%global _empty_manifest_terminate_build 0 Name: python-spark-nlp Version: 4.3.2 Release: 1 Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. License: Apache Software License URL: https://github.com/JohnSnowLabs/spark-nlp Source0: https://mirrors.nju.edu.cn/pypi/web/packages/40/a7/6d450edede7a7f54b3a5cd78fe3d521bad33ada0f69de0b542c1ab13f3bd/spark-nlp-4.3.2.tar.gz BuildArch: noarch %description # Spark NLP: State-of-the-Art Natural Language Processing

Spark NLP is a state-of-the-art Natural Language Processing library built on top of Apache Spark. It provides **simple **, **performant** & **accurate** NLP annotations for machine learning pipelines that **scale** easily in a distributed environment. Spark NLP comes with **11000+** pretrained **pipelines** and **models** in more than **200+** languages. It also offers tasks such as **Tokenization**, **Word Segmentation**, **Part-of-Speech Tagging**, Word and Sentence **Embeddings**, **Named Entity Recognition**, **Dependency Parsing**, **Spell Checking**, **Text Classification**, **Sentiment Analysis**, **Token Classification**, **Machine Translation** (+180 languages), **Summarization**, **Question Answering**, **Table Question Answering**, **Text Generation**, **Image Classification**, **Automatic Speech Recognition **, and many more [NLP tasks](#features). **Spark NLP** is the only open-source NLP library in **production** that offers state-of-the-art transformers such as **BERT**, **CamemBERT**, **ALBERT**, **ELECTRA**, **XLNet**, **DistilBERT**, **RoBERTa**, **DeBERTa**, **XLM-RoBERTa**, **Longformer**, **ELMO**, **Universal Sentence Encoder**, **Google T5**, **MarianMT**, **GPT2**, and **Vision Transformers (ViT)** not only to **Python** and **R**, but also to **JVM** ecosystem (**Java**, **Scala**, and **Kotlin**) at **scale** by extending **Apache Spark** natively. ## Project's website Take a look at our official Spark NLP page: [http://nlp.johnsnowlabs.com/](http://nlp.johnsnowlabs.com/) for user documentation and examples ## Community support - [Slack](https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q) For live discussion with the Spark NLP community and the team - [GitHub](https://github.com/JohnSnowLabs/spark-nlp) Bug reports, feature requests, and contributions - [Discussions](https://github.com/JohnSnowLabs/spark-nlp/discussions) Engage with other community members, share ideas, and show off how you use Spark NLP! - [Medium](https://medium.com/spark-nlp) Spark NLP articles - [YouTube](https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos) Spark NLP video tutorials ## Table of contents - [Features](#features) - [Requirements](#requirements) - [Quick Start](#quick-start) - [Apache Spark Support](#apache-spark-support) - [Scala & Python Support](#scala-and-python-support) - [Databricks Support](#databricks-support) - [EMR Support](#emr-support) - [Using Spark NLP](#usage) - [Packages Cheatsheet](#packages-cheatsheet) - [Spark Packages](#spark-packages) - [Scala](#scala) - [Maven](#maven) - [SBT](#sbt) - [Python](#python) - [Pip/Conda](#pipconda) - [Compiled JARs](#compiled-jars) - [Apache Zeppelin](#apache-zeppelin) - [Jupyter Notebook](#jupyter-notebook-python) - [Google Colab Notebook](#google-colab-notebook) - [Kaggle Kernel](#kaggle-kernel) - [Databricks Cluster](#databricks-cluster) - [EMR Cluster](#emr-cluster) - [GCP Dataproc](#gcp-dataproc) - [Spark NLP Configuration](#spark-nlp-configuration) - [Pipelines & Models](#pipelines-and-models) - [Pipelines](#pipelines) - [Models](#models) - [Offline](#offline) - [Examples](#examples) - [FAQ](#faq) - [Citation](#citation) - [Contributing](#contributing) ## Features - Tokenization - Trainable Word Segmentation - Stop Words Removal - Token Normalizer - Document Normalizer - Stemmer - Lemmatizer - NGrams - Regex Matching - Text Matching - Chunking - Date Matcher - Sentence Detector - Deep Sentence Detector (Deep learning) - Dependency parsing (Labeled/unlabeled) - SpanBertCorefModel (Coreference Resolution) - Part-of-speech tagging - Sentiment Detection (ML models) - Spell Checker (ML and DL models) - Word Embeddings (GloVe and Word2Vec) - Doc2Vec (based on Word2Vec) - BERT Embeddings (TF Hub & HuggingFace models) - DistilBERT Embeddings (HuggingFace models) - CamemBERT Embeddings (HuggingFace models) - RoBERTa Embeddings (HuggingFace models) - DeBERTa Embeddings (HuggingFace v2 & v3 models) - XLM-RoBERTa Embeddings (HuggingFace models) - Longformer Embeddings (HuggingFace models) - ALBERT Embeddings (TF Hub & HuggingFace models) - XLNet Embeddings - ELMO Embeddings (TF Hub models) - Universal Sentence Encoder (TF Hub models) - BERT Sentence Embeddings (TF Hub & HuggingFace models) - RoBerta Sentence Embeddings (HuggingFace models) - XLM-RoBerta Sentence Embeddings (HuggingFace models) - Sentence Embeddings - Chunk Embeddings - Unsupervised keywords extraction - Language Detection & Identification (up to 375 languages) - Multi-class Sentiment analysis (Deep learning) - Multi-label Sentiment analysis (Deep learning) - Multi-class Text Classification (Deep learning) - BERT for Token & Sequence Classification - DistilBERT for Token & Sequence Classification - CamemBERT for Token & Sequence Classification - ALBERT for Token & Sequence Classification - RoBERTa for Token & Sequence Classification - DeBERTa for Token & Sequence Classification - XLM-RoBERTa for Token & Sequence Classification - XLNet for Token & Sequence Classification - Longformer for Token & Sequence Classification - BERT for Token & Sequence Classification - BERT for Question Answering - CamemBERT for Question Answering - DistilBERT for Question Answering - ALBERT for Question Answering - RoBERTa for Question Answering - DeBERTa for Question Answering - XLM-RoBERTa for Question Answering - Longformer for Question Answering - Table Question Answering (TAPAS) - Zero-Shot NER Model - Neural Machine Translation (MarianMT) - Text-To-Text Transfer Transformer (Google T5) - Generative Pre-trained Transformer 2 (OpenAI GPT2) - Vision Transformer (ViT) - Swin Image Classification - Automatic Speech Recognition (Wav2Vec2) - Automatic Speech Recognition (HuBERT) - Named entity recognition (Deep learning) - Easy TensorFlow integration - GPU Support - Full integration with Spark ML functions - +9400 pre-trained models in +200 languages! - +3200 pre-trained pipelines in +200 languages! - Multi-lingual NER models: Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, German, Hebrew, Italian, Japanese, Korean, Norwegian, Persian, Polish, Portuguese, Russian, Spanish, Swedish, Urdu, and more. ## Requirements To use Spark NLP you need the following requirements: - Java 8 and 11 - Apache Spark 3.3.x, 3.2.x, 3.1.x, 3.0.x **GPU (optional):** Spark NLP 4.3.2 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support: - NVIDIA® GPU drivers version 450.80.02 or higher - CUDA® Toolkit 11.2 - cuDNN SDK 8.1.0 ## Quick Start This is a quick example of how to use Spark NLP pre-trained pipeline in Python and PySpark: ```sh $ java -version # should be Java 8 or 11 (Oracle or OpenJDK) $ conda create -n sparknlp python=3.7 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x $ pip install spark-nlp==4.3.2 pyspark==3.3.1 ``` In Python console or Jupyter `Python3` kernel: ```python # Import Spark NLP from sparknlp.base import * from sparknlp.annotator import * from sparknlp.pretrained import PretrainedPipeline import sparknlp # Start SparkSession with Spark NLP # start() functions has 3 parameters: gpu, apple_silicon, and memory # sparknlp.start(gpu=True) will start the session with GPU support # sparknlp.start(apple_silicon=True) will start the session with macOS M1 & M2 support # sparknlp.start(memory="16G") to change the default driver memory in SparkSession spark = sparknlp.start() # Download a pre-trained pipeline pipeline = PretrainedPipeline('explain_document_dl', lang='en') # Your testing dataset text = """ The Mona Lisa is a 16th century oil painting created by Leonardo. It's held at the Louvre in Paris. """ # Annotate your testing dataset result = pipeline.annotate(text) # What's in the pipeline list(result.keys()) Output: ['entities', 'stem', 'checked', 'lemma', 'document', 'pos', 'token', 'ner', 'embeddings', 'sentence'] # Check the results result['entities'] Output: ['Mona Lisa', 'Leonardo', 'Louvre', 'Paris'] ``` For more examples, you can visit our dedicated [examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) to showcase all Spark NLP use cases! ## Apache Spark Support Spark NLP *4.3.2* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: | Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | 4.3.x | NO | NO | YES | YES | YES | YES | | 4.2.x | NO | NO | YES | YES | YES | YES | | 4.1.x | NO | NO | YES | YES | YES | YES | | 4.0.x | NO | NO | YES | YES | YES | YES | | 3.4.x | YES | YES | YES | YES | Partially | N/A | | 3.3.x | YES | YES | YES | YES | NO | NO | | 3.2.x | YES | YES | YES | YES | NO | NO | | 3.1.x | YES | YES | YES | YES | NO | NO | | 3.0.x | YES | YES | YES | YES | NO | NO | | 2.7.x | YES | YES | NO | NO | NO | NO | NOTE: Starting 4.0.0 release, the default `spark-nlp` and `spark-nlp-gpu` packages are based on Scala 2.12.15 and Apache Spark 3.2 by default. Find out more about `Spark NLP` versions from our [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases). ## Scala and Python Support | Spark NLP | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Scala 2.11 | Scala 2.12 | |-----------|------------|------------|------------|------------|------------|------------| | 4.3.x | YES | YES | YES | YES | NO | YES | | 4.2.x | YES | YES | YES | YES | NO | YES | | 4.1.x | YES | YES | YES | YES | NO | YES | | 4.0.x | YES | YES | YES | YES | NO | YES | | 3.4.x | YES | YES | YES | YES | YES | YES | | 3.3.x | YES | YES | YES | NO | YES | YES | | 3.2.x | YES | YES | YES | NO | YES | YES | | 3.1.x | YES | YES | YES | NO | YES | YES | | 3.0.x | YES | YES | YES | NO | YES | YES | | 2.7.x | YES | YES | NO | NO | YES | NO | ## Databricks Support Spark NLP 4.3.2 has been tested and is compatible with the following runtimes: **CPU:** - 7.3 - 7.3 ML - 9.1 - 9.1 ML - 10.1 - 10.1 ML - 10.2 - 10.2 ML - 10.3 - 10.3 ML - 10.4 - 10.4 ML - 10.5 - 10.5 ML - 11.0 - 11.0 ML - 11.1 - 11.1 ML - 11.2 - 11.2 ML - 11.3 - 11.3 ML **GPU:** - 9.1 ML & GPU - 10.1 ML & GPU - 10.2 ML & GPU - 10.3 ML & GPU - 10.4 ML & GPU - 10.5 ML & GPU - 11.0 ML & GPU - 11.1 ML & GPU - 11.2 ML & GPU - 11.3 ML & GPU NOTE: Spark NLP 4.x is based on TensorFlow 2.7.x which is compatible with CUDA11 and cuDNN 8.0.2. The only Databricks runtimes supporting CUDA 11 are 9.x and above as listed under GPU. ## EMR Support Spark NLP 4.3.2 has been tested and is compatible with the following EMR releases: - emr-6.2.0 - emr-6.3.0 - emr-6.3.1 - emr-6.4.0 - emr-6.5.0 - emr-6.6.0 - emr-6.7.0 Full list of [Amazon EMR 6.x releases](https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-6x.html) NOTE: The EMR 6.1.0 and 6.1.1 are not supported. ## Usage ## Packages Cheatsheet This is a cheatsheet for corresponding Spark NLP Maven package to Apache Spark / PySpark major version: | Apache Spark | Spark NLP on CPU | Spark NLP on GPU | Spark NLP on AArch64 (linux) | Spark NLP on Apple Silicon | |-----------------|--------------------|----------------------------|--------------------------------|--------------------------------------| | 3.0/3.1/3.2/3.3 | `spark-nlp` | `spark-nlp-gpu` | `spark-nlp-aarch64` | `spark-nlp-silicon` | | Start Function | `sparknlp.start()` | `sparknlp.start(gpu=True)` | `sparknlp.start(aarch64=True)` | `sparknlp.start(apple_silicon=True)` | NOTE: `M1/M2` and `AArch64` are under `experimental` support. Access and support to these architectures are limited by the community and we had to build most of the dependencies by ourselves to make them compatible. We support these two architectures, however, they may not work in some environments. ## Spark Packages ### Command line (requires internet connection) Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x, Apache Spark 3.2.x, and Apache Spark 3.3.x. #### Apache Spark 3.x (3.0.x, 3.1.x, 3.2.x, and 3.3.x - Scala 2.12) ```sh # CPU spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` The `spark-nlp` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp). ```sh # GPU spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 ``` The `spark-nlp-gpu` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu). ```sh # AArch64 spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 ``` The `spark-nlp-aarch64` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64). ```sh # M1/M2 (Apple Silicon) spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 ``` The `spark-nlp-silicon` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon). **NOTE**: In case you are using large pretrained models like UniversalSentenceEncoder, you need to have the following set in your SparkSession: ```sh spark-shell \ --driver-memory 16g \ --conf