%global _empty_manifest_terminate_build 0 Name: python-Kami Version: 0.4.3 Release: 1 Summary: Forecast sales with Entity Embedding LSTM License: MIT URL: https://github.com/MacarielAerial Source0: https://mirrors.aliyun.com/pypi/web/packages/9d/3b/be3a4187ada38578703bd07e6f2cd69f42598a4885a89d44d56f6d902804/Kami-0.4.3.tar.gz BuildArch: noarch %description # AM18_SPR20_LondonLAB ## Package Description The package contains one object **Kami** with four methods in the order of execution: 1. **Preprocess()** 2. **Analyse(n_sample)** 3. **Vis()** 4. **Forecast(store_list, product_list, start, end)** To initiate the object **Kami**, the user is required to supply at least these three arguments: 1. Path to the grouped product sales input data (***input_f_path***) 2. Path to an intermediary folder to store intermediary data (***cache_dir_path***) 3. Path to an output folder to store final predictions (***output_dir_path***) While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data. **Forecast** method is required to be supplied with four arguments including: 1. A list of stores whose sales are predicted (***store_list***) 2. A list of products whose sales are predicted (***product_list***) 3. The start date of the forecast (***start***) 4. The end date of the forecast (***end***) ## Typical Use Case *** from Kami import Kami obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv', output_dir_path = 'OUTPUT_FOLDER/', cache_dir_path = 'CACHE_FOLDER/') obj.Preprocess() obj.Analyse() obj.Vis() obj.Forecast(store_list = ['STORE_A', 'STORE_B'], product_list = ['PRODUCT_A', 'PRODUCT_B'], start = 'MM/DD/YYYY', end = 'MM/DD/YYYY') *** %package -n python3-Kami Summary: Forecast sales with Entity Embedding LSTM Provides: python-Kami BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-Kami # AM18_SPR20_LondonLAB ## Package Description The package contains one object **Kami** with four methods in the order of execution: 1. **Preprocess()** 2. **Analyse(n_sample)** 3. **Vis()** 4. **Forecast(store_list, product_list, start, end)** To initiate the object **Kami**, the user is required to supply at least these three arguments: 1. Path to the grouped product sales input data (***input_f_path***) 2. Path to an intermediary folder to store intermediary data (***cache_dir_path***) 3. Path to an output folder to store final predictions (***output_dir_path***) While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data. **Forecast** method is required to be supplied with four arguments including: 1. A list of stores whose sales are predicted (***store_list***) 2. A list of products whose sales are predicted (***product_list***) 3. The start date of the forecast (***start***) 4. The end date of the forecast (***end***) ## Typical Use Case *** from Kami import Kami obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv', output_dir_path = 'OUTPUT_FOLDER/', cache_dir_path = 'CACHE_FOLDER/') obj.Preprocess() obj.Analyse() obj.Vis() obj.Forecast(store_list = ['STORE_A', 'STORE_B'], product_list = ['PRODUCT_A', 'PRODUCT_B'], start = 'MM/DD/YYYY', end = 'MM/DD/YYYY') *** %package help Summary: Development documents and examples for Kami Provides: python3-Kami-doc %description help # AM18_SPR20_LondonLAB ## Package Description The package contains one object **Kami** with four methods in the order of execution: 1. **Preprocess()** 2. **Analyse(n_sample)** 3. **Vis()** 4. **Forecast(store_list, product_list, start, end)** To initiate the object **Kami**, the user is required to supply at least these three arguments: 1. Path to the grouped product sales input data (***input_f_path***) 2. Path to an intermediary folder to store intermediary data (***cache_dir_path***) 3. Path to an output folder to store final predictions (***output_dir_path***) While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data. **Forecast** method is required to be supplied with four arguments including: 1. A list of stores whose sales are predicted (***store_list***) 2. A list of products whose sales are predicted (***product_list***) 3. The start date of the forecast (***start***) 4. The end date of the forecast (***end***) ## Typical Use Case *** from Kami import Kami obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv', output_dir_path = 'OUTPUT_FOLDER/', cache_dir_path = 'CACHE_FOLDER/') obj.Preprocess() obj.Analyse() obj.Vis() obj.Forecast(store_list = ['STORE_A', 'STORE_B'], product_list = ['PRODUCT_A', 'PRODUCT_B'], start = 'MM/DD/YYYY', end = 'MM/DD/YYYY') *** %prep %autosetup -n Kami-0.4.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-Kami -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 0.4.3-1 - Package Spec generated