%global _empty_manifest_terminate_build 0 Name: python-open-spiel Version: 1.3 Release: 1 Summary: A Framework for Reinforcement Learning in Games License: Apache 2.0 URL: https://github.com/deepmind/open_spiel Source0: https://mirrors.aliyun.com/pypi/web/packages/ab/68/b408ada0202d52238d07e0de52de1098ac65c1ff25ddbf5c0da02318d3b2/open_spiel-1.3.tar.gz BuildArch: noarch Requires: python3-pip Requires: python3-attrs Requires: python3-absl-py Requires: python3-numpy Requires: python3-scipy %description # OpenSpiel: A Framework for Reinforcement Learning in Games [![Documentation Status](https://readthedocs.org/projects/openspiel/badge/?version=latest)](https://openspiel.readthedocs.io/en/latest/?badge=latest) ![build_and_test](https://github.com/deepmind/open_spiel/workflows/build_and_test/badge.svg) OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. Games are represented as procedural extensive-form games, with some natural extensions. The core API and games are implemented in C++ and exposed to Python. Algorithms and tools are written both in C++ and Python. To try OpenSpiel in Google Colaboratory, please refer to `open_spiel/colabs` subdirectory or start [here](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/install_open_spiel.ipynb).

OpenSpiel visual asset

# Index Please choose among the following options: * [Installing OpenSpiel](docs/install.md) * [Introduction to OpenSpiel](docs/intro.md) * [API Overview and First Example](docs/concepts.md) * [API Reference](docs/api_reference.md) * [Overview of Implemented Games](docs/games.md) * [Overview of Implemented Algorithms](docs/algorithms.md) * [Developer Guide](docs/developer_guide.md) * [Using OpenSpiel as a C++ Library](docs/library.md) * [Guidelines and Contributing](docs/contributing.md) * [Authors](docs/authors.md) For a longer introduction to the core concepts, formalisms, and terminology, including an overview of the algorithms and some results, please see [OpenSpiel: A Framework for Reinforcement Learning in Games](https://arxiv.org/abs/1908.09453). For an overview of OpenSpiel and example uses of the core API, please check out our tutorials: * [Motivation, Core API, Brief Intro to Replictor Dynamics and Imperfect Information Games](https://www.youtube.com/watch?v=8NCPqtPwlFQ) by Marc Lanctot. [(slides)](http://mlanctot.info/files/OpenSpiel_Tutorial_KU_Leuven_2022.pdf) [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb) * [Motivation, Core API, Implementing CFR and REINFORCE on Kuhn poker, Leduc poker, and Goofspiel](https://www.youtube.com/watch?v=o6JNHoGUXCo) by Edward Lockhart. [(slides)](http://mlanctot.info/files/open_spiel_tutorial-mar2021-comarl.pdf) [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/CFR_and_REINFORCE.ipynb) If you use OpenSpiel in your research, please cite the paper using the following BibTeX: ```bibtex @article{LanctotEtAl2019OpenSpiel, title = {{OpenSpiel}: A Framework for Reinforcement Learning in Games}, author = {Marc Lanctot and Edward Lockhart and Jean-Baptiste Lespiau and Vinicius Zambaldi and Satyaki Upadhyay and Julien P\'{e}rolat and Sriram Srinivasan and Finbarr Timbers and Karl Tuyls and Shayegan Omidshafiei and Daniel Hennes and Dustin Morrill and Paul Muller and Timo Ewalds and Ryan Faulkner and J\'{a}nos Kram\'{a}r and Bart De Vylder and Brennan Saeta and James Bradbury and David Ding and Sebastian Borgeaud and Matthew Lai and Julian Schrittwieser and Thomas Anthony and Edward Hughes and Ivo Danihelka and Jonah Ryan-Davis}, year = {2019}, eprint = {1908.09453}, archivePrefix = {arXiv}, primaryClass = {cs.LG}, journal = {CoRR}, volume = {abs/1908.09453}, url = {http://arxiv.org/abs/1908.09453}, } ``` ## Versioning We use [Semantic Versioning](https://semver.org/). %package -n python3-open-spiel Summary: A Framework for Reinforcement Learning in Games Provides: python-open-spiel BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-open-spiel # OpenSpiel: A Framework for Reinforcement Learning in Games [![Documentation Status](https://readthedocs.org/projects/openspiel/badge/?version=latest)](https://openspiel.readthedocs.io/en/latest/?badge=latest) ![build_and_test](https://github.com/deepmind/open_spiel/workflows/build_and_test/badge.svg) OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. Games are represented as procedural extensive-form games, with some natural extensions. The core API and games are implemented in C++ and exposed to Python. Algorithms and tools are written both in C++ and Python. To try OpenSpiel in Google Colaboratory, please refer to `open_spiel/colabs` subdirectory or start [here](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/install_open_spiel.ipynb).

