%global _empty_manifest_terminate_build 0 Name: python-luciferase Version: 2.4.5 Release: 1 Summary: Helper functions for luciferase data License: MIT License URL: https://gitlab.com/aaylward/luciferase Source0: https://mirrors.aliyun.com/pypi/web/packages/54/6d/d2564e403a1eedfa546319bc74c558fde7860b39f016617cb1fc83fb6516/luciferase-2.4.5.tar.gz BuildArch: noarch Requires: python3-estimateratio Requires: python3-matplotlib Requires: python3-pandas Requires: python3-scipy Requires: python3-seaborn Requires: python3-xlrd %description # luciferase Tool for plotting luciferase reporter data. Thanks due to Joshua Chiou and Mei-lin Okino for inspiration and contributions. ## Installation To use `luciferase`, you must first have [python](https://www.python.org/downloads/) installed. Then, you can install `luciferase` using `pip`: ```sh pip install luciferase ``` or ```sh pip install --user luciferase ``` ## Command-line interface for barplots ## Introduction This introduction demonstrates a simple analysis of data in Excel format. Here is our [example dataset](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel.xlsx), `example-excel.xlsx`: ![screenshot of excel data](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-screenshot.png) The first row contains headers and subsequent rows contain firefly/renilla ratios normalized to the empty vector. We can analyze these data by running: ```luciferase-swarmplot example-excel.xlsx example-excel-plot.pdf``` Here is the result: We can also use input data with more columns to produce plots with more bars. For example: ![screenshot of expanded excel data](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-expanded-screenshot.png) ```luciferase-swarmplot example-excel-expanded.xlsx example-excel-expanded-plot.pdf``` See the following sections for more details. ### Barplots of enhancer activity A command-line tool called `luciferase-barplot` for creating bar plots is included. After installing `luciferase`, you can use it like this: ```sh luciferase-barplot example.json example.pdf luciferase-barplot example.csv example.png luciferase-barplot example.tsv example.svg luciferase-barplot example.xls example.pdf luciferase-barplot example.xlsx example.png ``` JSON, CSV, TSV, or Excel files may be used as inputs, and output can be written in PDF, PNG, or SVG. See also the help message: ```sh luciferase-barplot -h ``` Examples of luciferase reporter data in JSON format: ```json { "Non-risk, Fwd": [8.354, 12.725, 8.506], "Risk, Fwd": [5.078, 5.038, 5.661], "Non-risk, Rev": [9.564, 9.692, 12.622], "Risk, Rev": [10.777, 11.389, 10.598], "Empty": [1.042, 0.92, 1.042] } ``` ```json { "Alt, MIN6": [5.47, 7.17, 6.15], "Ref, MIN6": [3.16, 3.04, 4.34], "Empty, MIN6": [1.07, 0.83, 0.76], "Alt, ALPHA-TC6": [2.50, 3.47, 3.33], "Ref, ALPHA-TC6": [2.01, 1.96, 2.31], "Empty, ALPHA-TC6": [1.042, 0.92, 1.042] } ``` Examples of luciferase reporter data in TSV format: ``` Non-risk, Fwd Risk, Fwd Non-risk, Rev Risk, Rev Empty 8.354 5.078 9.564 10.777 1.042 12.725 5.038 9.692 11.389 0.92 8.506 5.661 12.622 10.598 1.042 ``` ``` Ref, untreated Alt, untreated Empty, untreated Ref, dex Alt, dex Empty, dex 33.2 19.7 1.0 149.4 44.6 1.1 30.3 16.2 1.0 99.7 37.6 1.0 33.3 18.3 1.0 124.5 37.7 0.9 ``` Significance indicators will be written above the bars: `***` if p<0.001, `**` if p<0.01, `*` if p<0.05, `ns` otherwise. Here are the resulting plots: ### Barplots of allelic ratio A second tool called `luciferase-ratioplot` takes the same input data and produces a comparative plot of allelic ratios: ```sh luciferase-ratioplot --xlab control dexamethasone --ylab "Ref:Alt ratio" --title Default ratio.json ratio.png luciferase-ratioplot --xlab control dexamethasone --ylab "Alt:Ref ratio" --title Inverted --invert ratio.json ratio.png ``` The resulting plot shows the estimated allelic ratio of enhancer activity with confidence intervals (95% by default). Here is an example input dataset and plot: JSON: ```json { "Ref, untreated": [33.2, 30.3, 33.3], "Alt, untreated": [19.7, 16.2, 18.3], "Empty, untreated": [1.0, 1.0, 1.0], "Ref, dex": [149.4, 99.7, 124.5], "Alt, dex": [44.6, 37.6, 37.7], "Empty, dex": [1.1, 1.0, 0.9] } ``` TSV: ``` Alt, dex Ref, dex Empty, dex Alt, untreated Ref, untreated Empty, untreated 44.6 149.4 1.1 19.7 33.2 1.0 37.6 99.7 1.0 16.2 30.3 1.0 37.7 124.5 0.9 18.3 33.3 1.0 ``` ## Meta-analysis For this section, we'll use another included command called `luciferase-swarmplot`. It functions exactly like `luciferase-barplot` except that individual data points will be plotted over the bars. It may be that we have performed two or more experiments (from separate minipreps) and wish to meta-analyze the results. As an example, let's consider the results of two identical experiments on a regulatory variant at the _SIX3_ locus: [SIX3-MP0](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.json) and [SIX3-MP1](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.json). First we'll plot both datasets separately: ```sh luciferase-swarmplot six3-mp0.json six3-mp0.