spark.kryoserializer.buffer.max=2000M \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` ## Scala Spark NLP supports Scala 2.12.15 if you are using Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x versions. Our packages are deployed to Maven central. To add any of our packages as a dependency in your application you can follow these coordinates: ### Maven **spark-nlp** on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: ```xml com.johnsnowlabs.nlp spark-nlp_2.12 4.3.2 ``` **spark-nlp-gpu:** ```xml com.johnsnowlabs.nlp spark-nlp-gpu_2.12 4.3.2 ``` **spark-nlp-aarch64:** ```xml com.johnsnowlabs.nlp spark-nlp-aarch64_2.12 4.3.2 ``` **spark-nlp-silicon:** ```xml com.johnsnowlabs.nlp spark-nlp-silicon_2.12 4.3.2 ``` ### SBT **spark-nlp** on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "4.3.2" ``` **spark-nlp-gpu:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "4.3.2" ``` **spark-nlp-aarch64:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "4.3.2" ``` **spark-nlp-silicon:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "4.3.2" ``` Maven Central: [https://mvnrepository.com/artifact/com.johnsnowlabs.nlp](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp) If you are interested, there is a simple SBT project for Spark NLP to guide you on how to use it in your projects [Spark NLP SBT Starter](https://github.com/maziyarpanahi/spark-nlp-starter) ## Python Spark NLP supports Python 3.6.x and above depending on your major PySpark version. ### Python without explicit Pyspark installation ### Pip/Conda If you installed pyspark through pip/conda, you can install `spark-nlp` through the same channel. Pip: ```bash pip install spark-nlp==4.3.2 ``` Conda: ```bash conda install -c johnsnowlabs spark-nlp ``` PyPI [spark-nlp package](https://pypi.org/project/spark-nlp/) / Anaconda [spark-nlp package](https://anaconda.org/JohnSnowLabs/spark-nlp) Then you'll have to create a SparkSession either from Spark NLP: ```python import sparknlp spark = sparknlp.start() ``` or manually: ```python spark = SparkSession.builder .appName("Spark NLP") .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2") .getOrCreate() ``` If using local jars, you can use `spark.jars` instead for comma-delimited jar files. For cluster setups, of course, you'll have to put the jars in a reachable location for all driver and executor nodes. **Quick example:** ```python import sparknlp from sparknlp.pretrained import PretrainedPipeline # create or get Spark Session spark = sparknlp.start() sparknlp.version() spark.version # download, load and annotate a text by pre-trained pipeline pipeline = PretrainedPipeline('recognize_entities_dl', 'en') result = pipeline.annotate('The Mona Lisa is a 16th century oil painting created by Leonardo') ``` ## Compiled JARs ### Build from source #### spark-nlp - FAT-JAR for CPU on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt assembly ``` - FAT-JAR for GPU on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt -Dis_gpu=true assembly ``` - FAT-JAR for M! on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt -Dis_silicon=true assembly ``` ### Using the jar manually If for some reason you need to use the JAR, you can either download the Fat JARs provided here or download it from [Maven Central](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp). To add JARs to spark programs use the `--jars` option: ```sh spark-shell --jars spark-nlp.jar ``` The preferred way to use the library when running spark programs is using the `--packages` option as specified in the `spark-packages` section. ## Apache Zeppelin Use either one of the following options - Add the following Maven Coordinates to the interpreter's library list ```bash com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` - Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is available to driver path ### Python in Zeppelin Apart from the previous step, install the python module through pip ```bash pip install spark-nlp==4.3.2 ``` Or you can install `spark-nlp` from inside Zeppelin by using Conda: ```bash python.conda install -c johnsnowlabs spark-nlp ``` Configure Zeppelin properly, use cells with %spark.pyspark or any interpreter name you chose. Finally, in Zeppelin interpreter settings, make sure you set properly zeppelin.python to the python you want to use and install the pip library with (e.g. `python3`). An alternative option would be to set `SPARK_SUBMIT_OPTIONS` (zeppelin-env.sh) and make sure `--packages` is there as shown earlier since it includes both scala and python side installation. ## Jupyter Notebook (Python) **Recommended:** The easiest way to get this done on Linux and macOS is to simply install `spark-nlp` and `pyspark` PyPI packages and launch the Jupyter from the same Python environment: ```sh $ conda create -n sparknlp python=3.8 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x $ pip install spark-nlp==4.3.2 pyspark==3.3.1 jupyter $ jupyter notebook ``` Then you can use `python3` kernel to run your code with creating SparkSession via `spark = sparknlp.start()`. **Optional:** If you are in different operating systems and require to make Jupyter Notebook run by using pyspark, you can follow these steps: ```bash export SPARK_HOME=/path/to/your/spark/folder export PYSPARK_PYTHON=python3 export PYSPARK_DRIVER_PYTHON=jupyter export PYSPARK_DRIVER_PYTHON_OPTS=notebook pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp` If not using pyspark at all, you'll have to run the instructions pointed [here](#python-without-explicit-Pyspark-installation) ## Google Colab Notebook Google Colab is perhaps the easiest way to get started with spark-nlp. It requires no installation or setup other than having a Google account. Run the following code in Google Colab notebook and start using spark-nlp right away. ```sh # This is only to setup PySpark and Spark NLP on Colab !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash ``` This script comes with the two options to define `pyspark` and `spark-nlp` versions via options: ```sh # -p is for pyspark # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage # by default they are set to the latest !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.3.2 ``` [Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) is a live demo on Google Colab that performs named entity recognitions and sentiment analysis by using Spark NLP pretrained pipelines. ## Kaggle Kernel Run the following code in Kaggle Kernel and start using spark-nlp right away. ```sh # Let's setup Kaggle for Spark NLP and PySpark !wget https://setup.johnsnowlabs.com/kaggle.sh -O - | bash ``` This script comes with the two options to define `pyspark` and `spark-nlp` versions via options: ```sh # -p is for pyspark # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage # by default they are set to the latest !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.3.2 ``` [Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP pretrained pipeline. ## Databricks Cluster 1. Create a cluster if you don't have one already 2. On a new cluster or existing one you need to add the following to the `Advanced Options -> Spark` tab: ```bash spark.kryoserializer.buffer.max 2000M spark.serializer org.apache.spark.serializer.KryoSerializer ``` 3. In `Libraries` tab inside your cluster you need to follow these steps: 3.1. Install New -> PyPI -> `spark-nlp==4.3.2` -> Install 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2` -> Install 4. Now you can attach your notebook to the cluster and use Spark NLP! NOTE: Databricks' runtimes support different Apache Spark major releases. Please make sure you choose the correct Spark NLP Maven package name (Maven Coordinate) for your runtime from our [Packages Cheatsheet](https://github.com/JohnSnowLabs/spark-nlp#packages-cheatsheet) ## EMR Cluster To launch EMR clusters with Apache Spark/PySpark and Spark NLP correctly you need to have bootstrap and software configuration. A sample of your bootstrap script ```.sh #!/bin/bash set -x -e echo -e 'export PYSPARK_PYTHON=/usr/bin/python3 export HADOOP_CONF_DIR=/etc/hadoop/conf export SPARK_JARS_DIR=/usr/lib/spark/jars export SPARK_HOME=/usr/lib/spark' >> $HOME/.bashrc && source $HOME/.bashrc sudo python3 -m pip install awscli boto spark-nlp set +x exit 0 ``` A sample of your software configuration in JSON on S3 (must be public access): ```.json [{ "Classification": "spark-env", "Configurations": [{ "Classification": "export", "Properties": { "PYSPARK_PYTHON": "/usr/bin/python3" } }] }, { "Classification": "spark-defaults", "Properties": { "spark.yarn.stagingDir": "hdfs:///tmp", "spark.yarn.preserve.staging.files": "true", "spark.kryoserializer.buffer.max": "2000M", "spark.serializer": "org.apache.spark.serializer.KryoSerializer", "spark.driver.maxResultSize": "0", "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2" } }] ``` A sample of AWS CLI to launch EMR cluster: ```.sh aws emr create-cluster \ --name "Spark NLP 4.3.2" \ --release-label emr-6.2.0 \ --applications Name=Hadoop Name=Spark Name=Hive \ --instance-type m4.4xlarge \ --instance-count 3 \ --use-default-roles \ --log-uri "s3:///" \ --bootstrap-actions Path=s3:///emr-bootstrap.sh,Name=custome \ --configurations "https:///sparknlp-config.json" \ --ec2-attributes KeyName=,EmrManagedMasterSecurityGroup=,EmrManagedSlaveSecurityGroup= \ --profile ``` ## GCP Dataproc 1. Create a cluster if you don't have one already as follows. At gcloud shell: ```bash gcloud services enable dataproc.googleapis.com \ compute.googleapis.com \ storage-component.googleapis.com \ bigquery.googleapis.com \ bigquerystorage.googleapis.com ``` ```bash REGION= ``` ```bash BUCKET_NAME= gsutil mb -c standard -l ${REGION} gs://${BUCKET_NAME} ``` ```bash REGION= ZONE= CLUSTER_NAME= BUCKET_NAME= ``` You can set image-version, master-machine-type, worker-machine-type, master-boot-disk-size, worker-boot-disk-size, num-workers as your needs. If you use the previous image-version from 2.0, you should also add ANACONDA to optional-components. And, you should enable gateway. Don't forget to set the maven coordinates for the jar in properties. ```bash gcloud dataproc clusters create ${CLUSTER_NAME} \ --region=${REGION} \ --zone=${ZONE} \ --image-version=2.0 \ --master-machine-type=n1-standard-4 \ --worker-machine-type=n1-standard-2 \ --master-boot-disk-size=128GB \ --worker-boot-disk-size=128GB \ --num-workers=2 \ --bucket=${BUCKET_NAME} \ --optional-components=JUPYTER \ --enable-component-gateway \ --metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \ --initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \ --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` 2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI. 3. Now, you can attach your notebook to the cluster and use the Spark NLP! ## Spark NLP Configuration You can change the following Spark NLP configurations via Spark Configuration: | Property Name | Default | Meaning | |--------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | `spark.jsl.settings.pretrained.cache_folder` | `~/cache_pretrained` | The location to download and extract pretrained `Models` and `Pipelines`. By default, it will be in User's Home directory under `cache_pretrained` directory | | `spark.jsl.settings.storage.cluster_tmp_dir` | `hadoop.tmp.dir` | The location to use on a cluster for temporarily files such as unpacking indexes for WordEmbeddings. By default, this locations is the location of `hadoop.tmp.dir` set via Hadoop configuration for Apache Spark. NOTE: `S3` is not supported and it must be local, HDFS, or DBFS | | `spark.jsl.settings.annotator.log_folder` | `~/annotator_logs` | The location to save logs from annotators during training such as `NerDLApproach`, `ClassifierDLApproach`, `SentimentDLApproach`, `MultiClassifierDLApproach`, etc. By default, it will be in User's Home directory under `annotator_logs` directory | | `spark.jsl.settings.aws.credentials.access_key_id` | `None` | Your AWS access key to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.credentials.secret_access_key` | `None` | Your AWS secret access key to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.credentials.session_token` | `None` | Your AWS MFA session token to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.s3_bucket` | `None` | Your AWS S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.region` | `None` | Your AWS region to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | ### How to set Spark NLP Configuration **SparkSession:** You can use `.config()` during SparkSession creation to set Spark NLP configurations. ```python from pyspark.sql import SparkSession spark = SparkSession.builder .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") .config("spark.kryoserializer.buffer.max", "2000m") .config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained") .config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage") .