%global _empty_manifest_terminate_build 0 Name: python-tinyec Version: 0.4.0 Release: 1 Summary: A tiny library to perform arithmetic operations on elliptic curves in pure python License: GPLv3 URL: https://github.com/alexmgr/tinyec Source0: https://mirrors.aliyun.com/pypi/web/packages/76/2f/1bf6060620aae864597422ed50a0b46ad66a720d22e0f5d6c62e58aebff9/tinyec-0.4.0.tar.gz BuildArch: noarch %description # tinyec A tiny library to perform arithmetic operations on elliptic curves in pure python. No dependencies. **This is not a library suitable for production.** It is useful for security professionals to understand the inner workings of EC, and be able to play with pre-defined curves. ## installation `pip install tinyec` ## usage There are 2 main classes: * Curve(), which describes an elliptic curve in a finite field * Point(), which describes a point belonging to an EC **Warning** Calculation on points outside the curve are allowed. They will only raise a warning. ### working on existing curves Example use on the NIST routine samples => https://www.nsa.gov/ia/_files/nist-routines.pdf: ```python >>> import tinyec.ec as ec >>> import tinyec.registry as reg >>> c = reg.get_curve("secp192r1") >>> s = ec.Point(c, 0xd458e7d127ae671b0c330266d246769353a012073e97acf8, 0x325930500d851f336bddc050cf7fb11b5673a1645086df3b) >>> t = ec.Point(c, 0xf22c4395213e9ebe67ddecdd87fdbd01be16fb059b9753a4, 0x264424096af2b3597796db48f8dfb41fa9cecc97691a9c79) >>> r = s + t >>> r (1787070900316344022479363585363935252075532448940096815760, 1583034776780933252095415958625802984888372377603917916747) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x48e1e4096b9b8e5ca9d0f1f077b8abf58e843894de4d0290L' >>> hex(r.y) '0x408fa77c797cd7dbfb16aa48a3648d3d63c94117d7b6aa4bL' >>> r = s - t >>> r (6193438478050209507979672067809269724375390027440522152494, 226636415264149817017346905052752138772359775362461041003) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 ( mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0xfc9683cc5abfb4fe0cc8cc3bc9f61eabc4688f11e9f64a2eL' >>> hex(r.y) '0x93e31d00fb78269732b1bd2a73c23cdd31745d0523d816bL' >>> r = 2 * s >>> r (1195895923065450997501505402941681398272052708885411031394, 340030206158745947396451508065335698335058477174385838543) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 ( mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x30c5bc6b8c7da25354b373dc14dd8a0eba42d25a3f6e6962L' >>> hex(r.y) '0xdde14bc4249a721c407aedbf011e2ddbbcb2968c9d889cfL' >>> d = 0xa78a236d60baec0c5dd41b33a542463a8255391af64c74ee >>> r = d * s >>> hex(r.x) '0x1faee4205a4f669d2d0a8f25e3bcec9a62a6952965bf6d31L' >>> hex(r.y) '0x5ff2cdfa508a2581892367087c696f179e7a4d7e8260fb06L' >>> e = 0xc4be3d53ec3089e71e4de8ceab7cce889bc393cd85b972bc >>> r = d * s + e * t >>> r (39786866609245082371772779541859439402855864496422607838, 547967566579883709478937502153554894699060378424501614148) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mo d 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x19f64eed8fa9b72b7dfea82c17c9bfa60ecb9e1778b5bdeL' >>> hex(r.y) '0x16590c5fcd8655fa4ced33fb800e2a7e3c61f35d83503644L' ``` ### working on custom curves If needed, you can also work on your own curves. Here we take a a prime field 97, with a generator point (1, 2), an order 5 and a cofactor of 1: ```python >>> import tinyec.ec as ec >>> field = ec.SubGroup(97, (1, 2), 5, 1) >>> curve = ec.Curve(2, 3, field) tinyec/ec.py:115: UserWarning: Point (1, 2) is not on curve "undefined" => y^2 = x^3 + 2x + 3 (mod 97) warnings.warn("Point (%d, %d) is not on curve %s" % (self.x, self.y, self.curve)) >>> # Warning is generated because the generator point does not belong to the curve >>> p1 = ec.Point(curve, -5, 3) >>> p1.on_curve False >>> p2 = ec.Point(curve, 22, 5) >>> p2.on_curve True >>> print(p1 + p2) (18, 42) off "undefined" => y^2 = x^3 + 2x + 3 (mod 97) ``` %package -n python3-tinyec Summary: A tiny library to perform arithmetic operations on elliptic curves in pure python Provides: python-tinyec BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-tinyec # tinyec A tiny library to perform arithmetic operations on elliptic curves in pure python. No dependencies. **This is not a library suitable for production.