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP0' luciferase-swarmplot six3-mp1.json six3-mp1.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP1' ``` We can see that the results are fairly consistent in character, but checking the y-axis tells us that they are on different scales. Intuitively, we might conclude from these results that there are allelic effects under all three conditions. Ideally though, we would like to use all of the data at once for one plot to get the most accurate conclusions about allelic effects. We might simply combine the data into one dataset, (as [here](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.json)) and plot it: ```sh luciferase-swarmplot six3-meta-nobatch.json six3-meta-nobatch.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' ``` ![meta-analysis without batch](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.png) The bar heights look reasonable, and the allelic effects appear clear from looking at them, but all of the hypothesis tests returned non-significant results. What gives? The answer is that combining data from experiments with different scales breaks the assumptions of the significance test (a t-test). To meta-analyze these data in a useful way, we first need to re-normalize the two experiments to put both of them on the same scale. `luciferase-barplot` and `luciferase-swarmplot` will re-normalize the data automatically if the dataset includes an additional entry ("Batch") indicating the batch of each data point, as in this example: [SIX3-META](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.json). ```json { "Alt, untreated": [19.7, 16.2, 18.3, 6.5, 8.0, 4.4], "Ref, untreated": [33.2, 30.3, 33.3, 8.4, 13.6, 17.1], "Empty, untreated": [1.0, 1.0, 1.0, 1.1, 1.0, 0.9], "Alt, hi_cyt_noTNFA": [11.0, 8.8, 10.1, 3.2, 3.7, 3.3], "Ref, hi_cyt_noTNFA": [17.1, 16.7, 18.8, 7.6, 6.7, 5.5], "Empty, hi_cyt_noTNFA": [1.1, 0.9, 1.0, 1.1, 0.9, 1.0], "Alt, hi_cyt": [10.8, 10.9, 9.1, 3.1, 2.7, 4.0], "Ref, hi_cyt": [17.8, 16.1, 18.0, 7.7, 7.0, 7.1], "Empty, hi_cyt": [1.0, 1.0, 1.0, 1.0, 1.0, 1.1], "Batch": [0, 0, 0, 1, 1, 1] } ``` Here is what the results look like when they're re-normalized to correct for batch ```sh luciferase-swarmplot six3-meta.json six3-meta.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-META' ``` ![meta-analysis with batch](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.png) See a more detailed explanation of the normalization procedure [here](https://github.com/anthony-aylward/luciferase/blob/master/example/meta-analysis.pdf) %package -n python3-luciferase Summary: Helper functions for luciferase data Provides: python-luciferase BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-luciferase # luciferase Tool for plotting luciferase reporter data. Thanks due to Joshua Chiou and Mei-lin Okino for inspiration and contributions. ## Installation To use `luciferase`, you must first have [python](https://www.python.org/downloads/) installed. Then, you can install `luciferase` using `pip`: ```sh pip install luciferase ``` or ```sh pip install --user luciferase ``` ## Command-line interface for barplots ## Introduction This introduction demonstrates a simple analysis of data in Excel format. Here is our [example dataset](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel.xlsx), `example-excel.xlsx`: ![screenshot of excel data](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-screenshot.png) The first row contains headers and subsequent rows contain firefly/renilla ratios normalized to the empty vector. We can analyze these data by running: ```luciferase-swarmplot example-excel.xlsx example-excel-plot.pdf``` Here is the result: We can also use input data with more columns to produce plots with more bars. For example: ![screenshot of expanded excel