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2") .getOrCreate() ``` **spark-shell:** ```sh spark-shell \ --driver-memory 16g \ --conf spark.driver.maxResultSize=0 \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` **pyspark:** ```sh pyspark \ --driver-memory 16g \ --conf spark.driver.maxResultSize=0 \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` **Databricks:** On a new cluster or existing one you need to add the following to the `Advanced Options -> Spark` tab: ```bash spark.kryoserializer.buffer.max 2000M spark.serializer org.apache.spark.serializer.KryoSerializer spark.jsl.settings.pretrained.cache_folder dbfs:/PATH_TO_CACHE spark.jsl.settings.storage.cluster_tmp_dir dbfs:/PATH_TO_STORAGE spark.jsl.settings.annotator.log_folder dbfs:/PATH_TO_LOGS ``` NOTE: If this is an existing cluster, after adding new configs or changing existing properties you need to restart it. ### S3 Integration In Spark NLP we can define S3 locations to: - Export log files of training models - Store tensorflow graphs used in `NerDLApproach` **Logging:** To configure S3 path for logging while training models. We need to set up AWS credentials as well as an S3 path ```bash spark.conf.set("spark.jsl.settings.annotator.log_folder", "s3://my/s3/path/logs") spark.conf.set("spark.jsl.settings.aws.credentials.access_key_id", "MY_KEY_ID") spark.conf.set("spark.jsl.settings.aws.credentials.secret_access_key", "MY_SECRET_ACCESS_KEY") spark.conf.set("spark.jsl.settings.aws.s3_bucket", "my.bucket") spark.conf.set("spark.jsl.settings.aws.region", "my-region") ``` Now you can check the log on your S3 path defined in *spark.jsl.settings.annotator.log_folder* property. Make sure to use the prefix *s3://*, otherwise it will use the default configuration. **Tensorflow Graphs:** To reference S3 location for downloading graphs. We need to set up AWS credentials ```bash spark.conf.set("spark.jsl.settings.aws.credentials.access_key_id", "MY_KEY_ID") spark.conf.set("spark.jsl.settings.aws.credentials.secret_access_key", "MY_SECRET_ACCESS_KEY") spark.conf.set("spark.jsl.settings.aws.region", "my-region") ``` **MFA Configuration:** In case your AWS account is configured with MFA. You will need first to get temporal credentials and add session token to the configuration as shown in the examples below For logging: ```bash spark.conf.set("spark.jsl.settings.aws.credentials.session_token", "MY_TOKEN") ``` An example of a bash script that gets temporal AWS credentials can be found [here](https://github.com/JohnSnowLabs/spark-nlp/blob/master/scripts/aws_tmp_credentials.sh) This script requires three arguments: ```bash ./aws_tmp_credentials.sh iam_user duration serial_number ``` ## Pipelines and Models ### Pipelines **Quick example:** ```scala import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline import com.johnsnowlabs.nlp.SparkNLP SparkNLP.version() val testData = spark.createDataFrame(Seq( (1, "Google has announced the release of a beta version of the popular TensorFlow machine learning library"), (2, "Donald John Trump (born June 14, 1946) is the 45th and current president of the United States") )).toDF("id", "text") val pipeline = PretrainedPipeline("explain_document_dl", lang = "en") val annotation = pipeline.transform(testData) annotation.show() /* import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline import com.johnsnowlabs.nlp.SparkNLP 2.5.0 testData: org.apache.spark.sql.DataFrame = [id: int, text: string] pipeline: com.johnsnowlabs.nlp.pretrained.PretrainedPipeline = PretrainedPipeline(explain_document_dl,en,public/models) annotation: org.apache.spark.sql.DataFrame = [id: int, text: string ... 10 more fields] +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ | id| text| document| token| sentence| checked| lemma| stem| pos| embeddings| ner| entities| +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ | 1|Google has announ...|[[document, 0, 10...|[[token, 0, 5, Go...|[[document, 0, 10...|[[token, 0, 5, Go...|[[token, 0, 5, Go...|[[token, 0, 5, go...|[[pos, 0, 5, NNP,...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 0, 5, Go...| | 2|The Paris metro w...|[[document, 0, 11...|[[token, 0, 2, Th...|[[document, 0, 11...|[[token, 0, 2, Th...|[[token, 0, 2, Th...|[[token, 0, 2, th...|[[pos, 0, 2, DT, ...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 4, 8, Pa...| +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ */ annotation.select("entities.result").show(false) /* +----------------------------------+ |result | +----------------------------------+ |[Google, TensorFlow] | |[Donald John Trump, United States]| +----------------------------------+ */ ``` #### Showing Available Pipelines There are functions in Spark NLP that will list all the available Pipelines of a particular language for you: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicPipelines(lang = "en") /* +--------------------------------------------+------+---------+ | Pipeline | lang | version | +--------------------------------------------+------+---------+ | dependency_parse | en | 2.0.2 | | analyze_sentiment_ml | en | 2.0.2 | | check_spelling | en | 2.1.0 | | match_datetime | en | 2.1.0 | ... | explain_document_ml | en | 3.1.3 | +--------------------------------------------+------+---------+ */ ``` Or if we want to check for a particular version: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicPipelines(lang = "en", version = "3.1.0") /* +---------------------------------------+------+---------+ | Pipeline | lang | version | +---------------------------------------+------+---------+ | dependency_parse | en | 2.0.2 | ... | clean_slang | en | 3.0.0 | | clean_pattern | en | 3.0.0 | | check_spelling | en | 3.0.0 | | dependency_parse | en | 3.0.0 | +---------------------------------------+------+---------+ */ ``` #### Please check out our Models Hub for the full list of [pre-trained pipelines](https://nlp.johnsnowlabs.com/models) with examples, demos, benchmarks, and more ### Models **Some selected languages: ** `Afrikaans, Arabic, Armenian, Basque, Bengali, Breton, Bulgarian, Catalan, Czech, Dutch, English, Esperanto, Finnish, French, Galician, German, Greek, Hausa, Hebrew, Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Latin, Latvian, Marathi, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Somali, Southern Sotho, Spanish, Swahili, Swedish, Tswana, Turkish, Ukrainian, Zulu` **Quick online example:** ```python # load NER model trained by deep learning approach and GloVe word embeddings ner_dl = NerDLModel.pretrained('ner_dl') # load NER model trained by deep learning approach and BERT word embeddings ner_bert = NerDLModel.pretrained('ner_dl_bert') ``` ```scala // load French POS tagger model trained by Universal Dependencies val french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang = "fr") // load Italian LemmatizerModel val italian_lemma = LemmatizerModel.pretrained("lemma_dxc", lang = "it") ```` **Quick offline example:** - Loading `PerceptronModel` annotator model inside Spark NLP Pipeline ```scala val french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/") .setInputCols("document", "token") .setOutputCol("pos") ``` #### Showing Available Models There are functions in Spark NLP that will list all the available Models of a particular Annotator and language for you: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicModels(annotator = "NerDLModel", lang = "en") /* +---------------------------------------------+------+---------+ | Model | lang | version | +---------------------------------------------+------+---------+ | onto_100 | en | 2.1.0 | | onto_300 | en | 2.1.0 | | ner_dl_bert | en | 2.2.0 | | onto_100 | en | 2.4.0 | | ner_conll_elmo | en | 3.2.2 | +---------------------------------------------+------+---------+ */ ``` Or if we want to check for a particular version: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicModels(annotator = "NerDLModel", lang = "en", version = "3.1.0") /* +----------------------------+------+---------+ | Model | lang | version | +----------------------------+------+---------+ | onto_100 | en | 2.1.0 | | ner_aspect_based_sentiment | en | 2.6.2 | | ner_weibo_glove_840B_300d | en | 2.6.2 | | nerdl_atis_840b_300d | en | 2.7.1 | | nerdl_snips_100d | en | 2.7.3 | +----------------------------+------+---------+ */ ``` And to see a list of available annotators, you can use: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showAvailableAnnotators() /* AlbertEmbeddings AlbertForTokenClassification AssertionDLModel ... XlmRoBertaSentenceEmbeddings XlnetEmbeddings */ ``` #### Please check out our Models Hub for the full list of [pre-trained models](https://nlp.johnsnowlabs.com/models) with examples, demo, benchmark, and more ## Offline Spark NLP library and all the pre-trained models/pipelines can be used entirely offline with no access to the Internet. If you are behind a proxy or a firewall with no access to the Maven repository (to download packages) or/and no access to S3 (to automatically download models and pipelines), you can simply follow the instructions to have Spark NLP without any limitations offline: - Instead of using the Maven package, you need to load our Fat JAR - Instead of using PretrainedPipeline for pretrained pipelines or the `.pretrained()` function to download pretrained models, you will need to manually download your pipeline/model from [Models Hub](https://nlp.johnsnowlabs.com/models), extract it, and load it. Example of `SparkSession` with Fat JAR to have Spark NLP offline: ```python spark = SparkSession.builder .appName("Spark NLP") .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") .config("spark.jars", "/tmp/spark-nlp-assembly-4.3.2.jar") .getOrCreate() ``` - You can download provided Fat JARs from each [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases), please pay attention to pick the one that suits your environment depending on the device (CPU/GPU) and Apache Spark version (3.0.x, 3.1.x, 3.2.x, and 3.3.x) - If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. ( i.e., `hdfs:///tmp/spark-nlp-assembly-4.3.2.jar`) Example of using pretrained Models and Pipelines in offline: ```python # instead of using pretrained() for online: # french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang="fr") # you download this model, extract it, and use .load french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/") .setInputCols("document", "token") .setOutputCol("pos") # example for pipelines # instead of using PretrainedPipeline # pipeline = PretrainedPipeline('explain_document_dl', lang='en') # you download this pipeline, extract it, and use PipelineModel PipelineModel.load("/tmp/explain_document_dl_en_2.0.2_2.4_1556530585689/") ``` - Since you are downloading and loading models/pipelines manually, this means Spark NLP is not downloading the most recent and compatible models/pipelines for you. Choosing the right model/pipeline is on you - If you are local, you can load the model/pipeline from your local FileSystem, however, if you are in a cluster setup you need to put the model/pipeline on a distributed FileSystem such as HDFS, DBFS, S3, etc. ( i.e., `hdfs:///tmp/explain_document_dl_en_2.0.2_2.4_1556530585689/`) ## Examples Need more **examples**? Check out our dedicated [Spark NLP Examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) repository to showcase all Spark NLP use cases! Also, don't forget to check [Spark NLP in Action](https://nlp.johnsnowlabs.com/demo) built by Streamlit. ### All examples: [spark-nlp/examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) ## FAQ [Check our Articles and Videos page here](https://nlp.johnsnowlabs.com/learn) ## Citation We have published a [paper](https://www.sciencedirect.com/science/article/pii/S2665963821000063) that you can cite for the Spark NLP library: ```bibtex @article{KOCAMAN2021100058, title = {Spark NLP: Natural language understanding at scale}, journal = {Software Impacts}, pages = {100058}, year = {2021}, issn = {2665-9638}, doi = {https://doi.org/10.1016/j.simpa.2021.100058}, url = {https://www.sciencedirect.com/science/article/pii/S2665963.2.300063}, author = {Veysel Kocaman and David Talby}, keywords = {Spark, Natural language processing, Deep learning, Tensorflow, Cluster}, abstract = {Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise.} } } ``` ## Contributing We appreciate any sort of contributions: - ideas - feedback - documentation - bug reports - NLP training and testing corpora - Development and testing Clone the repo and submit your pull-requests! Or directly create issues in this repo. ## John Snow Labs [http://johnsnowlabs.com](http://johnsnowlabs.com) %package -n python3-spark-nlp Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. Provides: python-spark-nlp BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-spark-nlp # Spark NLP: State-of-the-Art Natural Language Processing

