%global _empty_manifest_terminate_build 0 Name: python-servicex-databinder Version: 0.4.1 Release: 1 Summary: ServiceX data management using a configuration file License: BSD 3-clause URL: https://github.com/kyungeonchoi/ServiceXDataBinder Source0: https://mirrors.aliyun.com/pypi/web/packages/90/81/a0ad5b2ff865f382d8880c211b5e6bb6423e419dc41be66db00d76e9fe30/servicex_databinder-0.4.1.tar.gz BuildArch: noarch Requires: python3-servicex Requires: python3-tcut-to-qastle Requires: python3-nest-asyncio Requires: python3-tqdm Requires: python3-pyarrow Requires: python3-backoff Requires: python3-func-adl-servicex %description # ServiceX DataBinder

Release v0.4.1

[![PyPI version](https://badge.fury.io/py/servicex-databinder.svg)](https://badge.fury.io/py/servicex-databinder) `servicex-databinder` is a user-analysis data management package using a single configuration file. Samples with external data sources (e.g. `RucioDID` or `XRootDFiles`) utilize ServiceX to deliver user-selected columns with optional row filtering. The following table shows supported ServiceX transformers by DataBinder | Input format | Code generator | Transformer | Output format | :--- | :---: | :---: | :---: | | ROOT Ntuple | func-adl | `uproot` | `root` or `parquet` | | ATLAS Release 21 xAOD | func-adl | `atlasr21`| `root` | ## Prerequisite - [Access to a ServiceX instance](https://servicex.readthedocs.io/en/latest/user/getting-started/) - Python 3.7+ ## Installation ```shell pip install servicex-databinder ``` ## Configuration file The configuration file is a yaml file containing all the information. The [following example configuration file](config_minimum.yaml) contains minimal fields. You can also download [`servicex-opendata.yaml`](servicex-opendata.yaml) file (rename to `servicex.yaml`) at your working directory, and run DataBinder for OpenData without an access token. ```yaml General: ServiceXName: servicex-opendata OutputFormat: parquet Sample: - Name: ggH125_ZZ4lep XRootDFiles: "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets\ /2020-01-22/4lep/MC/mc_345060.ggH125_ZZ4lep.4lep.root" Tree: mini Columns: lep_pt, lep_eta ``` `General` block requires two mandatory options (`ServiceXName` and `OutputFormat`) as in the example above. Input dataset for each Sample can be defined either by `RucioDID` or `XRootDFiles` or `LocalPath`. ServiceX query can be constructed with either TCut syntax or func-adl. - Options for TCut syntax: `Filter`1 and `Columns` - Option for Func-adl expression: `FuncADL`       1 `Filter` works only for scalar-type of TBranch. Output format can be either `Apache parquet` or `ROOT ntuple` for `uproot` backend. Only `ROOT ntuple` format is supported for `xAOD` backend. The followings are available options: | Option for `General` block | Description | DataType | |:--------:|:------:|:------| | `ServiceXName`* | ServiceX backend name in your `servicex.yaml` file
| `String` | | `OutputDirectory` | Path to the directory for ServiceX delivered files | `String` | | `OutputFormat`* | Output file format of ServiceX delivered data (`parquet` or `root` for `uproot` / `root` for `xaod`) | `String` | | `WriteOutputDict` | Name of an ouput yaml file containing Python nested dictionary of output file paths (located in the `OutputDirectory`) | `String` | | `IgnoreServiceXCache` | Ignore the existing ServiceX cache and force to make ServiceX requests | `Boolean` |