OpenSpiel visual asset

# Index Please choose among the following options: * [Installing OpenSpiel](docs/install.md) * [Introduction to OpenSpiel](docs/intro.md) * [API Overview and First Example](docs/concepts.md) * [API Reference](docs/api_reference.md) * [Overview of Implemented Games](docs/games.md) * [Overview of Implemented Algorithms](docs/algorithms.md) * [Developer Guide](docs/developer_guide.md) * [Using OpenSpiel as a C++ Library](docs/library.md) * [Guidelines and Contributing](docs/contributing.md) * [Authors](docs/authors.md) For a longer introduction to the core concepts, formalisms, and terminology, including an overview of the algorithms and some results, please see [OpenSpiel: A Framework for Reinforcement Learning in Games](https://arxiv.org/abs/1908.09453). For an overview of OpenSpiel and example uses of the core API, please check out our tutorials: * [Motivation, Core API, Brief Intro to Replictor Dynamics and Imperfect Information Games](https://www.youtube.com/watch?v=8NCPqtPwlFQ) by Marc Lanctot. [(slides)](http://mlanctot.info/files/OpenSpiel_Tutorial_KU_Leuven_2022.pdf) [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb) * [Motivation, Core API, Implementing CFR and REINFORCE on Kuhn poker, Leduc poker, and Goofspiel](https://www.youtube.com/watch?v=o6JNHoGUXCo) by Edward Lockhart. [(slides)](http://mlanctot.info/files/open_spiel_tutorial-mar2021-comarl.pdf) [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/CFR_and_REINFORCE.ipynb) If you use OpenSpiel in your research, please cite the paper using the following BibTeX: ```bibtex @article{LanctotEtAl2019OpenSpiel, title = {{OpenSpiel}: A Framework for Reinforcement Learning in Games}, author = {Marc Lanctot and Edward Lockhart and Jean-Baptiste Lespiau and Vinicius Zambaldi and Satyaki Upadhyay and Julien P\'{e}rolat and Sriram Srinivasan and Finbarr Timbers and Karl Tuyls and Shayegan Omidshafiei and Daniel Hennes and Dustin Morrill and Paul Muller and Timo Ewalds and Ryan Faulkner and J\'{a}nos Kram\'{a}r and Bart De Vylder and Brennan Saeta and James Bradbury and David Ding and Sebastian Borgeaud and Matthew Lai and Julian Schrittwieser and Thomas Anthony and Edward Hughes and Ivo Danihelka and Jonah Ryan-Davis}, year = {2019}, eprint = {1908.09453}, archivePrefix = {arXiv}, primaryClass = {cs.LG}, journal = {CoRR}, volume = {abs/1908.09453}, url = {http://arxiv.org/abs/1908.09453}, } ``` ## Versioning We use [Semantic Versioning](https://semver.org/). %package help Summary: Development documents and examples for open-spiel Provides: python3-open-spiel-doc %description help # OpenSpiel: A Framework for Reinforcement Learning in Games [![Documentation Status](https://readthedocs.org/projects/openspiel/badge/?version=latest)](https://openspiel.readthedocs.io/en/latest/?badge=latest) ![build_and_test](https://github.com/deepmind/open_spiel/workflows/build_and_test/badge.svg) OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. Games are represented as procedural extensive-form games, with some natural extensions. The core API and games are implemented in C++ and exposed to Python. Algorithms and tools are written both in C++ and Python. To try OpenSpiel in Google Colaboratory, please refer to `open_spiel/colabs` subdirectory or start [here](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/install_open_spiel.ipynb).

OpenSpiel visual asset

# Index Please choose among the following options: * [Installing OpenSpiel](docs/install.md) * [Introduction to OpenSpiel](docs/intro.md) * [API Overview and First Example](docs/concepts.md) * [API Reference](docs/api_reference.md) * [Overview of Implemented Games](docs/games.md) * [Overview of Implemented Algorithms](docs/algorithms.md) * [Developer Guide](docs/developer_guide.md) * [Using OpenSpiel as a C++ Library](docs/library.md) * [Guidelines and Contributing](docs/contributing.md) * [Authors](docs/authors.md) For a longer introduction to the core concepts, formalisms, and terminology, including an overview of the algorithms and some results, please see [OpenSpiel: A Framework for Reinforcement Learning in Games](https://arxiv.org/abs/1908.09453). For an overview of OpenSpiel and example uses of the core API, please check out our tutorials: * [Motivation, Core API, Brief Intro to Replictor Dynamics and Imperfect Information Games](https://www.youtube.com/watch?v=8NCPqtPwlFQ) by Marc Lanctot. [(slides)](http://mlanctot.info/files/OpenSpiel_Tutorial_KU_Leuven_2022.pdf) [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb) * [Motivation, Core API, Implementing CFR and REINFORCE on Kuhn poker, Leduc poker, and Goofspiel](https://www.youtube.com/watch?v=o6JNHoGUXCo) by Edward Lockhart. [(slides)](http://mlanctot.info/files/open_spiel_tutorial-mar2021-comarl.pdf) [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/CFR_and_REINFORCE.ipynb) If you use OpenSpiel in your research, please cite the paper using the following BibTeX: ```bibtex @article{LanctotEtAl2019OpenSpiel, title = {{OpenSpiel}: A Framework for Reinforcement Learning in Games}, author = {Marc Lanctot and Edward Lockhart and Jean-Baptiste Lespiau and Vinicius Zambaldi and Satyaki Upadhyay and Julien P\'{e}rolat and Sriram Srinivasan and Finbarr Timbers and Karl Tuyls and Shayegan Omidshafiei and Daniel Hennes and Dustin Morrill and Paul Muller and Timo Ewalds and Ryan Faulkner and J\'{a}nos Kram\'{a}r and Bart De Vylder and Brennan Saeta and James Bradbury and David Ding and Sebastian Borgeaud and Matthew Lai and Julian Schrittwieser and Thomas Anthony and Edward Hughes and Ivo Danihelka and Jonah Ryan-Davis}, year = {2019}, eprint = {1908.09453}, archivePrefix = {arXiv}, primaryClass = {cs.LG}, journal = {CoRR}, volume = {abs/1908.09453}, url = {http://arxiv.org/abs/1908.09453}, } ``` ## Versioning We use [Semantic Versioning](https://semver.org/). %prep %autosetup -n open_spiel-1.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-open-spiel -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 1.3-1 - Package Spec generated