data](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-expanded-screenshot.png) ```luciferase-swarmplot example-excel-expanded.xlsx example-excel-expanded-plot.pdf``` See the following sections for more details. ### Barplots of enhancer activity A command-line tool called `luciferase-barplot` for creating bar plots is included. After installing `luciferase`, you can use it like this: ```sh luciferase-barplot example.json example.pdf luciferase-barplot example.csv example.png luciferase-barplot example.tsv example.svg luciferase-barplot example.xls example.pdf luciferase-barplot example.xlsx example.png ``` JSON, CSV, TSV, or Excel files may be used as inputs, and output can be written in PDF, PNG, or SVG. See also the help message: ```sh luciferase-barplot -h ``` Examples of luciferase reporter data in JSON format: ```json { "Non-risk, Fwd": [8.354, 12.725, 8.506], "Risk, Fwd": [5.078, 5.038, 5.661], "Non-risk, Rev": [9.564, 9.692, 12.622], "Risk, Rev": [10.777, 11.389, 10.598], "Empty": [1.042, 0.92, 1.042] } ``` ```json { "Alt, MIN6": [5.47, 7.17, 6.15], "Ref, MIN6": [3.16, 3.04, 4.34], "Empty, MIN6": [1.07, 0.83, 0.76], "Alt, ALPHA-TC6": [2.50, 3.47, 3.33], "Ref, ALPHA-TC6": [2.01, 1.96, 2.31], "Empty, ALPHA-TC6": [1.042, 0.92, 1.042] } ``` Examples of luciferase reporter data in TSV format: ``` Non-risk, Fwd Risk, Fwd Non-risk, Rev Risk, Rev Empty 8.354 5.078 9.564 10.777 1.042 12.725 5.038 9.692 11.389 0.92 8.506 5.661 12.622 10.598 1.042 ``` ``` Ref, untreated Alt, untreated Empty, untreated Ref, dex Alt, dex Empty, dex 33.2 19.7 1.0 149.4 44.6 1.1 30.3 16.2 1.0 99.7 37.6 1.0 33.3 18.3 1.0 124.5 37.7 0.9 ``` Significance indicators will be written above the bars: `***` if p<0.001, `**` if p<0.01, `*` if p<0.05, `ns` otherwise. Here are the resulting plots: ### Barplots of allelic ratio A second tool called `luciferase-ratioplot` takes the same input data and produces a comparative plot of allelic ratios: ```sh luciferase-ratioplot --xlab control dexamethasone --ylab "Ref:Alt ratio" --title Default ratio.json ratio.png luciferase-ratioplot --xlab control dexamethasone --ylab "Alt:Ref ratio" --title Inverted --invert ratio.json ratio.png ``` The resulting plot shows the estimated allelic ratio of enhancer activity with confidence intervals (95% by default). Here is an example input dataset and plot: JSON: ```json { "Ref, untreated": [33.2, 30.3, 33.3], "Alt, untreated": [19.7, 16.2, 18.3], "Empty, untreated": [1.0, 1.0, 1.0], "Ref, dex": [149.4, 99.7, 124.5], "Alt, dex": [44.6, 37.6, 37.7], "Empty, dex": [1.1, 1.0, 0.9] } ``` TSV: ``` Alt, dex Ref, dex Empty, dex Alt, untreated Ref, untreated Empty, untreated 44.6 149.4 1.1 19.7 33.2 1.0 37.6 99.7 1.0 16.2 30.3 1.0 37.7 124.5 0.9 18.3 33.3 1.0 ``` ## Meta-analysis For this section, we'll use another included command called `luciferase-swarmplot`. It functions exactly like `luciferase-barplot` except that individual data points will be plotted over the bars. It may be that we have performed two or more experiments (from separate minipreps) and wish to meta-analyze the results. As an example, let's consider the results of two identical experiments on a regulatory variant at the _SIX3_ locus: [SIX3-MP0](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.json) and [SIX3-MP1](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.json). First we'll plot both datasets separately: ```sh luciferase-swarmplot six3-mp0.json six3-mp0.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP0' luciferase-swarmplot six3-mp1.json six3-mp1.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP1' ``` We can see that the results are fairly consistent in character, but checking the y-axis tells us that they are on different scales. Intuitively, we might conclude from these results that there are allelic effects under all three conditions. Ideally though, we would like to use all of the data at once for one plot to get the most accurate conclusions about allelic effects. We might simply combine the data into one dataset, (as [here](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.json)) and plot it: ```sh luciferase-swarmplot six3-meta-nobatch.json six3-meta-nobatch.