%global _empty_manifest_terminate_build 0 Name: python-hgdl Version: 2.1.0 Release: 1 Summary: HGDL Optimization License: BSD3 URL: https://github.com//hgdl Source0: https://mirrors.aliyun.com/pypi/web/packages/8d/0d/05bd9bc1bae3bf29ebe59730b9eaf89665e4f81f7c6b850f1ff9985f8eae/hgdl-2.1.0.tar.gz BuildArch: noarch Requires: python3-wheel Requires: python3-versioneer Requires: python3-numpy Requires: python3-scipy Requires: python3-matplotlib Requires: python3-plotly Requires: python3-nbformat Requires: python3-dask Requires: python3-distributed Requires: python3-bokeh Requires: python3-paramiko Requires: python3-loguru Requires: python3-sphinx Requires: python3-sphinx-rtd-theme Requires: python3-myst-parser Requires: python3-myst-nb Requires: python3-sphinx-panels Requires: python3-autodocs Requires: python3-jupytext Requires: python3-pytest Requires: python3-codecov Requires: python3-pytest-cov %description # HGDL [![PyPI](https://img.shields.io/pypi/v/HGDL)](https://pypi.org/project/hgdl/) [![Documentation Status](https://readthedocs.org/projects/gpcam/badge/?version=latest)](https://gpcam.readthedocs.io/en/latest/?badge=latest) [![HGDL CI](https://github.com/lbl-camera/HGDL/actions/workflows/HGDL-CI.yml/badge.svg)](https://github.com/lbl-camera/fvGP/actions/workflows/HGDL-CI.yml) [![Codecov](https://img.shields.io/codecov/c/github/lbl-camera/HGDL)](https://app.codecov.io/gh/lbl-camera/HGDL) [![PyPI - License](https://img.shields.io/pypi/l/HGDL)](https://pypi.org/project/hgdl/) [](https://gpCAM.slack.com/) [![DOI](https://zenodo.org/badge/434769975.svg)](https://zenodo.org/badge/latestdoi/434769975) HGDL is an API for HPC distributed constrained function optimization. At the core, the algorithm uses local and global optimization and bump-function-based deflation to provide a growing list of unique optima of a differentiable function. This tackles the common problem of non-uniquness of optimization problems, especially in machine learning. ## Usage The following demonstrates a simple usage of the HGDL API. ```python import numpy as np from hgdl.hgdl import HGDL as hgdl from hgdl.support_functions import * import dask.distributed as distributed bounds = np.array([[-500,500],[-500,500]]) #dask_client = distributed.Client("10.0.0.184:8786") a = hgdl(schwefel, schwefel_gradient, bounds, global_optimizer = "genetic", local_optimizer = "dNewton", #put in local optimzers from scipy.optimize.minimize number_of_optima = 30000, num_epochs = 100) x0 = np.random.uniform(low = bounds[:, 0], high = bounds[:,1],size = (20,2)) a.optimize(x0 = x0) ###the thread is now released, but the work continues in the background a.get_latest() ##prints the current result whenever queried a.kill_client() ##stops the execution and returns the result ``` ## Credits Main Developers: Marcus Noack ([MarcusNoack@lbl.gov](mailto:MarcusNoack@lbl.gov)) and David Perryman. Several people from across the DOE national labs have given insights that led to the code in its current form. See [AUTHORS](AUTHORS.rst) for more details on that. HGDL is based on the [HGDN](https://www.sciencedirect.com/science/article/pii/S037704271730225X) algorithm by Noack and Funke. %package -n python3-hgdl Summary: HGDL Optimization Provides: python-hgdl BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-hgdl # HGDL [![PyPI](https://img.shields.io/pypi/v/HGDL)](https://pypi.org/project/hgdl/) [![Documentation Status](https://readthedocs.org/projects/gpcam/badge/?version=latest)](https://gpcam.readthedocs.io/en/latest/?badge=latest) [![HGDL CI](https://github.com/lbl-camera/HGDL/actions/workflows/HGDL-CI.yml/badge.svg)](https://github.com/lbl-camera/fvGP/actions/workflows/HGDL-CI.yml) [![Codecov](https://img.shields.io/codecov/c/github/lbl-camera/HGDL)](https://app.codecov.io/gh/lbl-camera/HGDL) [![PyPI - License](https://img.shields.io/pypi/l/HGDL)](https://pypi.org/project/hgdl/) [](https://gpCAM.slack.com/) [![DOI](https://zenodo.org/badge/434769975.svg)](https://zenodo.org/badge/latestdoi/434769975) HGDL is an API for HPC distributed constrained