Spark NLP is a state-of-the-art Natural Language Processing library built on top of Apache Spark. It provides **simple **, **performant** & **accurate** NLP annotations for machine learning pipelines that **scale** easily in a distributed environment. Spark NLP comes with **11000+** pretrained **pipelines** and **models** in more than **200+** languages. It also offers tasks such as **Tokenization**, **Word Segmentation**, **Part-of-Speech Tagging**, Word and Sentence **Embeddings**, **Named Entity Recognition**, **Dependency Parsing**, **Spell Checking**, **Text Classification**, **Sentiment Analysis**, **Token Classification**, **Machine Translation** (+180 languages), **Summarization**, **Question Answering**, **Table Question Answering**, **Text Generation**, **Image Classification**, **Automatic Speech Recognition **, and many more [NLP tasks](#features). **Spark NLP** is the only open-source NLP library in **production** that offers state-of-the-art transformers such as **BERT**, **CamemBERT**, **ALBERT**, **ELECTRA**, **XLNet**, **DistilBERT**, **RoBERTa**, **DeBERTa**, **XLM-RoBERTa**, **Longformer**, **ELMO**, **Universal Sentence Encoder**, **Google T5**, **MarianMT**, **GPT2**, and **Vision Transformers (ViT)** not only to **Python** and **R**, but also to **JVM** ecosystem (**Java**, **Scala**, and **Kotlin**) at **scale** by extending **Apache Spark** natively. ## Project's website Take a look at our official Spark NLP page: [http://nlp.johnsnowlabs.com/](http://nlp.johnsnowlabs.com/) for user documentation and examples ## Community support - [Slack](https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q) For live discussion with the Spark NLP community and the team - [GitHub](https://github.com/JohnSnowLabs/spark-nlp) Bug reports, feature requests, and contributions - [Discussions](https://github.com/JohnSnowLabs/spark-nlp/discussions) Engage with other community members, share ideas, and show off how you use Spark NLP! - [Medium](https://medium.com/spark-nlp) Spark NLP articles - [YouTube](https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos) Spark NLP video tutorials ## Table of contents - [Features](#features) - [Requirements](#requirements) - [Quick Start](#quick-start) - [Apache Spark Support](#apache-spark-support) - [Scala & Python Support](#scala-and-python-support) - [Databricks Support](#databricks-support) - [EMR Support](#emr-support) - [Using Spark NLP](#usage) - [Packages Cheatsheet](#packages-cheatsheet) - [Spark Packages](#spark-packages) - [Scala](#scala) - [Maven](#maven) - [SBT](#sbt) - [Python](#python) - [Pip/Conda](#pipconda) - [Compiled JARs](#compiled-jars) - [Apache Zeppelin](#apache-zeppelin) - [Jupyter Notebook](#jupyter-notebook-python) - [Google Colab Notebook](#google-colab-notebook) - [Kaggle Kernel](#kaggle-kernel) - [Databricks Cluster](#databricks-cluster) - [EMR Cluster](#emr-cluster) - [GCP Dataproc](#gcp-dataproc) - [Spark NLP Configuration](#spark-nlp-configuration) - [Pipelines & Models](#pipelines-and-models) - [Pipelines](#pipelines) - [Models](#models) - [Offline](#offline) - [Examples](#examples) - [FAQ](#faq) - [Citation](#citation) - [Contributing](#contributing) ## Features - Tokenization - Trainable Word Segmentation - Stop Words Removal - Token Normalizer - Document Normalizer - Stemmer - Lemmatizer - NGrams - Regex Matching - Text Matching - Chunking - Date Matcher - Sentence Detector - Deep Sentence Detector (Deep learning) - Dependency parsing (Labeled/unlabeled) - SpanBertCorefModel (Coreference Resolution) - Part-of-speech tagging - Sentiment Detection (ML models) - Spell Checker (ML and DL models) - Word Embeddings (GloVe and Word2Vec) - Doc2Vec (based on Word2Vec) - BERT Embeddings (TF Hub & HuggingFace models) - DistilBERT Embeddings (HuggingFace models) - CamemBERT Embeddings (HuggingFace models) - RoBERTa Embeddings (HuggingFace models) - DeBERTa Embeddings (HuggingFace v2 & v3 models) - XLM-RoBERTa Embeddings (HuggingFace models) - Longformer Embeddings (HuggingFace models) - ALBERT Embeddings (TF Hub & HuggingFace models) - XLNet Embeddings - ELMO Embeddings (TF Hub models) - Universal Sentence Encoder (TF Hub models) - BERT Sentence Embeddings (TF Hub & HuggingFace models) - RoBerta Sentence Embeddings (HuggingFace models) - XLM-RoBerta Sentence Embeddings (HuggingFace models) - Sentence Embeddings - Chunk Embeddings - Unsupervised keywords extraction - Language Detection & Identification (up to 375 languages) - Multi-class Sentiment analysis (Deep learning) - Multi-label Sentiment analysis (Deep learning) - Multi-class Text Classification (Deep learning) - BERT for Token & Sequence Classification - DistilBERT for Token & Sequence Classification - CamemBERT for Token & Sequence Classification - ALBERT for Token & Sequence Classification - RoBERTa for Token & Sequence Classification - DeBERTa for Token & Sequence Classification - XLM-RoBERTa for Token & Sequence Classification - XLNet for Token & Sequence Classification - Longformer for Token & Sequence Classification - BERT for Token & Sequence Classification - BERT for Question Answering - CamemBERT for Question Answering - DistilBERT for Question Answering - ALBERT for Question Answering - RoBERTa for Question Answering - DeBERTa for Question Answering - XLM-RoBERTa for Question Answering - Longformer for Question Answering - Table Question Answering (TAPAS) - Zero-Shot NER Model - Neural Machine Translation (MarianMT) - Text-To-Text Transfer Transformer (Google T5) - Generative Pre-trained Transformer 2 (OpenAI GPT2) - Vision Transformer (ViT) - Swin Image Classification - Automatic Speech Recognition (Wav2Vec2) - Automatic Speech Recognition (HuBERT) - Named entity recognition (Deep learning) - Easy TensorFlow integration - GPU Support - Full integration with Spark ML functions - +9400 pre-trained models in +200 languages! - +3200 pre-trained pipelines in +200 languages! - Multi-lingual NER models: Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, German, Hebrew, Italian, Japanese, Korean, Norwegian, Persian, Polish, Portuguese, Russian, Spanish, Swedish, Urdu, and more. ## Requirements To use Spark NLP you need the following requirements: - Java 8 and 11 - Apache Spark 3.3.x, 3.2.x, 3.1.x, 3.0.x **GPU (optional):** Spark NLP 4.3.2 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support: - NVIDIA® GPU drivers version 450.80.02 or higher - CUDA® Toolkit 11.2 - cuDNN SDK 8.1.0 ## Quick Start This is a quick example of how to use Spark NLP pre-trained pipeline in Python and PySpark: ```sh $ java -version # should be Java 8 or 11 (Oracle or OpenJDK) $ conda create -n sparknlp python=3.7 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x $ pip install spark-nlp==4.3.2 pyspark==3.3.1 ``` In Python console or Jupyter `Python3` kernel: ```python # Import Spark NLP from sparknlp.base import * from sparknlp.annotator import * from sparknlp.pretrained import PretrainedPipeline import sparknlp # Start SparkSession with Spark NLP # start() functions has 3 parameters: gpu, apple_silicon, and memory # sparknlp.start(gpu=True) will start the session with GPU support # sparknlp.start(apple_silicon=True) will start the session with macOS M1 & M2 support # sparknlp.start(memory="16G") to change the default driver memory in SparkSession spark = sparknlp.start() # Download a pre-trained pipeline pipeline = PretrainedPipeline('explain_document_dl', lang='en') # Your testing dataset text = """ The Mona Lisa is a 16th century oil painting created by Leonardo. It's held at the Louvre in Paris. """ # Annotate your testing dataset result = pipeline.annotate(text) # What's in the pipeline list(result.keys()) Output: ['entities', 'stem', 'checked', 'lemma', 'document', 'pos', 'token', 'ner', 'embeddings', 'sentence'] # Check the results result['entities'] Output: ['Mona Lisa', 'Leonardo', 'Louvre', 'Paris'] ``` For more examples, you can visit our dedicated [examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) to showcase all Spark NLP use cases! ## Apache Spark Support Spark NLP *4.3.2* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: | Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | 4.3.x | NO | NO | YES | YES | YES | YES | | 4.2.x | NO | NO | YES | YES | YES | YES | | 4.1.x | NO | NO | YES | YES | YES | YES | | 4.0.x | NO | NO | YES | YES | YES | YES | | 3.4.x | YES | YES | YES | YES | Partially | N/A | | 3.3.x | YES | YES | YES | YES | NO | NO | | 3.2.x | YES | YES | YES | YES | NO | NO | | 3.1.x | YES | YES | YES | YES | NO | NO | | 3.0.x | YES | YES | YES | YES | NO | NO | | 2.7.x | YES | YES | NO | NO | NO | NO | NOTE: Starting 4.0.0 release, the default `spark-nlp` and `spark-nlp-gpu` packages are based on Scala 2.12.15 and Apache Spark 3.2 by default. Find out more about `Spark NLP` versions from our [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases). ## Scala and Python Support | Spark NLP | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Scala 2.11 | Scala 2.12 | |-----------|------------|------------|------------|------------|------------|------------| | 4.3.x | YES | YES | YES | YES | NO | YES | | 4.2.x | YES | YES | YES | YES | NO | YES | | 4.1.x | YES | YES | YES | YES | NO | YES | | 4.0.x | YES | YES | YES | YES | NO | YES | | 3.4.x | YES | YES | YES | YES | YES | YES | | 3.3.x | YES | YES | YES | NO | YES | YES | | 3.2.x | YES | YES | YES | NO | YES | YES | | 3.1.x | YES | YES | YES | NO | YES | YES | | 3.0.x | YES | YES | YES | NO | YES | YES | | 2.7.x | YES | YES | NO | NO | YES | NO | ## Databricks Support Spark NLP 4.3.2 has been tested and is compatible with the following runtimes: **CPU:** - 7.3 - 7.3 ML - 9.1 - 9.1 ML - 10.1 - 10.1 ML - 10.2 - 10.2 ML - 10.3 - 10.3 ML - 10.4 - 10.4 ML - 10.5 - 10.5 ML - 11.0 - 11.0 ML - 11.1 - 11.1 ML - 11.2 - 11.2 ML - 11.3 - 11.3 ML **GPU:** - 9.1 ML & GPU - 10.1 ML & GPU - 10.2 ML & GPU - 10.3 ML & GPU - 10.4 ML & GPU - 10.5 ML & GPU - 11.0 ML & GPU - 11.1 ML & GPU - 11.2 ML & GPU - 11.3 ML & GPU NOTE: Spark NLP 4.x is based on TensorFlow 2.7.x which is compatible with CUDA11 and cuDNN 8.0.2. The only Databricks runtimes supporting CUDA 11 are 9.x and above as listed under GPU. ## EMR Support Spark NLP 4.3.2 has been tested and is compatible with the following EMR releases: - emr-6.2.0 - emr-6.3.0 - emr-6.3.1 - emr-6.4.0 - emr-6.5.0 - emr-6.6.0 - emr-6.7.0 Full list of [Amazon EMR 6.x releases](https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-6x.html) NOTE: The EMR 6.1.0 and 6.1.1 are not supported. ## Usage ## Packages Cheatsheet This is a cheatsheet for corresponding Spark NLP Maven package to Apache Spark / PySpark major version: | Apache Spark | Spark NLP on CPU | Spark NLP on GPU | Spark NLP on AArch64 (linux) | Spark NLP on Apple Silicon | |-----------------|--------------------|----------------------------|--------------------------------|--------------------------------------| | 3.0/3.1/3.2/3.3 | `spark-nlp` | `spark-nlp-gpu` | `spark-nlp-aarch64` | `spark-nlp-silicon` | | Start Function | `sparknlp.start()` | `sparknlp.start(gpu=True)` | `sparknlp.start(aarch64=True)` | `sparknlp.start(apple_silicon=True)` | NOTE: `M1/M2` and `AArch64` are under `experimental` support. Access and support to these architectures are limited by the community and we had to build most of the dependencies by ourselves to make them compatible. We support these two architectures, however, they may not work in some environments. ## Spark Packages ### Command line (requires internet connection) Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x, Apache Spark 3.2.x, and Apache Spark 3.3.x. #### Apache Spark 3.x (3.0.x, 3.1.x, 3.2.x, and 3.3.x - Scala 2.12) ```sh # CPU spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` The `spark-nlp` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp). ```sh # GPU spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 ``` The `spark-nlp-gpu` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu). ```sh # AArch64 spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 ``` The `spark-nlp-aarch64` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64). ```sh # M1/M2 (Apple Silicon) spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 ``` The `spark-nlp-silicon` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon). **NOTE**: In case you are using large pretrained models like UniversalSentenceEncoder, you need to have the following set in your SparkSession: ```sh spark-shell \ --driver-memory 16g \ --conf spark.kryoserializer.buffer.max=2000M \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` ## Scala Spark NLP supports Scala 2.12.15 if you are using Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x versions. Our packages are deployed to Maven central. To add any of our packages as a dependency in your application you can follow these coordinates: ### Maven **spark-nlp** on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: ```xml com.johnsnowlabs.nlp spark-nlp_2.12 4.3.2 ``` **spark-nlp-gpu:** ```xml com.johnsnowlabs.nlp spark-nlp-gpu_2.12 4.3.2 ``` **spark-nlp-aarch64:** ```xml com.johnsnowlabs.nlp spark-nlp-aarch64_2.12 4.3.2 ``` **spark-nlp-silicon:** ```xml com.johnsnowlabs.nlp spark-nlp-silicon_2.12 4.3.2 ``` ### SBT **spark-nlp** on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "4.3.2" ``` **spark-nlp-gpu:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "4.3.2" ``` **spark-nlp-aarch64:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "4.3.2" ``` **spark-nlp-silicon:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "4.3.2" ``` Maven Central: [https://mvnrepository.com/artifact/com.johnsnowlabs.nlp](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp) If you are interested, there is a simple SBT project for Spark NLP to guide you on how to use it in your projects [Spark NLP SBT Starter](https://github.com/maziyarpanahi/spark-nlp-starter) ## Python Spark NLP supports Python 3.6.x and above depending on your major PySpark version. ### Python without explicit Pyspark installation ### Pip/Conda If you installed pyspark through pip/conda, you can install `spark-nlp` through the same channel. Pip: ```bash pip install spark-nlp==4.3.2 ``` Conda: ```bash conda install -c johnsnowlabs spark-nlp ``` PyPI [spark-nlp package](https://pypi.org/project/spark-nlp/) / Anaconda [spark-nlp package](https://anaconda.org/JohnSnowLabs/spark-nlp) Then you'll have to create a SparkSession either from Spark NLP: ```python import sparknlp spark = sparknlp.start() ``` or manually: ```python spark = SparkSession.builder .appName("Spark NLP") .