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' ``` ![meta-analysis without batch](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.png) The bar heights look reasonable, and the allelic effects appear clear from looking at them, but all of the hypothesis tests returned non-significant results. What gives? The answer is that combining data from experiments with different scales breaks the assumptions of the significance test (a t-test). To meta-analyze these data in a useful way, we first need to re-normalize the two experiments to put both of them on the same scale. `luciferase-barplot` and `luciferase-swarmplot` will re-normalize the data automatically if the dataset includes an additional entry ("Batch") indicating the batch of each data point, as in this example: [SIX3-META](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.json). ```json { "Alt, untreated": [19.7, 16.2, 18.3, 6.5, 8.0, 4.4], "Ref, untreated": [33.2, 30.3, 33.3, 8.4, 13.6, 17.1], "Empty, untreated": [1.0, 1.0, 1.0, 1.1, 1.0, 0.9], "Alt, hi_cyt_noTNFA": [11.0, 8.8, 10.1, 3.2, 3.7, 3.3], "Ref, hi_cyt_noTNFA": [17.1, 16.7, 18.8, 7.6, 6.7, 5.5], "Empty, hi_cyt_noTNFA": [1.1, 0.9, 1.0, 1.1, 0.9, 1.0], "Alt, hi_cyt": [10.8, 10.9, 9.1, 3.1, 2.7, 4.0], "Ref, hi_cyt": [17.8, 16.1, 18.0, 7.7, 7.0, 7.1], "Empty, hi_cyt": [1.0, 1.0, 1.0, 1.0, 1.0, 1.1], "Batch": [0, 0, 0, 1, 1, 1] } ``` Here is what the results look like when they're re-normalized to correct for batch ```sh luciferase-swarmplot six3-meta.json six3-meta.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-META' ``` ![meta-analysis with batch](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.png) See a more detailed explanation of the normalization procedure [here](https://github.com/anthony-aylward/luciferase/blob/master/example/meta-analysis.pdf) %package help Summary: Development documents and examples for luciferase Provides: python3-luciferase-doc %description help # luciferase Tool for plotting luciferase reporter data. Thanks due to Joshua Chiou and Mei-lin Okino for inspiration and contributions. ## Installation To use `luciferase`, you must first have [python](https://www.python.org/downloads/) installed. Then, you can install `luciferase` using `pip`: ```sh pip install luciferase ``` or ```sh pip install --user luciferase ``` ## Command-line interface for barplots ## Introduction This introduction demonstrates a simple analysis of data in Excel format. Here is our [example dataset](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel.xlsx), `example-excel.xlsx`: ![screenshot of excel data](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-screenshot.png) The first row contains headers and subsequent rows contain firefly/renilla ratios normalized to the empty vector. We can analyze these data by running: ```luciferase-swarmplot example-excel.xlsx example-excel-plot.pdf``` Here is the result: We can also use input data with more columns to produce plots with more bars. For example: ![screenshot of expanded excel data](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-expanded-screenshot.png) ```luciferase-swarmplot example-excel-expanded.xlsx example-excel-expanded-plot.pdf``` See the following sections for more details. ### Barplots of enhancer activity A command-line tool called `luciferase-barplot` for creating bar plots is included. After installing `luciferase`, you can use it like this: ```sh luciferase-barplot example.json example.pdf luciferase-barplot example.csv example.png luciferase-barplot example.tsv example.svg luciferase-barplot example.xls example.pdf luciferase-barplot example.xlsx example.png ``` JSON, CSV, TSV, or Excel files may be used as inputs, and output can be written in PDF, PNG, or SVG. See also the help message: ```sh luciferase-barplot -h ``` Examples of luciferase reporter data in JSON format: ```json { "Non-risk, Fwd": [8.354, 12.725, 8.506], "Risk, Fwd": [5.078, 5.038, 5.661], "Non-risk, Rev": [9.564, 9.692, 12.622], "Risk, Rev": [10.777, 11.389, 10.598], "Empty": [1.042, 0.92, 1.042] } ``` ```json { "Alt, MIN6": [5.47, 7.17, 6.15], "Ref, MIN6": [3.16, 3.04, 4.34], "Empty, MIN6": [1.07, 0.83, 0.76], "Alt, ALPHA-TC6": [2.50, 3.47, 3.33], "Ref, ALPHA-TC6": [2.01, 1.96, 2.31], "Empty, ALPHA-TC6": [1.042, 0.92, 1.042] } ``` Examples of luciferase reporter data in TSV format: ``` Non-risk, Fwd Risk, Fwd Non-risk, Rev Risk, Rev Empty 8.354 5.078 9.564 10.777 1.042 12.725 5.038 9.692 11.389 0.92 8.506 5.661 12.622 10.598 1.042 ``` ``` Ref, untreated Alt, untreated Empty, untreated Ref, dex Alt, dex Empty, dex 33.2 19.7 1.0 149.4 44.6 1.1 30.3 16.2 1.0 99.7 37.6 1.0 33.3 18.3 1.0 124.5 37.7 0.9 ``` Significance indicators will be written above the bars: `***` if p<0.001, `**` if p<0.01, `*` if