function optimization. At the core, the algorithm uses local and global optimization and bump-function-based deflation to provide a growing list of unique optima of a differentiable function. This tackles the common problem of non-uniquness of optimization problems, especially in machine learning. ## Usage The following demonstrates a simple usage of the HGDL API. ```python import numpy as np from hgdl.hgdl import HGDL as hgdl from hgdl.support_functions import * import dask.distributed as distributed bounds = np.array([[-500,500],[-500,500]]) #dask_client = distributed.Client("10.0.0.184:8786") a = hgdl(schwefel, schwefel_gradient, bounds, global_optimizer = "genetic", local_optimizer = "dNewton", #put in local optimzers from scipy.optimize.minimize number_of_optima = 30000, num_epochs = 100) x0 = np.random.uniform(low = bounds[:, 0], high = bounds[:,1],size = (20,2)) a.optimize(x0 = x0) ###the thread is now released, but the work continues in the background a.get_latest() ##prints the current result whenever queried a.kill_client() ##stops the execution and returns the result ``` ## Credits Main Developers: Marcus Noack ([MarcusNoack@lbl.gov](mailto:MarcusNoack@lbl.gov)) and David Perryman. Several people from across the DOE national labs have given insights that led to the code in its current form. See [AUTHORS](AUTHORS.rst) for more details on that. HGDL is based on the [HGDN](https://www.sciencedirect.com/science/article/pii/S037704271730225X) algorithm by Noack and Funke. %package help Summary: Development documents and examples for hgdl Provides: python3-hgdl-doc %description help # HGDL [![PyPI](https://img.shields.io/pypi/v/HGDL)](https://pypi.org/project/hgdl/) [![Documentation Status](https://readthedocs.org/projects/gpcam/badge/?version=latest)](https://gpcam.readthedocs.io/en/latest/?badge=latest) [![HGDL CI](https://github.com/lbl-camera/HGDL/actions/workflows/HGDL-CI.yml/badge.svg)](https://github.com/lbl-camera/fvGP/actions/workflows/HGDL-CI.yml) [![Codecov](https://img.shields.io/codecov/c/github/lbl-camera/HGDL)](https://app.codecov.io/gh/lbl-camera/HGDL) [![PyPI - License](https://img.shields.io/pypi/l/HGDL)](https://pypi.org/project/hgdl/) [](https://gpCAM.slack.com/) [![DOI](https://zenodo.org/badge/434769975.svg)](https://zenodo.org/badge/latestdoi/434769975) HGDL is an API for HPC distributed constrained function optimization. At the core, the algorithm uses local and global optimization and bump-function-based deflation to provide a growing list of unique optima of a differentiable function. This tackles the common problem of non-uniquness of optimization problems, especially in machine learning. ## Usage The following demonstrates a simple usage of the HGDL API. ```python import numpy as np from hgdl.hgdl import HGDL as hgdl from hgdl.support_functions import * import dask.distributed as distributed bounds = np.array([[-500,500],[-500,500]]) #dask_client = distributed.Client("10.0.0.184:8786") a = hgdl(schwefel, schwefel_gradient, bounds, global_optimizer = "genetic", local_optimizer = "dNewton", #put in local optimzers from scipy.optimize.minimize number_of_optima = 30000, num_epochs = 100) x0 = np.random.uniform(low = bounds[:, 0], high = bounds[:,1],size = (20,2)) a.optimize(x0 = x0) ###the thread is now released, but the work continues in the background a.get_latest() ##prints the current result whenever queried a.kill_client() ##stops the execution and returns the result ``` ## Credits Main Developers: Marcus Noack ([MarcusNoack@lbl.gov](mailto:MarcusNoack@lbl.gov)) and David Perryman. Several people from across the DOE national labs have given insights that led to the code in its current form. See [AUTHORS](AUTHORS.rst) for more details on that. HGDL is based on the [HGDN](https://www.sciencedirect.com/science/article/pii/S037704271730225X) algorithm by Noack and Funke. %prep %autosetup -n hgdl-2.1.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-hgdl -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Jun 09 2023 Python_Bot - 2.1.0-1 - Package Spec generated