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2") .getOrCreate() ``` If using local jars, you can use `spark.jars` instead for comma-delimited jar files. For cluster setups, of course, you'll have to put the jars in a reachable location for all driver and executor nodes. **Quick example:** ```python import sparknlp from sparknlp.pretrained import PretrainedPipeline # create or get Spark Session spark = sparknlp.start() sparknlp.version() spark.version # download, load and annotate a text by pre-trained pipeline pipeline = PretrainedPipeline('recognize_entities_dl', 'en') result = pipeline.annotate('The Mona Lisa is a 16th century oil painting created by Leonardo') ``` ## Compiled JARs ### Build from source #### spark-nlp - FAT-JAR for CPU on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt assembly ``` - FAT-JAR for GPU on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt -Dis_gpu=true assembly ``` - FAT-JAR for M! on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt -Dis_silicon=true assembly ``` ### Using the jar manually If for some reason you need to use the JAR, you can either download the Fat JARs provided here or download it from [Maven Central](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp). To add JARs to spark programs use the `--jars` option: ```sh spark-shell --jars spark-nlp.jar ``` The preferred way to use the library when running spark programs is using the `--packages` option as specified in the `spark-packages` section. ## Apache Zeppelin Use either one of the following options - Add the following Maven Coordinates to the interpreter's library list ```bash com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` - Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is available to driver path ### Python in Zeppelin Apart from the previous step, install the python module through pip ```bash pip install spark-nlp==4.3.2 ``` Or you can install `spark-nlp` from inside Zeppelin by using Conda: ```bash python.conda install -c johnsnowlabs spark-nlp ``` Configure Zeppelin properly, use cells with %spark.pyspark or any interpreter name you chose. Finally, in Zeppelin interpreter settings, make sure you set properly zeppelin.python to the python you want to use and install the pip library with (e.g. `python3`). An alternative option would be to set `SPARK_SUBMIT_OPTIONS` (zeppelin-env.sh) and make sure `--packages` is there as shown earlier since it includes both scala and python side installation. ## Jupyter Notebook (Python) **Recommended:** The easiest way to get this done on Linux and macOS is to simply install `spark-nlp` and `pyspark` PyPI packages and launch the Jupyter from the same Python environment: ```sh $ conda create -n sparknlp python=3.8 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x $ pip install spark-nlp==4.3.2 pyspark==3.3.1 jupyter $ jupyter notebook ``` Then you can use `python3` kernel to run your code with creating SparkSession via `spark = sparknlp.start()`. **Optional:** If you are in different operating systems and require to make Jupyter Notebook run by using pyspark, you can follow these steps: ```bash export SPARK_HOME=/path/to/your/spark/folder export PYSPARK_PYTHON=python3 export PYSPARK_DRIVER_PYTHON=jupyter export PYSPARK_DRIVER_PYTHON_OPTS=notebook pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp` If not using pyspark at all, you'll have to run the instructions pointed [here](#python-without-explicit-Pyspark-installation) ## Google Colab Notebook Google Colab is perhaps the easiest way to get started with spark-nlp. It requires no installation or setup other than having a Google account. Run the following code in Google Colab notebook and start using spark-nlp right away. ```sh # This is only to setup PySpark and Spark NLP on Colab !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash ``` This script comes with the two options to define `pyspark` and `spark-nlp` versions via options: ```sh # -p is for pyspark # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage # by default they are set to the latest !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.3.2 ``` [Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) is a live demo on Google Colab that performs named entity recognitions and sentiment analysis by using Spark NLP pretrained pipelines. ## Kaggle Kernel Run the following code in Kaggle Kernel and start using spark-nlp right away. ```sh # Let's setup Kaggle for Spark NLP and PySpark !wget https://setup.johnsnowlabs.com/kaggle.sh -O - | bash ``` This script comes with the two options to define `pyspark` and `spark-nlp` versions via options: ```sh # -p is for pyspark # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage # by default they are set to the latest !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.3.2 ``` [Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP pretrained pipeline. ## Databricks Cluster 1. Create a cluster if you don't have one already 2. On a new cluster or existing one you need to add the following to the `Advanced Options -> Spark` tab: ```bash spark.kryoserializer.buffer.max 2000M spark.serializer org.apache.spark.serializer.KryoSerializer ``` 3. In `Libraries` tab inside your cluster you need to follow these steps: 3.1. Install New -> PyPI -> `spark-nlp==4.3.2` -> Install 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2` -> Install 4. Now you can attach your notebook to the cluster and use Spark NLP! NOTE: Databricks' runtimes support different Apache Spark major releases. Please make sure you choose the correct Spark NLP Maven package name (Maven Coordinate) for your runtime from our [Packages Cheatsheet](https://github.com/JohnSnowLabs/spark-nlp#packages-cheatsheet) ## EMR Cluster To launch EMR clusters with Apache Spark/PySpark and Spark NLP correctly you need to have bootstrap and software configuration. A sample of your bootstrap script ```.sh #!/bin/bash set -x -e echo -e 'export PYSPARK_PYTHON=/usr/bin/python3 export HADOOP_CONF_DIR=/etc/hadoop/conf export SPARK_JARS_DIR=/usr/lib/spark/jars export SPARK_HOME=/usr/lib/spark' >> $HOME/.bashrc && source $HOME/.bashrc sudo python3 -m pip install awscli boto spark-nlp set +x exit 0 ``` A sample of your software configuration in JSON on S3 (must be public access): ```.json [{ "Classification": "spark-env", "Configurations": [{ "Classification": "export", "Properties": { "PYSPARK_PYTHON": "/usr/bin/python3" } }] }, { "Classification": "spark-defaults", "Properties": { "spark.yarn.stagingDir": "hdfs:///tmp", "spark.yarn.preserve.staging.files": "true", "spark.kryoserializer.buffer.max": "2000M", "spark.serializer": "org.apache.spark.serializer.KryoSerializer", "spark.driver.maxResultSize": "0", "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2" } }] ``` A sample of AWS CLI to launch EMR cluster: ```.sh aws emr create-cluster \ --name "Spark NLP 4.3.2" \ --release-label emr-6.2.0 \ --applications Name=Hadoop Name=Spark Name=Hive \ --instance-type m4.4xlarge \ --instance-count 3 \ --use-default-roles \ --log-uri "s3:///" \ --bootstrap-actions Path=s3:///emr-bootstrap.sh,Name=custome \ --configurations "https:///sparknlp-config.json" \ --ec2-attributes KeyName=,EmrManagedMasterSecurityGroup=,EmrManagedSlaveSecurityGroup= \ --profile ``` ## GCP Dataproc 1. Create a cluster if you don't have one already as follows. At gcloud shell: ```bash gcloud services enable dataproc.googleapis.com \ compute.googleapis.com \ storage-component.googleapis.com \ bigquery.googleapis.com \ bigquerystorage.googleapis.com ``` ```bash REGION= ``` ```bash BUCKET_NAME= gsutil mb -c standard -l ${REGION} gs://${BUCKET_NAME} ``` ```bash REGION= ZONE= CLUSTER_NAME= BUCKET_NAME= ``` You can set image-version, master-machine-type, worker-machine-type, master-boot-disk-size, worker-boot-disk-size, num-workers as your needs. If you use the previous image-version from 2.0, you should also add ANACONDA to optional-components. And, you should enable gateway. Don't forget to set the maven coordinates for the jar in properties. ```bash gcloud dataproc clusters create ${CLUSTER_NAME} \ --region=${REGION} \ --zone=${ZONE} \ --image-version=2.0 \ --master-machine-type=n1-standard-4 \ --worker-machine-type=n1-standard-2 \ --master-boot-disk-size=128GB \ --worker-boot-disk-size=128GB \ --num-workers=2 \ --bucket=${BUCKET_NAME} \ --optional-components=JUPYTER \ --enable-component-gateway \ --metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \ --initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \ --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` 2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI. 3. Now, you can attach your notebook to the cluster and use the Spark NLP! ## Spark NLP Configuration You can change the following Spark NLP configurations via Spark Configuration: | Property Name | Default | Meaning | |--------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | `spark.jsl.settings.pretrained.cache_folder` | `~/cache_pretrained` | The location to download and extract pretrained `Models` and `Pipelines`. By default, it will be in User's Home directory under `cache_pretrained` directory | | `spark.jsl.settings.storage.cluster_tmp_dir` | `hadoop.tmp.dir` | The location to use on a cluster for temporarily files such as unpacking indexes for WordEmbeddings. By default, this locations is the location of `hadoop.tmp.dir` set via Hadoop configuration for Apache Spark. NOTE: `S3` is not supported and it must be local, HDFS, or DBFS | | `spark.jsl.settings.annotator.log_folder` | `~/annotator_logs` | The location to save logs from annotators during training such as `NerDLApproach`, `ClassifierDLApproach`, `SentimentDLApproach`, `MultiClassifierDLApproach`, etc. By default, it will be in User's Home directory under `annotator_logs` directory | | `spark.jsl.settings.aws.credentials.access_key_id` | `None` | Your AWS access key to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.credentials.secret_access_key` | `None` | Your AWS secret access key to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.credentials.session_token` | `None` | Your AWS MFA session token to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.s3_bucket` | `None` | Your AWS S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.region` | `None` | Your AWS region to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | ### How to set Spark NLP Configuration **SparkSession:** You can use `.config()` during SparkSession creation to set Spark NLP configurations. ```python from pyspark.sql import SparkSession spark = SparkSession.builder .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") .config("spark.kryoserializer.buffer.max", "2000m") .config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained") .config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage") .