*Mandatory options

| Option for `Sample` block | Description |DataType | |:--------:|:------:|:------| | `Name` | sample name defined by a user |`String` | | `RucioDID` | Rucio Dataset Id (DID) for a given sample;
Can be multiple DIDs separated by comma |`String` | | `XRootDFiles` | XRootD files (e.g. `root://`) for a given sample;
Can be multiple files separated by comma |`String` | | `Tree` | Name of the input ROOT `TTree`;
Can be multiple `TTree`s separated by comma (`uproot` ONLY) |`String` | | `Filter` | Selection in the TCut syntax, e.g. `jet_pt > 10e3 && jet_eta < 2.0` (TCut ONLY) |`String` | | `Columns` | List of columns (or branches) to be delivered; multiple columns separately by comma (TCut ONLY) |`String` | | `FuncADL` | func-adl expression for a given sample |`String` | | `LocalPath` | File path directly from local path (NO ServiceX tranformation) | `String` | A config file can be simplified by utilizing `Definition` block. You can define placeholders under `Definition` block, which will replace all matched placeholders in the values of `Sample` block. Note that placeholders must start with `DEF_`. You can source each Sample using different ServiceX transformers. The default transformer is set by `type` of `servicex.yaml`, but `Transformer` in the `General` block overwrites if present, and `Transformer` in each `Sample` overwrites any previous transformer selection. The [following example configuration](config_maximum.yaml) shows how to use each Options. ```yaml General: ServiceXName: servicex-uc-af Transformer: uproot OutputFormat: root OutputDirectory: /Users/kchoi/data_for_MLstudy WriteOutputDict: fileset_ml_study IgnoreServiceXCache: False Sample: - Name: Signal RucioDID: user.kchoi:user.kchoi.signalA, user.kchoi:user.kchoi.signalB, user.kchoi:user.kchoi.signalC Tree: nominal FuncADL: DEF_ttH_nominal_query - Name: Background1 XRootDFiles: DEF_ggH_input Tree: mini Filter: lep_n>2 Columns: lep_pt, lep_eta - Name: Background2 Transformer: atlasr21 RucioDID: DEF_Zee_input FuncADL: DEF_Zee_query - Name: Background3 LocalPath: /Users/kchoi/Work/data/background3 Definition: DEF_ttH_nominal_query: "Where(lambda e: e.met_met>150e3). \ Select(lambda event: {'el_pt': event.el_pt, 'jet_e': event.jet_e, \ 'jet_pt': event.jet_pt, 'met_met': event.met_met})" DEF_ggH_input: "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets\ /2020-01-22/4lep/MC/mc_345060.ggH125_ZZ4lep.4lep.root" DEF_Zee_input: "mc15_13TeV:mc15_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.\ merge.DAOD_STDM3.e3601_s2576_s2132_r6630_r6264_p2363_tid05630052_00" DEF_Zee_query: "SelectMany('lambda e: e.Jets(\"AntiKt4EMTopoJets\")'). \ Where('lambda j: (j.pt() / 1000) > 30'). \ Select('lambda j: j.pt() / 1000.0'). \ AsROOTTTree('junk.root', 'my_tree', [\"JetPt\"])" ``` ## Deliver data ```python from servicex_databinder import DataBinder sx_db = DataBinder('.yml') out = sx_db.deliver() ``` The function `deliver()` returns a Python nested dictionary that contains delivered files. Input configuration can be also passed in a form of a Python dictionary. Delivered Samples and files in the `OutputDirectory` are always synced with the DataBinder config file. ## Error handling ```python failed_requests = sx_db.get_failed_requests() ``` If failed ServiceX request(s), `deliver()` will print number of failed requests and the name of Sample, Tree if present, and input dataset. You can get a full list of failed samples and error messages for each by `get_failed_requests()` function. If it is not clear from the message you can browse `Logs` in the ServiceX instance webpage for the detail. ## Useful tools ### Create Rucio container for multiple DIDs The current ServiceX generates one request per Rucio DID. It's often the case that a physics analysis needs to process hundreds of DIDs. In such cases, the script (`scripts/create_rucio_container.py`) can be used to create one Rucio container per Sample from a yaml file. An example yaml file (`scripts/rucio_dids_example.yaml`) is included. Here is the usage of the script: ```shell usage: create_rucio_containers.py [-h] [--dry-run DRY_RUN] infile container_name version Create Rucio containers from multiple DIDs positional arguments: infile yaml file contains Rucio DIDs for each Sample container_name e.g. user.kchoi:user.kchoi..Sample.v1 version e.g. user.kchoi:user.kchoi.fcnc_ana.Sample. optional arguments: -h, --help show this help message and exit --dry-run DRY_RUN Run without creating new Rucio container ``` ## Acknowledgements Support for this work was provided by the the U.S. Department of Energy, Office of High Energy Physics under Grant No. DE-SC0007890 %package -n python3-servicex-databinder Summary: ServiceX data management using a configuration file Provides: python-servicex-databinder BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-servicex-databinder # ServiceX DataBinder

