bit operations created in runtime up to this point bitmapist.delete_runtime_bitop_keys() # delete all bit operations (slow if you have many millions of keys in Redis) bitmapist.delete_temporary_bitop_keys() ``` # bitmapist cohort With bitmapist cohort you can get a form and a table rendering of the data you keep in bitmapist. If this sounds confusing [please look at Mixpanel](https://mixpanel.com/retention/). Here's a simple example of how to generate a form and a rendering of the data you have inside bitmapist: ```python from bitmapist import cohort html_form = cohort.render_html_form( action_url='/_Cohort', selections1=[ ('Are Active', 'user:active'), ], selections2=[ ('Task completed', 'task:complete'), ] ) print(html_form) dates_data = cohort.get_dates_data(select1='user:active', select2='task:complete', time_group='days') html_data = cohort.render_html_data(dates_data, time_group='days') print(html_data) # All the arguments should come from the FORM element (html_form) # but to make things more clear I have filled them in directly ``` This will render something similar to this: ![bitmapist cohort screenshot](https://raw.githubusercontent.com/Doist/bitmapist/master/static/cohort_screenshot.png "bitmapist cohort screenshot") ## Contributing Please see our guide [here](./CONTRIBUTING.md) ## Local Development We use Poetry for dependency management & packaging. Please see [here for setup instructions](https://python-poetry.org/docs/#installation). Once you have Poetry installed, you can run the following to install the dependencies in a virtual environment: ```bash poetry install ``` ## Testing To run our tests will need to ensure a local redis server is installed. We use pytest to run unittests which you can run in a poetry shell with ```bash poetry run pytest ``` ## Releasing new versions - Bump version in `pyproject.toml` - Update the CHANGELOG - Commit the changes with a commit message "Version X.X.X" - Tag the current commit with `vX.X.X` - Create a new release on GitHub named `vX.X.X` - GitHub Actions will publish the new version to PIP for you ## Legal Copyright: 2012 by Doist Ltd. License: BSD %package help Summary: Development documents and examples for bitmapist Provides: python3-bitmapist-doc %description help ![bitmapist](https://raw.githubusercontent.com/Doist/bitmapist/master/static/bitmapist.png "bitmapist") [![Build Status](https://travis-ci.org/Doist/bitmapist.svg?branch=master)](https://travis-ci.org/Doist/bitmapist) **NEW!** Try out our new standalone [bitmapist-server](https://github.com/Doist/bitmapist-server), which improves memory efficiency 443 times and makes your setup much cheaper to run (and more scaleable). It's fully compatiable with bitmapist that runs on Redis. # bitmapist: a powerful analytics library for Redis This Python library makes it possible to implement real-time, highly scalable analytics that can answer following questions: * Has user 123 been online today? This week? This month? * Has user 123 performed action "X"? * How many users have been active this month? This hour? * How many unique users have performed action "X" this week? * How many % of users that were active last week are still active? * How many % of users that were active last month are still active this month? * What users performed action "X"? This library is very easy to use and enables you to create your own reports easily. Using Redis bitmaps you can store events for millions of users in a very little amount of memory (megabytes). You should be careful about using huge ids as this could require larger amounts of memory. Ids should be in range [0, 2^32). Additionally bitmapist can generate cohort graphs that can do following: * Cohort over user retention * How many % of users that were active last [days, weeks, months] are still active? * How many % of users that performed action X also performed action Y (and this over time) * And a lot of other things! If you want to read more about bitmaps please read following: * http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps/ * http://redis.io/commands/setbit * http://en.wikipedia.org/wiki/Bit_array * http://www.slideshare.net/crashlytics/crashlytics-on-redis-analytics # Installation Can be installed very easily via: $ pip install bitmapist # Ports * PHP port: https://github.com/jeremyFreeAgent/Bitter # Examples Setting things up: ```python from datetime import datetime, timedelta from bitmapist import setup_redis, delete_all_events, mark_event,\ MonthEvents, WeekEvents, DayEvents, HourEvents,\ BitOpAnd, BitOpOr now = datetime.utcnow() last_month = datetime.utcnow() - timedelta(days=30) ``` Mark user 123 as active and has played a song: ```python mark_event('active', 123) mark_event('song:played', 123) ``` Answer if user 123 has been active this month: ```python assert 123 in MonthEvents('active', now.year, now.month) assert 123 in MonthEvents('song:played', now.year, now.month) assert MonthEvents('active', now.year, now.month).has_events_marked() == True ``` How many users have been active this week?: ```python print(len(WeekEvents('active', now.year, now.isocalendar()[1]))) ``` Iterate over all users active this week: ```python for uid in WeekEvents('active'): print(uid) ``` If you're interested in "current events", you can omit extra `now.whatever` arguments. Events will be populated with current time automatically. For example, these two calls are equivalent: ```python MonthEvents('active') == MonthEvents('active', now.year, now.month) ``` Additionally, for the sake of uniformity, you can create an event from any datetime object with a `from_date` static method. ```python MonthEvents('active').from_date(now) == MonthEvents('active', now.year, now.month) ``` Get the list of these users (user ids): ```python print(list(WeekEvents('active', now.year, now.isocalendar()[1]))) ``` There are special methods `prev` and `next` returning "sibling" events and allowing you to walk through events in time without any sophisticated iterators. A `delta` method allows you to "jump" forward or backward for more than one step. Uniform API allows you to use all types of base events (from hour to year) with the same code. ```python current_month = MonthEvents() prev_month = current_month.prev() next_month = current_month.next() year_ago = current_month.delta(-12) ``` Every event object has `period_start` and `period_end` methods to find a time span of the event. This can be useful for caching values when the caching of "events in future" is not desirable: ```python ev = MonthEvent('active', dt) if ev.period_end() < now: cache.set('active_users_<...