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2") .getOrCreate() ``` **spark-shell:** ```sh spark-shell \ --driver-memory 16g \ --conf spark.driver.maxResultSize=0 \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` **pyspark:** ```sh pyspark \ --driver-memory 16g \ --conf spark.driver.maxResultSize=0 \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` **Databricks:** On a new cluster or existing one you need to add the following to the `Advanced Options -> Spark` tab: ```bash spark.kryoserializer.buffer.max 2000M spark.serializer org.apache.spark.serializer.KryoSerializer spark.jsl.settings.pretrained.cache_folder dbfs:/PATH_TO_CACHE spark.jsl.settings.storage.cluster_tmp_dir dbfs:/PATH_TO_STORAGE spark.jsl.settings.annotator.log_folder dbfs:/PATH_TO_LOGS ``` NOTE: If this is an existing cluster, after adding new configs or changing existing properties you need to restart it. ### S3 Integration In Spark NLP we can define S3 locations to: - Export log files of training models - Store tensorflow graphs used in `NerDLApproach` **Logging:** To configure S3 path for logging while training models. We need to set up AWS credentials as well as an S3 path ```bash spark.conf.set("spark.jsl.settings.annotator.log_folder", "s3://my/s3/path/logs") spark.conf.set("spark.jsl.settings.aws.credentials.access_key_id", "MY_KEY_ID") spark.conf.set("spark.jsl.settings.aws.credentials.secret_access_key", "MY_SECRET_ACCESS_KEY") spark.conf.set("spark.jsl.settings.aws.s3_bucket", "my.bucket") spark.conf.set("spark.jsl.settings.aws.region", "my-region") ``` Now you can check the log on your S3 path defined in *spark.jsl.settings.annotator.log_folder* property. Make sure to use the prefix *s3://*, otherwise it will use the default configuration. **Tensorflow Graphs:** To reference S3 location for downloading graphs. We need to set up AWS credentials ```bash spark.conf.set("spark.jsl.settings.aws.credentials.access_key_id", "MY_KEY_ID") spark.conf.set("spark.jsl.settings.aws.credentials.secret_access_key", "MY_SECRET_ACCESS_KEY") spark.conf.set("spark.jsl.settings.aws.region", "my-region") ``` **MFA Configuration:** In case your AWS account is configured with MFA. You will need first to get temporal credentials and add session token to the configuration as shown in the examples below For logging: ```bash spark.conf.set("spark.jsl.settings.aws.credentials.session_token", "MY_TOKEN") ``` An example of a bash script that gets temporal AWS credentials can be found [here](https://github.com/JohnSnowLabs/spark-nlp/blob/master/scripts/aws_tmp_credentials.sh) This script requires three arguments: ```bash ./aws_tmp_credentials.sh iam_user duration serial_number ``` ## Pipelines and Models ### Pipelines **Quick example:** ```scala import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline import com.johnsnowlabs.nlp.SparkNLP SparkNLP.version() val testData = spark.createDataFrame(Seq( (1, "Google has announced the release of a beta version of the popular TensorFlow machine learning library"), (2, "Donald John Trump (born June 14, 1946) is the 45th and current president of the United States") )).toDF("id", "text") val pipeline = PretrainedPipeline("explain_document_dl", lang = "en") val annotation = pipeline.transform(testData) annotation.show() /* import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline import com.johnsnowlabs.nlp.SparkNLP 2.5.0 testData: org.apache.spark.sql.DataFrame = [id: int, text: string] pipeline: com.johnsnowlabs.nlp.pretrained.PretrainedPipeline = PretrainedPipeline(explain_document_dl,en,public/models) annotation: org.apache.spark.sql.DataFrame = [id: int, text: string ... 10 more fields] +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ | id| text| document| token| sentence| checked| lemma| stem| pos| embeddings| ner| entities| +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ | 1|Google has announ...|[[document, 0, 10...|[[token, 0, 5, Go...|[[document, 0, 10...|[[token, 0, 5, Go...|[[token, 0, 5, Go...|[[token, 0, 5, go...|[[pos, 0, 5, NNP,...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 0, 5, Go...| | 2|The Paris metro w...|[[document, 0, 11...|[[token, 0, 2, Th...|[[document, 0, 11...|[[token, 0, 2, Th...|[[token, 0, 2, Th...|[[token, 0, 2, th...|[[pos, 0, 2, DT, ...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 4, 8, Pa...| +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ */ annotation.select("entities.result").show(false) /* +----------------------------------+ |result | +----------------------------------+ |[Google, TensorFlow] | |[Donald John Trump, United States]| +----------------------------------+ */ ``` #### Showing Available Pipelines There are functions in Spark NLP that will list all the available Pipelines of a particular language for you: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicPipelines(lang = "en") /* +--------------------------------------------+------+---------+ | Pipeline | lang | version | +--------------------------------------------+------+---------+ | dependency_parse | en | 2.0.2 | | analyze_sentiment_ml | en | 2.0.2 | | check_spelling | en | 2.1.0 | | match_datetime | en | 2.1.0 | ... | explain_document_ml | en | 3.1.3 | +--------------------------------------------+------+---------+ */ ``` Or if we want to check for a particular version: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicPipelines(lang = "en", version = "3.1.0") /* +---------------------------------------+------+---------+ | Pipeline | lang | version | +---------------------------------------+------+---------+ | dependency_parse | en | 2.0.2 | ... | clean_slang | en | 3.0.0 | | clean_pattern | en | 3.0.0 | | check_spelling | en | 3.0.0 | | dependency_parse | en | 3.0.0 | +---------------------------------------+------+---------+ */ ``` #### Please check out our Models Hub for the full list of [pre-trained pipelines](https://nlp.johnsnowlabs.com/models) with examples, demos, benchmarks, and more ### Models **Some selected languages: ** `Afrikaans, Arabic, Armenian, Basque, Bengali, Breton, Bulgarian, Catalan, Czech, Dutch, English, Esperanto, Finnish, French, Galician, German, Greek, Hausa, Hebrew, Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Latin, Latvian, Marathi, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Somali, Southern Sotho, Spanish, Swahili, Swedish, Tswana, Turkish, Ukrainian, Zulu` **Quick online example:** ```python # load NER model trained by deep learning approach and GloVe word embeddings ner_dl = NerDLModel.pretrained('ner_dl') # load NER model trained by deep learning approach and BERT word embeddings ner_bert = NerDLModel.pretrained('ner_dl_bert') ``` ```scala // load French POS tagger model trained by Universal Dependencies val french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang = "fr") // load Italian LemmatizerModel val italian_lemma = LemmatizerModel.pretrained("lemma_dxc", lang = "it") ```` **Quick offline example:** - Loading `PerceptronModel` annotator model inside Spark NLP Pipeline ```scala val french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/") .setInputCols("document", "token") .setOutputCol("pos") ``` #### Showing Available Models There are functions in Spark NLP that will list all the available Models of a particular Annotator and language for you: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicModels(annotator = "NerDLModel", lang = "en") /* +---------------------------------------------+------+---------+ | Model | lang | version | +---------------------------------------------+------+---------+ | onto_100 | en | 2.1.0 | | onto_300 | en | 2.1.0 | | ner_dl_bert | en | 2.2.0 | | onto_100 | en | 2.4.0 | | ner_conll_elmo | en | 3.2.2 | +---------------------------------------------+------+---------+ */ ``` Or if we want to check for a particular version: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicModels(annotator = "NerDLModel", lang = "en", version = "3.1.0") /* +----------------------------+------+---------+ | Model | lang | version | +----------------------------+------+---------+ | onto_100 | en | 2.1.0 | | ner_aspect_based_sentiment | en | 2.6.2 | | ner_weibo_glove_840B_300d | en | 2.6.2 | | nerdl_atis_840b_300d | en | 2.7.1 | | nerdl_snips_100d | en | 2.7.3 | +----------------------------+------+---------+ */ ``` And to see a list of available annotators, you can use: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showAvailableAnnotators() /* AlbertEmbeddings AlbertForTokenClassification AssertionDLModel ... XlmRoBertaSentenceEmbeddings XlnetEmbeddings */ ``` #### Please check out our Models Hub for the full list of [pre-trained models](https://nlp.johnsnowlabs.com/models) with examples, demo, benchmark, and more ## Offline Spark NLP library and all the pre-trained models/pipelines can be used entirely offline with no access to the Internet. If you are behind a proxy or a firewall with no access to the Maven repository (to download packages) or/and no access to S3 (to automatically download models and pipelines), you can simply follow the instructions to have Spark NLP without any limitations offline: - Instead of using the Maven package, you need to load our Fat JAR - Instead of using PretrainedPipeline for pretrained pipelines or the `.pretrained()` function to download pretrained models, you will need to manually download your pipeline/model from [Models Hub](https://nlp.johnsnowlabs.com/models), extract it, and load it. Example of `SparkSession` with Fat JAR to have Spark NLP offline: ```python spark = SparkSession.builder .appName("Spark NLP") .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") .config("spark.jars", "/tmp/spark-nlp-assembly-4.3.2.jar") .getOrCreate() ``` - You can download provided Fat JARs from each [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases), please pay attention to pick the one that suits your environment depending on the device (CPU/GPU) and Apache Spark version (3.0.x, 3.1.x, 3.2.x, and 3.3.x) - If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. ( i.e., `hdfs:///tmp/spark-nlp-assembly-4.3.2.jar`) Example of using pretrained Models and Pipelines in offline: ```python # instead of using pretrained() for online: # french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang="fr") # you download this model, extract it, and use .load french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/") .setInputCols("document", "token") .setOutputCol("pos") # example for pipelines # instead of using PretrainedPipeline # pipeline = PretrainedPipeline('explain_document_dl', lang='en') # you download this pipeline, extract it, and use PipelineModel PipelineModel.load("/tmp/explain_document_dl_en_2.0.2_2.4_1556530585689/") ``` - Since you are downloading and loading models/pipelines manually, this means Spark NLP is not downloading the most recent and compatible models/pipelines for you. Choosing the right model/pipeline is on you - If you are local, you can load the model/pipeline from your local FileSystem, however, if you are in a cluster setup you need to put the model/pipeline on a distributed FileSystem such as HDFS, DBFS, S3, etc. ( i.e., `hdfs:///tmp/explain_document_dl_en_2.0.2_2.4_1556530585689/`) ## Examples Need more **examples**? Check out our dedicated [Spark NLP Examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) repository to showcase all Spark NLP use cases! Also, don't forget to check [Spark NLP in Action](https://nlp.johnsnowlabs.com/demo) built by Streamlit. ### All examples: [spark-nlp/examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) ## FAQ [Check our Articles and Videos page here](https://nlp.johnsnowlabs.com/learn) ## Citation We have published a [paper](https://www.sciencedirect.com/science/article/pii/S2665963821000063) that you can cite for the Spark NLP library: ```bibtex @article{KOCAMAN2021100058, title = {Spark NLP: Natural language understanding at scale}, journal = {Software Impacts}, pages = {100058}, year = {2021}, issn = {2665-9638}, doi = {https://doi.org/10.1016/j.simpa.2021.100058}, url = {https://www.sciencedirect.com/science/article/pii/S2665963.2.300063}, author = {Veysel Kocaman and David Talby}, keywords = {Spark, Natural language processing, Deep learning, Tensorflow, Cluster}, abstract = {Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise.} } } ``` ## Contributing We appreciate any sort of contributions: - ideas - feedback - documentation - bug reports - NLP training and testing corpora - Development and testing Clone the repo and submit your pull-requests! Or directly create issues in this repo. ## John Snow Labs [http://johnsnowlabs.com](http://johnsnowlabs.com) %package help Summary: Development documents and examples for spark-nlp Provides: python3-spark-nlp-doc %description help # Spark NLP: State-of-the-Art Natural Language Processing