Release v0.4.1

[![PyPI version](https://badge.fury.io/py/servicex-databinder.svg)](https://badge.fury.io/py/servicex-databinder) `servicex-databinder` is a user-analysis data management package using a single configuration file. Samples with external data sources (e.g. `RucioDID` or `XRootDFiles`) utilize ServiceX to deliver user-selected columns with optional row filtering. The following table shows supported ServiceX transformers by DataBinder | Input format | Code generator | Transformer | Output format | :--- | :---: | :---: | :---: | | ROOT Ntuple | func-adl | `uproot` | `root` or `parquet` | | ATLAS Release 21 xAOD | func-adl | `atlasr21`| `root` | ## Prerequisite - [Access to a ServiceX instance](https://servicex.readthedocs.io/en/latest/user/getting-started/) - Python 3.7+ ## Installation ```shell pip install servicex-databinder ``` ## Configuration file The configuration file is a yaml file containing all the information. The [following example configuration file](config_minimum.yaml) contains minimal fields. You can also download [`servicex-opendata.yaml`](servicex-opendata.yaml) file (rename to `servicex.yaml`) at your working directory, and run DataBinder for OpenData without an access token. ```yaml General: ServiceXName: servicex-opendata OutputFormat: parquet Sample: - Name: ggH125_ZZ4lep XRootDFiles: "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets\ /2020-01-22/4lep/MC/mc_345060.ggH125_ZZ4lep.4lep.root" Tree: mini Columns: lep_pt, lep_eta ``` `General` block requires two mandatory options (`ServiceXName` and `OutputFormat`) as in the example above. Input dataset for each Sample can be defined either by `RucioDID` or `XRootDFiles` or `LocalPath`. ServiceX query can be constructed with either TCut syntax or func-adl. - Options for TCut syntax: `Filter`1 and `Columns` - Option for Func-adl expression: `FuncADL`       1 `Filter` works only for scalar-type of TBranch. Output format can be either `Apache parquet` or `ROOT ntuple` for `uproot` backend. Only `ROOT ntuple` format is supported for `xAOD` backend. The followings are available options: | Option for `General` block | Description | DataType | |:--------:|:------:|:------| | `ServiceXName`* | ServiceX backend name in your `servicex.yaml` file
| `String` | | `OutputDirectory` | Path to the directory for ServiceX delivered files | `String` | | `OutputFormat`* | Output file format of ServiceX delivered data (`parquet` or `root` for `uproot` / `root` for `xaod`) | `String` | | `WriteOutputDict` | Name of an ouput yaml file containing Python nested dictionary of output file paths (located in the `OutputDirectory`) | `String` | | `IgnoreServiceXCache` | Ignore the existing ServiceX cache and force to make ServiceX requests | `Boolean` |