p<0.05, `ns` otherwise. Here are the resulting plots: ### Barplots of allelic ratio A second tool called `luciferase-ratioplot` takes the same input data and produces a comparative plot of allelic ratios: ```sh luciferase-ratioplot --xlab control dexamethasone --ylab "Ref:Alt ratio" --title Default ratio.json ratio.png luciferase-ratioplot --xlab control dexamethasone --ylab "Alt:Ref ratio" --title Inverted --invert ratio.json ratio.png ``` The resulting plot shows the estimated allelic ratio of enhancer activity with confidence intervals (95% by default). Here is an example input dataset and plot: JSON: ```json { "Ref, untreated": [33.2, 30.3, 33.3], "Alt, untreated": [19.7, 16.2, 18.3], "Empty, untreated": [1.0, 1.0, 1.0], "Ref, dex": [149.4, 99.7, 124.5], "Alt, dex": [44.6, 37.6, 37.7], "Empty, dex": [1.1, 1.0, 0.9] } ``` TSV: ``` Alt, dex Ref, dex Empty, dex Alt, untreated Ref, untreated Empty, untreated 44.6 149.4 1.1 19.7 33.2 1.0 37.6 99.7 1.0 16.2 30.3 1.0 37.7 124.5 0.9 18.3 33.3 1.0 ``` ## Meta-analysis For this section, we'll use another included command called `luciferase-swarmplot`. It functions exactly like `luciferase-barplot` except that individual data points will be plotted over the bars. It may be that we have performed two or more experiments (from separate minipreps) and wish to meta-analyze the results. As an example, let's consider the results of two identical experiments on a regulatory variant at the _SIX3_ locus: [SIX3-MP0](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.json) and [SIX3-MP1](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.json). First we'll plot both datasets separately: ```sh luciferase-swarmplot six3-mp0.json six3-mp0.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP0' luciferase-swarmplot six3-mp1.json six3-mp1.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP1' ``` We can see that the results are fairly consistent in character, but checking the y-axis tells us that they are on different scales. Intuitively, we might conclude from these results that there are allelic effects under all three conditions. Ideally though, we would like to use all of the data at once for one plot to get the most accurate conclusions about allelic effects. We might simply combine the data into one dataset, (as [here](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.json)) and plot it: ```sh luciferase-swarmplot six3-meta-nobatch.json six3-meta-nobatch.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' ``` ![meta-analysis without batch](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.png) The bar heights look reasonable, and the allelic effects appear clear from looking at them, but all of the hypothesis tests returned non-significant results. What gives? The answer is that combining data from experiments with different scales breaks the assumptions of the significance test (a t-test). To meta-analyze these data in a useful way, we first need to re-normalize the two experiments to put both of them on the same scale. `luciferase-barplot` and `luciferase-swarmplot` will re-normalize the data automatically if the dataset includes an additional entry ("Batch") indicating the batch of each data point, as in this example: [SIX3-META](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.json). ```json { "Alt, untreated": [19.7, 16.2, 18.3, 6.5, 8.0, 4.4], "Ref, untreated": [33.2, 30.3, 33.3, 8.4, 13.6, 17.1], "Empty, untreated": [1.0, 1.0, 1.0, 1.1, 1.0, 0.9], "Alt, hi_cyt_noTNFA": [11.0, 8.8, 10.1, 3.2, 3.7, 3.3], "Ref, hi_cyt_noTNFA": [17.1, 16.7, 18.8, 7.6, 6.7, 5.5], "Empty, hi_cyt_noTNFA": [1.1, 0.9, 1.0, 1.1, 0.9, 1.0], "Alt, hi_cyt": [10.8, 10.9, 9.1, 3.1, 2.7, 4.0], "Ref, hi_cyt": [17.8, 16.1, 18.0, 7.7, 7.0, 7.1], "Empty, hi_cyt": [1.0, 1.0, 1.0, 1.0, 1.0, 1.1], "Batch": [0, 0, 0, 1, 1, 1] } ``` Here is what the results look like when they're re-normalized to correct for batch ```sh luciferase-swarmplot six3-meta.json six3-meta.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-META' ``` ![meta-analysis with batch](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.png) See a more detailed explanation of the normalization procedure [here](https://github.com/anthony-aylward/luciferase/blob/master/example/meta-analysis.pdf) %prep %autosetup -n luciferase-2.4.5 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-luciferase -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 2.4.5-1 - Package Spec generated