Spark NLP is a state-of-the-art Natural Language Processing library built on top of Apache Spark. It provides **simple **, **performant** & **accurate** NLP annotations for machine learning pipelines that **scale** easily in a distributed environment. Spark NLP comes with **11000+** pretrained **pipelines** and **models** in more than **200+** languages. It also offers tasks such as **Tokenization**, **Word Segmentation**, **Part-of-Speech Tagging**, Word and Sentence **Embeddings**, **Named Entity Recognition**, **Dependency Parsing**, **Spell Checking**, **Text Classification**, **Sentiment Analysis**, **Token Classification**, **Machine Translation** (+180 languages), **Summarization**, **Question Answering**, **Table Question Answering**, **Text Generation**, **Image Classification**, **Automatic Speech Recognition **, and many more [NLP tasks](#features). **Spark NLP** is the only open-source NLP library in **production** that offers state-of-the-art transformers such as **BERT**, **CamemBERT**, **ALBERT**, **ELECTRA**, **XLNet**, **DistilBERT**, **RoBERTa**, **DeBERTa**, **XLM-RoBERTa**, **Longformer**, **ELMO**, **Universal Sentence Encoder**, **Google T5**, **MarianMT**, **GPT2**, and **Vision Transformers (ViT)** not only to **Python** and **R**, but also to **JVM** ecosystem (**Java**, **Scala**, and **Kotlin**) at **scale** by extending **Apache Spark** natively. ## Project's website Take a look at our official Spark NLP page: [http://nlp.johnsnowlabs.com/](http://nlp.johnsnowlabs.com/) for user documentation and examples ## Community support - [Slack](https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q) For live discussion with the Spark NLP community and the team - [GitHub](https://github.com/JohnSnowLabs/spark-nlp) Bug reports, feature requests, and contributions - [Discussions](https://github.com/JohnSnowLabs/spark-nlp/discussions) Engage with other community members, share ideas, and show off how you use Spark NLP! - [Medium](https://medium.com/spark-nlp) Spark NLP articles - [YouTube](https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos) Spark NLP video tutorials ## Table of contents - [Features](#features) - [Requirements](#requirements) - [Quick Start](#quick-start) - [Apache Spark Support](#apache-spark-support) - [Scala & Python Support](#scala-and-python-support) - [Databricks Support](#databricks-support) - [EMR Support](#emr-support) - [Using Spark NLP](#usage) - [Packages Cheatsheet](#packages-cheatsheet) - [Spark Packages](#spark-packages) - [Scala](#scala) - [Maven](#maven) - [SBT](#sbt) - [Python](#python) - [Pip/Conda](#pipconda) - [Compiled JARs](#compiled-jars) - [Apache Zeppelin](#apache-zeppelin) - [Jupyter Notebook](#jupyter-notebook-python) - [Google Colab Notebook](#google-colab-notebook) - [Kaggle Kernel](#kaggle-kernel) - [Databricks Cluster](#databricks-cluster) - [EMR Cluster](#emr-cluster) - [GCP Dataproc](#gcp-dataproc) - [Spark NLP Configuration](#spark-nlp-configuration) - [Pipelines & Models](#pipelines-and-models) - [Pipelines](#pipelines) - [Models](#models) - [Offline](#offline) - [Examples](#examples) - [FAQ](#faq) - [Citation](#citation) - [Contributing](#contributing) ## Features - Tokenization - Trainable Word Segmentation - Stop Words Removal - Token Normalizer - Document Normalizer - Stemmer - Lemmatizer - NGrams - Regex Matching - Text Matching - Chunking - Date Matcher - Sentence Detector - Deep Sentence Detector (Deep learning) - Dependency parsing (Labeled/unlabeled) - SpanBertCorefModel (Coreference Resolution) - Part-of-speech tagging - Sentiment Detection (ML models) - Spell Checker (ML and DL models) - Word Embeddings (GloVe and Word2Vec) - Doc2Vec (based on Word2Vec) - BERT Embeddings (TF Hub & HuggingFace models) - DistilBERT Embeddings (HuggingFace models) - CamemBERT Embeddings (HuggingFace models) - RoBERTa Embeddings (HuggingFace models) - DeBERTa Embeddings (HuggingFace v2 & v3 models) - XLM-RoBERTa Embeddings (HuggingFace models) - Longformer Embeddings (HuggingFace models) - ALBERT Embeddings (TF Hub & HuggingFace models) - XLNet Embeddings - ELMO Embeddings (TF Hub models) - Universal Sentence Encoder (TF Hub models) - BERT Sentence Embeddings (TF Hub & HuggingFace models) - RoBerta Sentence Embeddings (HuggingFace models) - XLM-RoBerta Sentence Embeddings (HuggingFace models) - Sentence Embeddings - Chunk Embeddings - Unsupervised keywords extraction - Language Detection & Identification (up to 375 languages) - Multi-class Sentiment analysis (Deep learning) - Multi-label Sentiment analysis (Deep learning) - Multi-class Text Classification (Deep learning) - BERT for Token & Sequence Classification - DistilBERT for Token & Sequence Classification - CamemBERT for Token & Sequence Classification - ALBERT for Token & Sequence Classification - RoBERTa for Token & Sequence Classification - DeBERTa for Token & Sequence Classification - XLM-RoBERTa for Token & Sequence Classification - XLNet for Token & Sequence Classification - Longformer for Token & Sequence Classification - BERT for Token & Sequence Classification - BERT for Question Answering - CamemBERT for Question Answering - DistilBERT for Question Answering - ALBERT for Question Answering - RoBERTa for Question Answering - DeBERTa for Question Answering - XLM-RoBERTa for Question Answering - Longformer for Question Answering - Table Question Answering (TAPAS) - Zero-Shot NER Model - Neural Machine Translation (MarianMT) - Text-To-Text Transfer Transformer (Google T5) - Generative Pre-trained Transformer 2 (OpenAI GPT2) - Vision Transformer (ViT) - Swin Image Classification - Automatic Speech Recognition (Wav2Vec2) - Automatic Speech Recognition (HuBERT) - Named entity recognition (Deep learning) - Easy TensorFlow integration - GPU Support - Full integration with Spark ML functions - +9400 pre-trained models in +200 languages! - +3200 pre-trained pipelines in +200 languages! - Multi-lingual NER models: Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, German, Hebrew, Italian, Japanese, Korean, Norwegian, Persian, Polish, Portuguese, Russian, Spanish, Swedish, Urdu, and more. ## Requirements To use Spark NLP you need the following requirements: - Java 8 and 11 - Apache Spark 3.3.x, 3.2.x, 3.1.x, 3.0.x **GPU (optional):** Spark NLP 4.3.2 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support: - NVIDIA® GPU drivers version 450.80.02 or higher - CUDA® Toolkit 11.2 - cuDNN SDK 8.1.0 ## Quick Start This is a quick example of how to use Spark NLP pre-trained pipeline in Python and PySpark: ```sh $ java -version # should be Java 8 or 11 (Oracle or OpenJDK) $ conda create -n sparknlp python=3.7 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x $ pip install spark-nlp==4.3.2 pyspark==3.3.1 ``` In Python console or Jupyter `Python3` kernel: ```python # Import Spark NLP from sparknlp.base import * from sparknlp.annotator import * from sparknlp.pretrained import PretrainedPipeline import sparknlp # Start SparkSession with Spark NLP # start() functions has 3 parameters: gpu, apple_silicon, and memory # sparknlp.start(gpu=True) will start the session with GPU support # sparknlp.start(apple_silicon=True) will start the session with macOS M1 & M2 support # sparknlp.start(memory="16G") to change the default driver memory in SparkSession spark = sparknlp.start() # Download a pre-trained pipeline pipeline = PretrainedPipeline('explain_document_dl', lang='en') # Your testing dataset text = """ The Mona Lisa is a 16th century oil painting created by Leonardo. It's held at the Louvre in Paris. """ # Annotate your testing dataset result = pipeline.annotate(text) # What's in the pipeline list(result.keys()) Output: ['entities', 'stem', 'checked', 'lemma', 'document', 'pos', 'token', 'ner', 'embeddings', 'sentence'] # Check the results result['entities'] Output: ['Mona Lisa', 'Leonardo', 'Louvre', 'Paris'] ``` For more examples, you can visit our dedicated [examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) to showcase all Spark NLP use cases! ## Apache Spark Support Spark NLP *4.3.2* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: | Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | 4.3.x | NO | NO | YES | YES | YES | YES | | 4.2.x | NO | NO | YES | YES | YES | YES | | 4.1.x | NO | NO | YES | YES | YES | YES | | 4.0.x | NO | NO | YES | YES | YES | YES | | 3.4.x | YES | YES | YES | YES | Partially | N/A | | 3.3.x | YES | YES | YES | YES | NO | NO | | 3.2.x | YES | YES | YES | YES | NO | NO | | 3.1.x | YES | YES | YES | YES | NO | NO | | 3.0.x | YES | YES | YES | YES | NO | NO | | 2.7.x | YES | YES | NO | NO | NO | NO | NOTE: Starting 4.0.0 release, the default `spark-nlp` and `spark-nlp-gpu` packages are based on Scala 2.12.15 and Apache Spark 3.2 by default. Find out more about `Spark NLP` versions from our [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases). ## Scala and Python Support | Spark NLP | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Scala 2.11 | Scala 2.12 | |-----------|------------|------------|------------|------------|------------|------------| | 4.3.x | YES | YES | YES | YES | NO | YES | | 4.2.x | YES | YES | YES | YES | NO | YES | | 4.1.x | YES | YES | YES | YES | NO | YES | | 4.0.x | YES | YES | YES | YES | NO | YES | | 3.4.x | YES | YES | YES | YES | YES | YES | | 3.3.x | YES | YES | YES | NO | YES | YES | | 3.2.x | YES | YES | YES | NO | YES | YES | | 3.1.x | YES | YES | YES | NO | YES | YES | | 3.0.x | YES | YES | YES | NO | YES | YES | | 2.7.x | YES | YES | NO | NO | YES | NO | ## Databricks Support Spark NLP 4.3.2 has been tested and is compatible with the following runtimes: **CPU:** - 7.3 - 7.3 ML - 9.1 - 9.1 ML - 10.1 - 10.1 ML - 10.2 - 10.2 ML - 10.3 - 10.3 ML - 10.4 - 10.4 ML - 10.5 - 10.5 ML - 11.0 - 11.0 ML - 11.1 - 11.1 ML - 11.2 - 11.2 ML - 11.3 - 11.3 ML **GPU:** - 9.1 ML & GPU - 10.1 ML & GPU - 10.2 ML & GPU - 10.3 ML & GPU - 10.4 ML & GPU - 10.5 ML & GPU - 11.0 ML & GPU - 11.1 ML & GPU - 11.2 ML & GPU - 11.3 ML & GPU NOTE: Spark NLP 4.x is based on TensorFlow 2.7.x which is compatible with CUDA11 and cuDNN 8.0.2. The only Databricks runtimes supporting CUDA 11 are 9.x and above as listed under GPU. ## EMR Support Spark NLP 4.3.2 has been tested and is compatible with the following EMR releases: - emr-6.2.0 - emr-6.3.0 - emr-6.3.1 - emr-6.4.0 - emr-6.5.0 - emr-6.6.0 - emr-6.7.0 Full list of [Amazon EMR 6.x releases](https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-6x.html) NOTE: The EMR 6.1.0 and 6.1.1 are not supported. ## Usage ## Packages Cheatsheet This is a cheatsheet for corresponding Spark NLP Maven package to Apache Spark / PySpark major version: | Apache Spark | Spark NLP on CPU | Spark NLP on GPU | Spark NLP on AArch64 (linux) | Spark NLP on Apple Silicon | |-----------------|--------------------|----------------------------|--------------------------------|--------------------------------------| | 3.0/3.1/3.2/3.3 | `spark-nlp` | `spark-nlp-gpu` | `spark-nlp-aarch64` | `spark-nlp-silicon` | | Start Function | `sparknlp.start()` | `sparknlp.start(gpu=True)` | `sparknlp.start(aarch64=True)` | `sparknlp.start(apple_silicon=True)` | NOTE: `M1/M2` and `AArch64` are under `experimental` support. Access and support to these architectures are limited by the community and we had to build most of the dependencies by ourselves to make them compatible. We support these two architectures, however, they may not work in some environments. ## Spark Packages ### Command line (requires internet connection) Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x, Apache Spark 3.2.x, and Apache Spark 3.3.x. #### Apache Spark 3.x (3.0.x, 3.1.x, 3.2.x, and 3.3.x - Scala 2.12) ```sh # CPU spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` The `spark-nlp` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp). ```sh # GPU spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.3.2 ``` The `spark-nlp-gpu` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu). ```sh # AArch64 spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.3.2 ``` The `spark-nlp-aarch64` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64). ```sh # M1/M2 (Apple Silicon) spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.3.2 ``` The `spark-nlp-silicon` has been published to the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon). **NOTE**: In case you are using large pretrained models like UniversalSentenceEncoder, you need to have the following set in your SparkSession: ```sh spark-shell \ --driver-memory 16g \ --conf spark.kryoserializer.buffer.max=2000M \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` ## Scala Spark NLP supports Scala 2.12.15 if you are using Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x versions. Our packages are deployed to Maven central. To add any of our packages as a dependency in your application you can follow these coordinates: ### Maven **spark-nlp** on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: ```xml com.johnsnowlabs.nlp spark-nlp_2.12 4.3.2 ``` **spark-nlp-gpu:** ```xml com.johnsnowlabs.nlp spark-nlp-gpu_2.12 4.3.2 ``` **spark-nlp-aarch64:** ```xml com.johnsnowlabs.nlp spark-nlp-aarch64_2.12 4.3.2 ``` **spark-nlp-silicon:** ```xml com.johnsnowlabs.nlp spark-nlp-silicon_2.12 4.3.2 ``` ### SBT **spark-nlp** on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x: ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "4.3.2" ``` **spark-nlp-gpu:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "4.3.2" ``` **spark-nlp-aarch64:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "4.3.2" ``` **spark-nlp-silicon:** ```sbtshell // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "4.3.2" ``` Maven Central: [https://mvnrepository.com/artifact/com.johnsnowlabs.nlp](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp) If you are interested, there is a simple SBT project for Spark NLP to guide you on how to use it in your projects [Spark NLP SBT Starter](https://github.com/maziyarpanahi/spark-nlp-starter) ## Python Spark NLP supports Python 3.6.x and above depending on your major PySpark version. ### Python without explicit Pyspark installation ### Pip/Conda If you installed pyspark through pip/conda, you can install `spark-nlp` through the same channel. Pip: ```bash pip install spark-nlp==4.3.2 ``` Conda: ```bash conda install -c johnsnowlabs spark-nlp ``` PyPI [spark-nlp package](https://pypi.org/project/spark-nlp/) / Anaconda [spark-nlp package](https://anaconda.org/JohnSnowLabs/spark-nlp) Then you'll have to create a SparkSession either from Spark NLP: ```python import sparknlp spark = sparknlp.start() ``` or manually: ```python spark = SparkSession.builder .appName("Spark NLP") .