*Mandatory options

| Option for `Sample` block | Description |DataType | |:--------:|:------:|:------| | `Name` | sample name defined by a user |`String` | | `RucioDID` | Rucio Dataset Id (DID) for a given sample;
Can be multiple DIDs separated by comma |`String` | | `XRootDFiles` | XRootD files (e.g. `root://`) for a given sample;
Can be multiple files separated by comma |`String` | | `Tree` | Name of the input ROOT `TTree`;
Can be multiple `TTree`s separated by comma (`uproot` ONLY) |`String` | | `Filter` | Selection in the TCut syntax, e.g. `jet_pt > 10e3 && jet_eta < 2.0` (TCut ONLY) |`String` | | `Columns` | List of columns (or branches) to be delivered; multiple columns separately by comma (TCut ONLY) |`String` | | `FuncADL` | func-adl expression for a given sample |`String` | | `LocalPath` | File path directly from local path (NO ServiceX tranformation) | `String` | A config file can be simplified by utilizing `Definition` block. You can define placeholders under `Definition` block, which will replace all matched placeholders in the values of `Sample` block. Note that placeholders must start with `DEF_`. You can source each Sample using different ServiceX transformers. The default transformer is set by `type` of `servicex.yaml`, but `Transformer` in the `General` block overwrites if present, and `Transformer` in each `Sample` overwrites any previous transformer selection. The [following example configuration](config_maximum.yaml) shows how to use each Options. ```yaml General: ServiceXName: servicex-uc-af Transformer: uproot OutputFormat: root OutputDirectory: /Users/kchoi/data_for_MLstudy WriteOutputDict: fileset_ml_study IgnoreServiceXCache: False Sample: - Name: Signal RucioDID: user.kchoi:user.kchoi.signalA, user.kchoi:user.kchoi.signalB, user.kchoi:user.kchoi.signalC Tree: nominal FuncADL: DEF_ttH_nominal_query - Name: Background1 XRootDFiles: DEF_ggH_input Tree: mini Filter: lep_n>2 Columns: lep_pt, lep_eta - Name: Background2 Transformer: atlasr21 RucioDID: DEF_Zee_input FuncADL: DEF_Zee_query - Name: Background3 LocalPath: /Users/kchoi/Work/data/background3 Definition: DEF_ttH_nominal_query: "Where(lambda e: e.met_met>150e3). \ Select(lambda event: {'el_pt': event.el_pt, 'jet_e': event.jet_e, \ 'jet_pt': event.jet_pt, 'met_met': event.met_met})" DEF_ggH_input: "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets\ /2020-01-22/4lep/MC/mc_345060.ggH125_ZZ4lep.4lep.root" DEF_Zee_input: "mc15_13TeV:mc15_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.\ merge.DAOD_STDM3.e3601_s2576_s2132_r6630_r6264_p2363_tid05630052_00" DEF_Zee_query: "SelectMany('lambda e: e.Jets(\"AntiKt4EMTopoJets\")'). \ Where('lambda j: (j.pt() / 1000) > 30'). \ Select('lambda j: j.pt() / 1000.0'). \ AsROOTTTree('junk.root', 'my_tree', [\"JetPt\"])" ``` ## Deliver data ```python from servicex_databinder import DataBinder sx_db = DataBinder('.yml') out = sx_db.deliver() ``` The function `deliver()` returns a Python nested dictionary that contains delivered files. Input configuration can be also passed in a form of a Python dictionary. Delivered Samples and files in the `OutputDirectory` are always synced with the DataBinder config file. ## Error handling ```python failed_requests = sx_db.get_failed_requests() ``` If failed ServiceX request(s), `deliver()` will print number of failed requests and the name of Sample, Tree if present, and input dataset. You can get a full list of failed samples and error messages for each by `get_failed_requests()` function. If it is not clear from the message you can browse `Logs` in the ServiceX instance webpage for the detail. ## Useful tools ### Create Rucio container for multiple DIDs The current ServiceX generates one request per Rucio DID. It's often the case that a physics analysis needs to process hundreds of DIDs. In such cases, the script (`scripts/create_rucio_container.py`) can be used to create one Rucio container per Sample from a yaml file. An example yaml file (`scripts/rucio_dids_example.yaml`) is included. Here is the usage of the script: ```shell usage: create_rucio_containers.py [-h] [--dry-run DRY_RUN] infile container_name version Create Rucio containers from multiple DIDs positional arguments: infile yaml file contains Rucio DIDs for each Sample container_name e.g. user.kchoi:user.kchoi..Sample.v1 version e.g. user.kchoi:user.kchoi.fcnc_ana.Sample. optional arguments: -h, --help show this help message and exit --dry-run DRY_RUN Run without creating new Rucio container ``` ## Acknowledgements Support for this work was provided by the the U.S. Department of Energy, Office of High Energy Physics under Grant No. DE-SC0007890 %package help Summary: Development documents and examples for servicex-databinder Provides: python3-servicex-databinder-doc %description help # ServiceX DataBinder

