%global _empty_manifest_terminate_build 0 Name: python-ASLPAw Version: 2.2.0 Release: 1 Summary: Adaptive overlapping community discovery algorithm package in python. License: GNU Affero General Public License v3 URL: https://github.com/fsssosei/ASLPAw Source0: https://mirrors.aliyun.com/pypi/web/packages/aa/0b/83d1289c05d7c299d556c527d9ab7455db1a016a84510063bc5b49329c38/ASLPAw-2.2.0.tar.gz BuildArch: noarch Requires: python3-networkx Requires: python3-multivalued-dict Requires: python3-shuffle-graph Requires: python3-count-dict Requires: python3-similarity-index-of-label-graph Requires: python3-scikit-learn %description # ASLPAw ![PyPI](https://img.shields.io/pypi/v/ASLPAw?color=red) ![PyPI - Status](https://img.shields.io/pypi/status/ASLPAw) ![GitHub Release Date](https://img.shields.io/github/release-date/fsssosei/ASLPAw) [![Build Status](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/build.png?b=master)](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master) [![Code Intelligence Status](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/code-intelligence.svg?b=master)](https://scrutinizer-ci.com/code-intelligence) [![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/fsssosei/ASLPAw.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/e85d538645c44b9e87bf16448a9ac6f1)](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade) [![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master) ![PyPI - Downloads](https://img.shields.io/pypi/dw/ASLPAw?label=PyPI%20-%20Downloads) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ASLPAw) ![PyPI - License](https://img.shields.io/pypi/l/ASLPAw) *Adaptive overlapping community discovery algorithm package in python.* ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks. ASLPAw is adaptive with virtually no configuration parameters. This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks. The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph. ## Installation Installation can be done through pip. You must have python version >= 3.8 pip install ASLPAw ## Usage The statement to import the package: from ASLPAw_package import ASLPAw Example: >>> from networkx.generators.community import relaxed_caveman_graph >>> #Set seed to make the results repeatable. >>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535) >>> ASLPAw(data_graph, seed=65535).adj AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}}) >>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535) >>> ASLPAw(data_graph, seed=65535).adj AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}}) %package -n python3-ASLPAw Summary: Adaptive overlapping community discovery algorithm package in python. Provides: python-ASLPAw BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-ASLPAw # ASLPAw ![PyPI](https://img.shields.io/pypi/v/ASLPAw?color=red) ![PyPI - Status](https://img.shields.io/pypi/status/ASLPAw) ![GitHub Release Date](https://img.shields.io/github/release-date/fsssosei/ASLPAw) [![Build Status](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/build.png?b=master)](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master) [![Code Intelligence Status](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/code-intelligence.svg?b=master)](https://scrutinizer-ci.com/code-intelligence) [![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/fsssosei/ASLPAw.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/e85d538645c44b9e87bf16448a9ac6f1)](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade) [![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master) ![PyPI - Downloads](https://img.shields.io/pypi/dw/ASLPAw?label=PyPI%20-%20Downloads) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ASLPAw) ![PyPI - License](https://img.shields.io/pypi/l/ASLPAw) *Adaptive overlapping community discovery algorithm package in python.* ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks. ASLPAw is adaptive with virtually no configuration parameters. This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks. The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph. ## Installation Installation can be done through pip. You must have python version >= 3.8 pip install ASLPAw ## Usage The statement to import the package: from ASLPAw_package import ASLPAw Example: >>> from networkx.generators.community import relaxed_caveman_graph >>> #Set seed to make the results repeatable. >>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535) >>> ASLPAw(data_graph, seed=65535).adj AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}}) >>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535) >>> ASLPAw(data_graph, seed=65535).adj AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}}) %package help Summary: Development documents and examples for ASLPAw Provides: python3-ASLPAw-doc %description help # ASLPAw ![PyPI](https://img.shields.io/pypi/v/ASLPAw?color=red) ![PyPI - Status](https://img.shields.io/pypi/status/ASLPAw) ![GitHub Release Date](https://img.shields.io/github/release-date/fsssosei/ASLPAw) [![Build Status](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/build.png?b=master)](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master) [![Code Intelligence Status](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/code-intelligence.svg?b=master)](https://scrutinizer-ci.com/code-intelligence) [![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/fsssosei/ASLPAw.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/e85d538645c44b9e87bf16448a9ac6f1)](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade) [![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master) ![PyPI - Downloads](https://img.shields.io/pypi/dw/ASLPAw?label=PyPI%20-%20Downloads) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ASLPAw) ![PyPI - License](https://img.shields.io/pypi/l/ASLPAw) *Adaptive overlapping community discovery algorithm package in python.* ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks. ASLPAw is adaptive with virtually no configuration parameters. This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks. The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph. ## Installation Installation can be done through pip. You must have python version >= 3.8 pip install ASLPAw ## Usage The statement to import the package: from ASLPAw_package import ASLPAw Example: >>> from networkx.generators.community import relaxed_caveman_graph >>> #Set seed to make the results repeatable. >>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535) >>> ASLPAw(data_graph, seed=65535).adj AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}}) >>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535) >>> ASLPAw(data_graph, seed=65535).adj AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}}) %prep %autosetup -n ASLPAw-2.2.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-ASLPAw -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 2.2.0-1 - Package Spec generated