%global _empty_manifest_terminate_build 0 Name: python-aertb Version: 0.4.1 Release: 1 Summary: please add a summary manually as the author left a blank one License: MIT License URL: https://aertb.readthedocs.io Source0: https://mirrors.aliyun.com/pypi/web/packages/d4/99/323d032de4e9c2b6db3e9b05bcf74c5cc221c070ceb08c606561422c7980/aertb-0.4.1.tar.gz BuildArch: noarch %description # AER-toolbox This library intends to be a minimal tool for loading events from files with common event-camera file extensions into Python. See the project on [PyPI](https://pypi.org/project/aertb/) or do `pip3 install aertb` ### Usage ```py from aertb.core import FileLoader datLoader = FileLoader('dat') # 'bin', or 'aedat' datLoader.load_events('../example_data/dat/cars/obj_004414_td.dat') ``` Supported extensions: - `.dat`: N-Cars / Prophesee Cameras - `.bin`: N-MNIST, N-Caltech101 - `.aedat`: PokerDVS - `.mat`: DVS-Barrel It also make the process of loading and iterating HDF5 files easier. ```py from aertb.core import HDF5File dataset_train = HDF5File('TRAIN.h5') train_iterator = dataset_train.iterator(n_samples_group=10, rand=23) for sample in tqdm(train_iterator): # do something with sample.events, sample.label or sample.name ``` Example: making a GIF ```py from aertb.core import HDF5File, make_gif file = HDF5File('../DVS_Barrel.hdf5') sample = file.load_events(group='moving', name='11') make_gif(sample, filename='sample_moving.gif', camera_size=(128, 128), n_frames=480, gtype='std') ``` The library also includes a command line interface for converting files from a given extension to hdf5, as well as gif making capabilities for easy visualisation of the files. ### Opening the CLI 1. If the install with pip worked perfectly, you can now type `aertb` in a terminal window and the CLI will open. 2. If you are installing it from Github: download you should download the project from github and follow the following instructions: - a) `git clone ...` - b) Create a virual environment, if venv is not installed run `pip install virtualenv`, then `python3 -m venv aertb_env` - c) Run `source aertb_env/bin/activate` - d) Run the following command: `pip install -r requirements.txt` - e) Open the cli with `python3 .` or with the `__main__.py` file ### Using the CLI 1. Once the CLI is open you get a a similar output on your terminal: ![Cli Animation](https://github.com/rfma23/aertb/raw/master/images/aertb_cli_shell.gif) 2. type `help` to see supported commands and `help ` to get more info of the command ### Examples: #### Creating an HDF5 out of a directory ``` tohdf5 -f 'example_data/dat' -e 'dat' -o 'mytest.h5' ``` The recommended directory shape is : |--Parent (given as parameter) |-- LabelClass1 |-- SampleName1 |-- SampleName2 |-- .... |-- LabelClass2 |-- SampleName1 |-- SampleName2 |-- .... |-- ... And we suggest that train and test are kept as separate folders so they translate to two different files #### Creating an HDF5 out of a single file ``` tohdf5 -f 'example_data/bin/one/03263.bin' -o 'mytest2.h5' ``` #### Creating a gif out of a given file ``` makegif -f 'example_data/prophesee_dat/test_23l_td.dat' -o 'myGif.gif' -nfr 240 -g 'std' ``` ![Gif Animation](https://github.com/rfma23/aertb/raw/master/images/myGif.gif) ### Exiting the CLI: 1. type `quit` 2. Exit virtual environment: `$ deactivate` %package -n python3-aertb Summary: please add a summary manually as the author left a blank one Provides: python-aertb BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-aertb # AER-toolbox This library intends to be a minimal tool for loading events from files with common event-camera file extensions into Python. See the project on [PyPI](https://pypi.org/project/aertb/) or do `pip3 install aertb` ### Usage ```py from aertb.core import FileLoader datLoader = FileLoader('dat') # 'bin', or 'aedat' datLoader.load_events('../example_data/dat/cars/obj_004414_td.dat') ``` Supported extensions: - `.dat`: N-Cars / Prophesee Cameras - `.bin`: N-MNIST, N-Caltech101 - `.aedat`: PokerDVS - `.mat`: DVS-Barrel It also make the process of loading and iterating HDF5 files easier. ```py from aertb.core import HDF5File dataset_train = HDF5File('TRAIN.h5') train_iterator = dataset_train.iterator(n_samples_group=10, rand=23) for sample in tqdm(train_iterator): # do something with sample.events, sample.label or sample.name ``` Example: making a GIF ```py from aertb.core import HDF5File, make_gif file = HDF5File('../DVS_Barrel.hdf5') sample = file.load_events(group='moving', name='11') make_gif(sample, filename='sample_moving.gif', camera_size=(128, 128), n_frames=480, gtype='std') ``` The library also includes a command line interface for converting files from a given extension to hdf5, as well as gif making capabilities for easy visualisation of the files. ### Opening the CLI 1. If the install with pip worked perfectly, you can now type `aertb` in a terminal window and the CLI will open. 2. If you are installing it from Github: download you should download the project from github and follow the following instructions: - a) `git clone ...