Release v0.4.1

[![PyPI version](https://badge.fury.io/py/servicex-databinder.svg)](https://badge.fury.io/py/servicex-databinder) `servicex-databinder` is a user-analysis data management package using a single configuration file. Samples with external data sources (e.g. `RucioDID` or `XRootDFiles`) utilize ServiceX to deliver user-selected columns with optional row filtering. The following table shows supported ServiceX transformers by DataBinder | Input format | Code generator | Transformer | Output format | :--- | :---: | :---: | :---: | | ROOT Ntuple | func-adl | `uproot` | `root` or `parquet` | | ATLAS Release 21 xAOD | func-adl | `atlasr21`| `root` | ## Prerequisite - [Access to a ServiceX instance](https://servicex.readthedocs.io/en/latest/user/getting-started/) - Python 3.7+ ## Installation ```shell pip install servicex-databinder ``` ## Configuration file The configuration file is a yaml file containing all the information. The [following example configuration file](config_minimum.yaml) contains minimal fields. You can also download [`servicex-opendata.yaml`](servicex-opendata.yaml) file (rename to `servicex.yaml`) at your working directory, and run DataBinder for OpenData without an access token. ```yaml General: ServiceXName: servicex-opendata OutputFormat: parquet Sample: - Name: ggH125_ZZ4lep XRootDFiles: "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets\ /2020-01-22/4lep/MC/mc_345060.ggH125_ZZ4lep.4lep.root" Tree: mini Columns: lep_pt, lep_eta ``` `General` block requires two mandatory options (`ServiceXName` and `OutputFormat`) as in the example above. Input dataset for each Sample can be defined either by `RucioDID` or `XRootDFiles` or `LocalPath`. ServiceX query can be constructed with either TCut syntax or func-adl. - Options for TCut syntax: `Filter`1 and `Columns` - Option for Func-adl expression: `FuncADL`       1 `Filter` works only for scalar-type of TBranch. Output format can be either `Apache parquet` or `ROOT ntuple` for `uproot` backend. Only `ROOT ntuple` format is supported for `xAOD` backend. The followings are available options: | Option for `General` block | Description | DataType | |:--------:|:------:|:------| | `ServiceXName`* | ServiceX backend name in your `servicex.yaml` file
| `String` | | `OutputDirectory` | Path to the directory for ServiceX delivered files | `String` | | `OutputFormat`* | Output file format of ServiceX delivered data (`parquet` or `root` for `uproot` / `root` for `xaod`) | `String` | | `WriteOutputDict` | Name of an ouput yaml file containing Python nested dictionary of output file paths (located in the `OutputDirectory`) | `String` | | `IgnoreServiceXCache` | Ignore the existing ServiceX cache and force to make ServiceX requests | `Boolean` |

