%global _empty_manifest_terminate_build 0 Name: python-GPUDashboard Version: 0.2.8 Release: 1 Summary: A NVIDIA GPU dashboard License: MIT License URL: https://github.com/Yuan-Yu/GPUDashboard Source0: https://mirrors.aliyun.com/pypi/web/packages/ce/b5/8492a7ca64d30e0378619e6cdd8f55dbc90f9b3e209c1c7b8b72a91cdf11/GPUDashboard-0.2.8.tar.gz BuildArch: noarch %description # GPUDashboard A simple dashboard for NVIDIA GPU ![flowchart](https://github.com/Yuan-Yu/GPUDashboard/blob/master/docs/flowchart.png?raw=true) ## Demo [Example](https://yuan-yu.github.io/GPUDashboard/) ## Requirement - Python 2.7 or 3.6 - NVIDIA-sim - A Firebase realtime database - Linux-like OS ## Setup 1. Create a [Firebase **Realtime** database](https://console.firebase.google.com/) 2. Set the rules to ```json { "rules": { ".read": true, ".write": true } } ``` 3. Go to Project overview click **Add Firebase to your web app** and copy following part. ```javascript var config = { apiKey: "XXXXXXXXXXXXXXXXXXXXXXXXXXXX", authDomain: "XXXXX.firebaseapp.com", databaseURL: "https://XXXXXX.firebaseio.com", projectId: "XXXXXXX", storageBucket: "XXXXXXX.appspot.com", messagingSenderId: "XXXXXXXXXXX" }; ``` 4. **On the servers** that have NVIDIA GPU(s) installed. ```bash pip install GPUDashboard GPUDashboard -n your_server_name -i 20 -u your_databaseURL > GPUDashboard.log # your_server_name is the name you want to give your server e.g. MyFirstServer # -i is the interval of GPU information updating # your_databaseURL is the databaseURL obtained froom Firebase as shown above ``` Now, the server GPU information is post to the firebase. ***If you have many servers, all of them can make use of the same database you created in Firebase. You only need to specify different names for "your_server_name" when you start the GPUDashboard in the command line on the different servers.** 5. Download [ViewStatus.html](https://raw.githubusercontent.com/Yuan-Yu/GPUDashboard/master/ViewStatus.html) and open with text editor then replace the "config". ```html
``` 6. Open the "**modified** ViewStatus.html" with browser. %package -n python3-GPUDashboard Summary: A NVIDIA GPU dashboard Provides: python-GPUDashboard BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-GPUDashboard # GPUDashboard A simple dashboard for NVIDIA GPU ![flowchart](https://github.com/Yuan-Yu/GPUDashboard/blob/master/docs/flowchart.png?raw=true) ## Demo [Example](https://yuan-yu.github.io/GPUDashboard/) ## Requirement - Python 2.7 or 3.6 - NVIDIA-sim - A Firebase realtime database - Linux-like OS ## Setup 1. Create a [Firebase **Realtime** database](https://console.firebase.google.com/) 2. Set the rules to ```json { "rules": { ".read": true, ".write": true } } ``` 3. Go to Project overview click **Add Firebase to your web app** and copy following part. ```javascript var config = { apiKey: "XXXXXXXXXXXXXXXXXXXXXXXXXXXX", authDomain: "XXXXX.firebaseapp.com", databaseURL: "https://XXXXXX.firebaseio.com", projectId: "XXXXXXX", storageBucket: "XXXXXXX.appspot.com", messagingSenderId: "XXXXXXXXXXX" }; ``` 4. **On the servers** that have NVIDIA GPU(s) installed. ```bash pip install GPUDashboard GPUDashboard -n your_server_name -i 20 -u your_databaseURL > GPUDashboard.log # your_server_name is the name you want to give your server e.g. MyFirstServer # -i is the interval of GPU information updating # your_databaseURL is the databaseURL obtained froom Firebase as shown above ``` Now, the server GPU information is post to the firebase. ***If you have many servers, all of them can make use of the same database you created in Firebase. You only need to specify different names for "your_server_name" when you start the GPUDashboard in the command line on the different servers.** 5. Download [ViewStatus.html](https://raw.githubusercontent.com/Yuan-Yu/GPUDashboard/master/ViewStatus.html) and open with text editor then replace the "config". ```html
``` 6. Open the "**modified** ViewStatus.html" with browser. %package help Summary: Development documents and examples for GPUDashboard Provides: python3-GPUDashboard-doc %description help # GPUDashboard A simple dashboard for NVIDIA GPU ![flowchart](https://github.com/Yuan-Yu/GPUDashboard/blob/master/docs/flowchart.png?raw=true) ## Demo [Example](https://yuan-yu.github.io/GPUDashboard/) ## Requirement - Python 2.7 or 3.6 - NVIDIA-sim - A Firebase realtime database - Linux-like OS ## Setup 1. Create a [Firebase **Realtime** database](https://console.firebase.google.com/) 2. Set the rules to ```json { "rules": { ".read": true, ".write": true } } ``` 3. Go to Project overview click **Add Firebase to your web app** and copy following part. ```javascript var config = { apiKey: "XXXXXXXXXXXXXXXXXXXXXXXXXXXX", authDomain: "XXXXX.firebaseapp.com", databaseURL: "https://XXXXXX.firebaseio.com", projectId: "XXXXXXX", storageBucket: "XXXXXXX.appspot.com", messagingSenderId: "XXXXXXXXXXX" }; ``` 4. **On the servers** that have NVIDIA GPU(s) installed. ```bash pip install GPUDashboard GPUDashboard -n your_server_name -i 20 -u your_databaseURL > GPUDashboard.log # your_server_name is the name you want to give your server e.g. MyFirstServer # -i is the interval of GPU information updating # your_databaseURL is the databaseURL obtained froom Firebase as shown above ``` Now, the server GPU information is post to the firebase. ***If you have many servers, all of them can make use of the same database you created in Firebase. You only need to specify different names for "your_server_name" when you start the GPUDashboard in the command line on the different servers.** 5. Download [ViewStatus.html](https://raw.githubusercontent.com/Yuan-Yu/GPUDashboard/master/ViewStatus.html) and open with text editor then replace the "config". ```html
``` 6. Open the "**modified** ViewStatus.html" with browser. %prep %autosetup -n GPUDashboard-0.2.8 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-GPUDashboard -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 0.2.8-1 - Package Spec generated