>', len(ev)) ``` As something new tracking hourly is disabled (to save memory!) To enable it as default do:: ```python import bitmapist bitmapist.TRACK_HOURLY = True ``` Additionally you can supply an extra argument to `mark_event` to bypass the default value:: ```python mark_event('active', 123, track_hourly=False) ``` ### Unique events Sometimes the date of the event makes little or no sense, for example, to filter out your premium accounts, or in A/B testing. There is a `UniqueEvents` model for this purpose. The model creates only one Redis key and doesn't depend on the date. You can combine unique events with other types of events. A/B testing example: ```python active_today = DailyEvents('active') a = UniqueEvents('signup_form:classic') b = UniqueEvents('signup_form:new') print("Active users, signed up with classic form", len(active & a)) print("Active users, signed up with new form", len(active & b)) ``` Generic filter example ```python def premium_up(uid): # called when user promoted to premium ... mark_unique('premium', uid) def premium_down(uid): # called when user loses the premium status ... unmark_unique('premium', uid) active_today = DailyEvents('active') premium = UniqueEvents('premium') # Add extra Karma for all premium users active today, # just because today is a special day for uid in premium & active_today: add_extra_karma(uid) ``` To get the best of two worlds you can mark unique event and regular bitmapist events at the same time. ```python def premium_up(uid): # called when user promoted to premium ... mark_event('premium', uid, track_unique=True) ``` ### Perform bit operations How many users that have been active last month are still active this month? ```python active_2_months = BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ) print(len(active_2_months)) # Is 123 active for 2 months? assert 123 in active_2_months ``` Alternatively, you can use standard Python syntax for bitwise operations. ```python last_month_event = MonthEvents('active', last_month.year, last_month.month) this_month_event = MonthEvents('active', now.year, now.month) active_two_months = last_month_event & this_month_event ``` Operators `&`, `|`, `^` and `~` supported. Work with nested bit operations (imagine what you can do with this ;-))! ```python active_2_months = BitOpAnd( BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ), MonthEvents('active', now.year, now.month) ) print(len(active_2_months)) assert 123 in active_2_months # Delete the temporary AND operation active_2_months.delete() ``` ### Deleting If you want to permanently remove marked events for any time period you can use the `delete()` method: ```python last_month_event = MonthEvents('active', last_month.year, last_month.month) last_month_event.delete() ``` If you want to remove all bitmapist events use: ```python bitmapist.delete_all_events() ``` When using Bit Operations (ie `BitOpAnd`) you can (and probably should) delete the results unless you want them cached. There are different ways to go about this: ```python active_2_months = BitOpAnd( MonthEvents('active', last_month.year, last_month.month), MonthEvents('active', now.year, now.month) ) # Delete the temporary AND operation active_2_months.delete() # delete all bit operations created in runtime up to this point bitmapist.delete_runtime_bitop_keys() # delete all bit operations (slow if you have many millions of keys in Redis) bitmapist.delete_temporary_bitop_keys() ``` # bitmapist cohort With bitmapist cohort you can get a form and a table rendering of the data you keep in bitmapist. If this sounds confusing [please look at Mixpanel](https://mixpanel.com/retention/). Here's a simple example of how to generate a form and a rendering of the data you have inside bitmapist: ```python from bitmapist import cohort html_form = cohort.render_html_form( action_url='/_Cohort', selections1=[ ('Are Active', 'user:active'), ], selections2=[ ('Task completed', 'task:complete'), ] ) print(html_form) dates_data = cohort.get_dates_data(select1='user:active', select2='task:complete', time_group='days') html_data = cohort.render_html_data(dates_data, time_group='days') print(html_data) # All the arguments should come from the FORM element (html_form) # but to make things more clear I have filled them in directly ``` This will render something similar to this: ![bitmapist cohort screenshot](https://raw.githubusercontent.com/Doist/bitmapist/master/static/cohort_screenshot.png "bitmapist cohort screenshot") ## Contributing Please see our guide [here](./CONTRIBUTING.md) ## Local Development We use Poetry for dependency management & packaging. Please see [here for setup instructions](https://python-poetry.org/docs/#installation). Once you have Poetry installed, you can run the following to install the dependencies in a virtual environment: ```bash poetry install ``` ## Testing To run our tests will need to ensure a local redis server is installed. We use pytest to run unittests which you can run in a poetry shell with ```bash poetry run pytest ``` ## Releasing new versions - Bump version in `pyproject.toml` - Update the CHANGELOG - Commit the changes with a commit message "Version X.X.X" - Tag the current commit with `vX.X.X` - Create a new release on GitHub named `vX.X.X` - GitHub Actions will publish the new version to PIP for you ## Legal Copyright: 2012 by Doist Ltd. License: BSD %prep %autosetup -n bitmapist-3.111 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-bitmapist -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 3.111-1 - Package Spec generated