** It is useful for security professionals to understand the inner workings of EC, and be able to play with pre-defined curves. ## installation `pip install tinyec` ## usage There are 2 main classes: * Curve(), which describes an elliptic curve in a finite field * Point(), which describes a point belonging to an EC **Warning** Calculation on points outside the curve are allowed. They will only raise a warning. ### working on existing curves Example use on the NIST routine samples => https://www.nsa.gov/ia/_files/nist-routines.pdf: ```python >>> import tinyec.ec as ec >>> import tinyec.registry as reg >>> c = reg.get_curve("secp192r1") >>> s = ec.Point(c, 0xd458e7d127ae671b0c330266d246769353a012073e97acf8, 0x325930500d851f336bddc050cf7fb11b5673a1645086df3b) >>> t = ec.Point(c, 0xf22c4395213e9ebe67ddecdd87fdbd01be16fb059b9753a4, 0x264424096af2b3597796db48f8dfb41fa9cecc97691a9c79) >>> r = s + t >>> r (1787070900316344022479363585363935252075532448940096815760, 1583034776780933252095415958625802984888372377603917916747) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x48e1e4096b9b8e5ca9d0f1f077b8abf58e843894de4d0290L' >>> hex(r.y) '0x408fa77c797cd7dbfb16aa48a3648d3d63c94117d7b6aa4bL' >>> r = s - t >>> r (6193438478050209507979672067809269724375390027440522152494, 226636415264149817017346905052752138772359775362461041003) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 ( mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0xfc9683cc5abfb4fe0cc8cc3bc9f61eabc4688f11e9f64a2eL' >>> hex(r.y) '0x93e31d00fb78269732b1bd2a73c23cdd31745d0523d816bL' >>> r = 2 * s >>> r (1195895923065450997501505402941681398272052708885411031394, 340030206158745947396451508065335698335058477174385838543) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 ( mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x30c5bc6b8c7da25354b373dc14dd8a0eba42d25a3f6e6962L' >>> hex(r.y) '0xdde14bc4249a721c407aedbf011e2ddbbcb2968c9d889cfL' >>> d = 0xa78a236d60baec0c5dd41b33a542463a8255391af64c74ee >>> r = d * s >>> hex(r.x) '0x1faee4205a4f669d2d0a8f25e3bcec9a62a6952965bf6d31L' >>> hex(r.y) '0x5ff2cdfa508a2581892367087c696f179e7a4d7e8260fb06L' >>> e = 0xc4be3d53ec3089e71e4de8ceab7cce889bc393cd85b972bc >>> r = d * s + e * t >>> r (39786866609245082371772779541859439402855864496422607838, 547967566579883709478937502153554894699060378424501614148) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mo d 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x19f64eed8fa9b72b7dfea82c17c9bfa60ecb9e1778b5bdeL' >>> hex(r.y) '0x16590c5fcd8655fa4ced33fb800e2a7e3c61f35d83503644L' ``` ### working on custom curves If needed, you can also work on your own curves. Here we take a a prime field 97, with a generator point (1, 2), an order 5 and a cofactor of 1: ```python >>> import tinyec.ec as ec >>> field = ec.SubGroup(97, (1, 2), 5, 1) >>> curve = ec.Curve(2, 3, field) tinyec/ec.py:115: UserWarning: Point (1, 2) is not on curve "undefined" => y^2 = x^3 + 2x + 3 (mod 97) warnings.warn("Point (%d, %d) is not on curve %s" % (self.x, self.y, self.curve)) >>> # Warning is generated because the generator point does not belong to the curve >>> p1 = ec.Point(curve, -5, 3) >>> p1.on_curve False >>> p2 = ec.Point(curve, 22, 5) >>> p2.on_curve True >>> print(p1 + p2) (18, 42) off "undefined" => y^2 = x^3 + 2x + 3 (mod 97) ``` %package help Summary: Development documents and examples for tinyec Provides: python3-tinyec-doc %description help # tinyec A tiny library to perform arithmetic operations on elliptic curves in pure python. No dependencies. **This is not a library suitable for production.