` - b) Create a virual environment, if venv is not installed run `pip install virtualenv`, then `python3 -m venv aertb_env` - c) Run `source aertb_env/bin/activate` - d) Run the following command: `pip install -r requirements.txt` - e) Open the cli with `python3 .` or with the `__main__.py` file ### Using the CLI 1. Once the CLI is open you get a a similar output on your terminal: ![Cli Animation](https://github.com/rfma23/aertb/raw/master/images/aertb_cli_shell.gif) 2. type `help` to see supported commands and `help ` to get more info of the command ### Examples: #### Creating an HDF5 out of a directory ``` tohdf5 -f 'example_data/dat' -e 'dat' -o 'mytest.h5' ``` The recommended directory shape is : |--Parent (given as parameter) |-- LabelClass1 |-- SampleName1 |-- SampleName2 |-- .... |-- LabelClass2 |-- SampleName1 |-- SampleName2 |-- .... |-- ... And we suggest that train and test are kept as separate folders so they translate to two different files #### Creating an HDF5 out of a single file ``` tohdf5 -f 'example_data/bin/one/03263.bin' -o 'mytest2.h5' ``` #### Creating a gif out of a given file ``` makegif -f 'example_data/prophesee_dat/test_23l_td.dat' -o 'myGif.gif' -nfr 240 -g 'std' ``` ![Gif Animation](https://github.com/rfma23/aertb/raw/master/images/myGif.gif) ### Exiting the CLI: 1. type `quit` 2. Exit virtual environment: `$ deactivate` %package help Summary: Development documents and examples for aertb Provides: python3-aertb-doc %description help # AER-toolbox This library intends to be a minimal tool for loading events from files with common event-camera file extensions into Python. See the project on [PyPI](https://pypi.org/project/aertb/) or do `pip3 install aertb` ### Usage ```py from aertb.core import FileLoader datLoader = FileLoader('dat') # 'bin', or 'aedat' datLoader.load_events('../example_data/dat/cars/obj_004414_td.dat') ``` Supported extensions: - `.dat`: N-Cars / Prophesee Cameras - `.bin`: N-MNIST, N-Caltech101 - `.aedat`: PokerDVS - `.mat`: DVS-Barrel It also make the process of loading and iterating HDF5 files easier. ```py from aertb.core import HDF5File dataset_train = HDF5File('TRAIN.h5') train_iterator = dataset_train.iterator(n_samples_group=10, rand=23) for sample in tqdm(train_iterator): # do something with sample.events, sample.label or sample.name ``` Example: making a GIF ```py from aertb.core import HDF5File, make_gif file = HDF5File('../DVS_Barrel.hdf5') sample = file.load_events(group='moving', name='11') make_gif(sample, filename='sample_moving.gif', camera_size=(128, 128), n_frames=480, gtype='std') ``` The library also includes a command line interface for converting files from a given extension to hdf5, as well as gif making capabilities for easy visualisation of the files. ### Opening the CLI 1. If the install with pip worked perfectly, you can now type `aertb` in a terminal window and the CLI will open. 2. If you are installing it from Github: download you should download the project from github and follow the following instructions: - a) `git clone ...` - b) Create a virual environment, if venv is not installed run `pip install virtualenv`, then `python3 -m venv aertb_env` - c) Run `source aertb_env/bin/activate` - d) Run the following command: `pip install -r requirements.txt` - e) Open the cli with `python3 .` or with the `__main__.py` file ### Using the CLI 1. Once the CLI is open you get a a similar output on your terminal: ![Cli Animation](https://github.com/rfma23/aertb/raw/master/images/aertb_cli_shell.gif) 2. type `help` to see supported commands and `help ` to get more info of the command ### Examples: #### Creating an HDF5 out of a directory ``` tohdf5 -f 'example_data/dat' -e 'dat' -o 'mytest.h5' ``` The recommended directory shape is : |--Parent (given as parameter) |-- LabelClass1 |-- SampleName1 |-- SampleName2 |-- .... |-- LabelClass2 |-- SampleName1 |-- SampleName2 |-- .... |-- ... And we suggest that train and test are kept as separate folders so they translate to two different files #### Creating an HDF5 out of a single file ``` tohdf5 -f 'example_data/bin/one/03263.bin' -o 'mytest2.h5' ``` #### Creating a gif out of a given file ``` makegif -f 'example_data/prophesee_dat/test_23l_td.dat' -o 'myGif.gif' -nfr 240 -g 'std' ``` ![Gif Animation](https://github.com/rfma23/aertb/raw/master/images/myGif.gif) ### Exiting the CLI: 1. type `quit` 2. Exit virtual environment: `$ deactivate` %prep %autosetup -n aertb-0.4.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-aertb -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 0.4.1-1 - Package Spec generated