*Mandatory options

| Option for `Sample` block | Description |DataType | |:--------:|:------:|:------| | `Name` | sample name defined by a user |`String` | | `RucioDID` | Rucio Dataset Id (DID) for a given sample;
Can be multiple DIDs separated by comma |`String` | | `XRootDFiles` | XRootD files (e.g. `root://`) for a given sample;
Can be multiple files separated by comma |`String` | | `Tree` | Name of the input ROOT `TTree`;
Can be multiple `TTree`s separated by comma (`uproot` ONLY) |`String` | | `Filter` | Selection in the TCut syntax, e.g. `jet_pt > 10e3 && jet_eta < 2.0` (TCut ONLY) |`String` | | `Columns` | List of columns (or branches) to be delivered; multiple columns separately by comma (TCut ONLY) |`String` | | `FuncADL` | func-adl expression for a given sample |`String` | | `LocalPath` | File path directly from local path (NO ServiceX tranformation) | `String` | A config file can be simplified by utilizing `Definition` block. You can define placeholders under `Definition` block, which will replace all matched placeholders in the values of `Sample` block. Note that placeholders must start with `DEF_`. You can source each Sample using different ServiceX transformers. The default transformer is set by `type` of `servicex.yaml`, but `Transformer` in the `General` block overwrites if present, and `Transformer` in each `Sample` overwrites any previous transformer selection. The [following example configuration](config_maximum.yaml) shows how to use each Options. ```yaml General: ServiceXName: servicex-uc-af Transformer: uproot OutputFormat: root OutputDirectory: /Users/kchoi/data_for_MLstudy WriteOutputDict: fileset_ml_study IgnoreServiceXCache: False Sample: - Name: Signal RucioDID: user.kchoi:user.kchoi.signalA, user.kchoi:user.kchoi.signalB, user.kchoi:user.kchoi.signalC Tree: nominal FuncADL: DEF_ttH_nominal_query - Name: Background1 XRootDFiles: DEF_ggH_input Tree: mini Filter: lep_n>2 Columns: lep_pt, lep_eta - Name: Background2 Transformer: atlasr21 RucioDID: DEF_Zee_input FuncADL: DEF_Zee_query - Name: Background3 LocalPath: /Users/kchoi/Work/data/background3 Definition: DEF_ttH_nominal_query: "Where(lambda e: e.met_met>150e3). \ Select(lambda event: {'el_pt': event.el_pt, 'jet_e': event.jet_e, \ 'jet_pt': event.jet_pt, 'met_met': event.met_met})" DEF_ggH_input: "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets\ /2020-01-22/4lep/MC/mc_345060.ggH125_ZZ4lep.4lep.root" DEF_Zee_input: "mc15_13TeV:mc15_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.\ merge.DAOD_STDM3.e3601_s2576_s2132_r6630_r6264_p2363_tid05630052_00" DEF_Zee_query: "SelectMany('lambda e: e.Jets(\"AntiKt4EMTopoJets\")'). \ Where('lambda j: (j.pt() / 1000) > 30'). \ Select('lambda j: j.pt() / 1000.0'). \ AsROOTTTree('junk.root', 'my_tree', [\"JetPt\"])" ``` ## Deliver data ```python from servicex_databinder import DataBinder sx_db = DataBinder('.yml') out = sx_db.deliver() ``` The function `deliver()` returns a Python nested dictionary that contains delivered files. Input configuration can be also passed in a form of a Python dictionary. Delivered Samples and files in the `OutputDirectory` are always synced with the DataBinder config file. ## Error handling ```python failed_requests = sx_db.get_failed_requests() ``` If failed ServiceX request(s), `deliver()` will print number of failed requests and the name of Sample, Tree if present, and input dataset. You can get a full list of failed samples and error messages for each by `get_failed_requests()` function. If it is not clear from the message you can browse `Logs` in the ServiceX instance webpage for the detail. ## Useful tools ### Create Rucio container for multiple DIDs The current ServiceX generates one request per Rucio DID. It's often the case that a physics analysis needs to process hundreds of DIDs. In such cases, the script (`scripts/create_rucio_container.py`) can be used to create one Rucio container per Sample from a yaml file. An example yaml file (`scripts/rucio_dids_example.yaml`) is included. Here is the usage of the script: ```shell usage: create_rucio_containers.py [-h] [--dry-run DRY_RUN] infile container_name version Create Rucio containers from multiple DIDs positional arguments: infile yaml file contains Rucio DIDs for each Sample container_name e.g. user.kchoi:user.kchoi..Sample.v1 version e.g. user.kchoi:user.kchoi.fcnc_ana.Sample. optional arguments: -h, --help show this help message and exit --dry-run DRY_RUN Run without creating new Rucio container ``` ## Acknowledgements Support for this work was provided by the the U.S. Department of Energy, Office of High Energy Physics under Grant No. DE-SC0007890 %prep %autosetup -n servicex_databinder-0.4.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-servicex-databinder -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 0.4.1-1 - Package Spec generated