** It is useful for security professionals to understand the inner workings of EC, and be able to play with pre-defined curves. ## installation `pip install tinyec` ## usage There are 2 main classes: * Curve(), which describes an elliptic curve in a finite field * Point(), which describes a point belonging to an EC **Warning** Calculation on points outside the curve are allowed. They will only raise a warning. ### working on existing curves Example use on the NIST routine samples => https://www.nsa.gov/ia/_files/nist-routines.pdf: ```python >>> import tinyec.ec as ec >>> import tinyec.registry as reg >>> c = reg.get_curve("secp192r1") >>> s = ec.Point(c, 0xd458e7d127ae671b0c330266d246769353a012073e97acf8, 0x325930500d851f336bddc050cf7fb11b5673a1645086df3b) >>> t = ec.Point(c, 0xf22c4395213e9ebe67ddecdd87fdbd01be16fb059b9753a4, 0x264424096af2b3597796db48f8dfb41fa9cecc97691a9c79) >>> r = s + t >>> r (1787070900316344022479363585363935252075532448940096815760, 1583034776780933252095415958625802984888372377603917916747) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x48e1e4096b9b8e5ca9d0f1f077b8abf58e843894de4d0290L' >>> hex(r.y) '0x408fa77c797cd7dbfb16aa48a3648d3d63c94117d7b6aa4bL' >>> r = s - t >>> r (6193438478050209507979672067809269724375390027440522152494, 226636415264149817017346905052752138772359775362461041003) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 ( mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0xfc9683cc5abfb4fe0cc8cc3bc9f61eabc4688f11e9f64a2eL' >>> hex(r.y) '0x93e31d00fb78269732b1bd2a73c23cdd31745d0523d816bL' >>> r = 2 * s >>> r (1195895923065450997501505402941681398272052708885411031394, 340030206158745947396451508065335698335058477174385838543) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 ( mod 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x30c5bc6b8c7da25354b373dc14dd8a0eba42d25a3f6e6962L' >>> hex(r.y) '0xdde14bc4249a721c407aedbf011e2ddbbcb2968c9d889cfL' >>> d = 0xa78a236d60baec0c5dd41b33a542463a8255391af64c74ee >>> r = d * s >>> hex(r.x) '0x1faee4205a4f669d2d0a8f25e3bcec9a62a6952965bf6d31L' >>> hex(r.y) '0x5ff2cdfa508a2581892367087c696f179e7a4d7e8260fb06L' >>> e = 0xc4be3d53ec3089e71e4de8ceab7cce889bc393cd85b972bc >>> r = d * s + e * t >>> r (39786866609245082371772779541859439402855864496422607838, 547967566579883709478937502153554894699060378424501614148) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mo d 6277101735386680763835789423207666416083908700390324961279) >>> hex(r.x) '0x19f64eed8fa9b72b7dfea82c17c9bfa60ecb9e1778b5bdeL' >>> hex(r.y) '0x16590c5fcd8655fa4ced33fb800e2a7e3c61f35d83503644L' ``` ### working on custom curves If needed, you can also work on your own curves. Here we take a a prime field 97, with a generator point (1, 2), an order 5 and a cofactor of 1: ```python >>> import tinyec.ec as ec >>> field = ec.SubGroup(97, (1, 2), 5, 1) >>> curve = ec.Curve(2, 3, field) tinyec/ec.py:115: UserWarning: Point (1, 2) is not on curve "undefined" => y^2 = x^3 + 2x + 3 (mod 97) warnings.warn("Point (%d, %d) is not on curve %s" % (self.x, self.y, self.curve)) >>> # Warning is generated because the generator point does not belong to the curve >>> p1 = ec.Point(curve, -5, 3) >>> p1.on_curve False >>> p2 = ec.Point(curve, 22, 5) >>> p2.on_curve True >>> print(p1 + p2) (18, 42) off "undefined" => y^2 = x^3 + 2x + 3 (mod 97) ``` %prep %autosetup -n tinyec-0.4.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-tinyec -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Jun 09 2023 Python_Bot - 0.4.0-1 - Package Spec generated