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2") .getOrCreate() ``` If using local jars, you can use `spark.jars` instead for comma-delimited jar files. For cluster setups, of course, you'll have to put the jars in a reachable location for all driver and executor nodes. **Quick example:** ```python import sparknlp from sparknlp.pretrained import PretrainedPipeline # create or get Spark Session spark = sparknlp.start() sparknlp.version() spark.version # download, load and annotate a text by pre-trained pipeline pipeline = PretrainedPipeline('recognize_entities_dl', 'en') result = pipeline.annotate('The Mona Lisa is a 16th century oil painting created by Leonardo') ``` ## Compiled JARs ### Build from source #### spark-nlp - FAT-JAR for CPU on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt assembly ``` - FAT-JAR for GPU on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt -Dis_gpu=true assembly ``` - FAT-JAR for M! on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x ```bash sbt -Dis_silicon=true assembly ``` ### Using the jar manually If for some reason you need to use the JAR, you can either download the Fat JARs provided here or download it from [Maven Central](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp). To add JARs to spark programs use the `--jars` option: ```sh spark-shell --jars spark-nlp.jar ``` The preferred way to use the library when running spark programs is using the `--packages` option as specified in the `spark-packages` section. ## Apache Zeppelin Use either one of the following options - Add the following Maven Coordinates to the interpreter's library list ```bash com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` - Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is available to driver path ### Python in Zeppelin Apart from the previous step, install the python module through pip ```bash pip install spark-nlp==4.3.2 ``` Or you can install `spark-nlp` from inside Zeppelin by using Conda: ```bash python.conda install -c johnsnowlabs spark-nlp ``` Configure Zeppelin properly, use cells with %spark.pyspark or any interpreter name you chose. Finally, in Zeppelin interpreter settings, make sure you set properly zeppelin.python to the python you want to use and install the pip library with (e.g. `python3`). An alternative option would be to set `SPARK_SUBMIT_OPTIONS` (zeppelin-env.sh) and make sure `--packages` is there as shown earlier since it includes both scala and python side installation. ## Jupyter Notebook (Python) **Recommended:** The easiest way to get this done on Linux and macOS is to simply install `spark-nlp` and `pyspark` PyPI packages and launch the Jupyter from the same Python environment: ```sh $ conda create -n sparknlp python=3.8 -y $ conda activate sparknlp # spark-nlp by default is based on pyspark 3.x $ pip install spark-nlp==4.3.2 pyspark==3.3.1 jupyter $ jupyter notebook ``` Then you can use `python3` kernel to run your code with creating SparkSession via `spark = sparknlp.start()`. **Optional:** If you are in different operating systems and require to make Jupyter Notebook run by using pyspark, you can follow these steps: ```bash export SPARK_HOME=/path/to/your/spark/folder export PYSPARK_PYTHON=python3 export PYSPARK_DRIVER_PYTHON=jupyter export PYSPARK_DRIVER_PYTHON_OPTS=notebook pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp` If not using pyspark at all, you'll have to run the instructions pointed [here](#python-without-explicit-Pyspark-installation) ## Google Colab Notebook Google Colab is perhaps the easiest way to get started with spark-nlp. It requires no installation or setup other than having a Google account. Run the following code in Google Colab notebook and start using spark-nlp right away. ```sh # This is only to setup PySpark and Spark NLP on Colab !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash ``` This script comes with the two options to define `pyspark` and `spark-nlp` versions via options: ```sh # -p is for pyspark # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage # by default they are set to the latest !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.3.2 ``` [Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) is a live demo on Google Colab that performs named entity recognitions and sentiment analysis by using Spark NLP pretrained pipelines. ## Kaggle Kernel Run the following code in Kaggle Kernel and start using spark-nlp right away. ```sh # Let's setup Kaggle for Spark NLP and PySpark !wget https://setup.johnsnowlabs.com/kaggle.sh -O - | bash ``` This script comes with the two options to define `pyspark` and `spark-nlp` versions via options: ```sh # -p is for pyspark # -s is for spark-nlp # -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage # by default they are set to the latest !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.3.2 ``` [Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP pretrained pipeline. ## Databricks Cluster 1. Create a cluster if you don't have one already 2. On a new cluster or existing one you need to add the following to the `Advanced Options -> Spark` tab: ```bash spark.kryoserializer.buffer.max 2000M spark.serializer org.apache.spark.serializer.KryoSerializer ``` 3. In `Libraries` tab inside your cluster you need to follow these steps: 3.1. Install New -> PyPI -> `spark-nlp==4.3.2` -> Install 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2` -> Install 4. Now you can attach your notebook to the cluster and use Spark NLP! NOTE: Databricks' runtimes support different Apache Spark major releases. Please make sure you choose the correct Spark NLP Maven package name (Maven Coordinate) for your runtime from our [Packages Cheatsheet](https://github.com/JohnSnowLabs/spark-nlp#packages-cheatsheet) ## EMR Cluster To launch EMR clusters with Apache Spark/PySpark and Spark NLP correctly you need to have bootstrap and software configuration. A sample of your bootstrap script ```.sh #!/bin/bash set -x -e echo -e 'export PYSPARK_PYTHON=/usr/bin/python3 export HADOOP_CONF_DIR=/etc/hadoop/conf export SPARK_JARS_DIR=/usr/lib/spark/jars export SPARK_HOME=/usr/lib/spark' >> $HOME/.bashrc && source $HOME/.bashrc sudo python3 -m pip install awscli boto spark-nlp set +x exit 0 ``` A sample of your software configuration in JSON on S3 (must be public access): ```.json [{ "Classification": "spark-env", "Configurations": [{ "Classification": "export", "Properties": { "PYSPARK_PYTHON": "/usr/bin/python3" } }] }, { "Classification": "spark-defaults", "Properties": { "spark.yarn.stagingDir": "hdfs:///tmp", "spark.yarn.preserve.staging.files": "true", "spark.kryoserializer.buffer.max": "2000M", "spark.serializer": "org.apache.spark.serializer.KryoSerializer", "spark.driver.maxResultSize": "0", "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2" } }] ``` A sample of AWS CLI to launch EMR cluster: ```.sh aws emr create-cluster \ --name "Spark NLP 4.3.2" \ --release-label emr-6.2.0 \ --applications Name=Hadoop Name=Spark Name=Hive \ --instance-type m4.4xlarge \ --instance-count 3 \ --use-default-roles \ --log-uri "s3:///" \ --bootstrap-actions Path=s3:///emr-bootstrap.sh,Name=custome \ --configurations "https:///sparknlp-config.json" \ --ec2-attributes KeyName=,EmrManagedMasterSecurityGroup=,EmrManagedSlaveSecurityGroup= \ --profile ``` ## GCP Dataproc 1. Create a cluster if you don't have one already as follows. At gcloud shell: ```bash gcloud services enable dataproc.googleapis.com \ compute.googleapis.com \ storage-component.googleapis.com \ bigquery.googleapis.com \ bigquerystorage.googleapis.com ``` ```bash REGION= ``` ```bash BUCKET_NAME= gsutil mb -c standard -l ${REGION} gs://${BUCKET_NAME} ``` ```bash REGION= ZONE= CLUSTER_NAME= BUCKET_NAME= ``` You can set image-version, master-machine-type, worker-machine-type, master-boot-disk-size, worker-boot-disk-size, num-workers as your needs. If you use the previous image-version from 2.0, you should also add ANACONDA to optional-components. And, you should enable gateway. Don't forget to set the maven coordinates for the jar in properties. ```bash gcloud dataproc clusters create ${CLUSTER_NAME} \ --region=${REGION} \ --zone=${ZONE} \ --image-version=2.0 \ --master-machine-type=n1-standard-4 \ --worker-machine-type=n1-standard-2 \ --master-boot-disk-size=128GB \ --worker-boot-disk-size=128GB \ --num-workers=2 \ --bucket=${BUCKET_NAME} \ --optional-components=JUPYTER \ --enable-component-gateway \ --metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \ --initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \ --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` 2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI. 3. Now, you can attach your notebook to the cluster and use the Spark NLP! ## Spark NLP Configuration You can change the following Spark NLP configurations via Spark Configuration: | Property Name | Default | Meaning | |--------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | `spark.jsl.settings.pretrained.cache_folder` | `~/cache_pretrained` | The location to download and extract pretrained `Models` and `Pipelines`. By default, it will be in User's Home directory under `cache_pretrained` directory | | `spark.jsl.settings.storage.cluster_tmp_dir` | `hadoop.tmp.dir` | The location to use on a cluster for temporarily files such as unpacking indexes for WordEmbeddings. By default, this locations is the location of `hadoop.tmp.dir` set via Hadoop configuration for Apache Spark. NOTE: `S3` is not supported and it must be local, HDFS, or DBFS | | `spark.jsl.settings.annotator.log_folder` | `~/annotator_logs` | The location to save logs from annotators during training such as `NerDLApproach`, `ClassifierDLApproach`, `SentimentDLApproach`, `MultiClassifierDLApproach`, etc. By default, it will be in User's Home directory under `annotator_logs` directory | | `spark.jsl.settings.aws.credentials.access_key_id` | `None` | Your AWS access key to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.credentials.secret_access_key` | `None` | Your AWS secret access key to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.credentials.session_token` | `None` | Your AWS MFA session token to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.s3_bucket` | `None` | Your AWS S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | | `spark.jsl.settings.aws.region` | `None` | Your AWS region to use your S3 bucket to store log files of training models or access tensorflow graphs used in `NerDLApproach` | ### How to set Spark NLP Configuration **SparkSession:** You can use `.config()` during SparkSession creation to set Spark NLP configurations. ```python from pyspark.sql import SparkSession spark = SparkSession.builder .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") .config("spark.kryoserializer.buffer.max", "2000m") .config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained") .config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage") .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2") .getOrCreate() ``` **spark-shell:** ```sh spark-shell \ --driver-memory 16g \ --conf spark.driver.maxResultSize=0 \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` **pyspark:** ```sh pyspark \ --driver-memory 16g \ --conf spark.driver.maxResultSize=0 \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer --conf spark.kryoserializer.buffer.max=2000M \ --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \ --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.3.2 ``` **Databricks:** On a new cluster or existing one you need to add the following to the `Advanced Options -> Spark` tab: ```bash spark.kryoserializer.buffer.max 2000M spark.serializer org.apache.spark.serializer.KryoSerializer spark.jsl.settings.pretrained.cache_folder dbfs:/PATH_TO_CACHE spark.jsl.settings.storage.cluster_tmp_dir dbfs:/PATH_TO_STORAGE spark.jsl.settings.annotator.log_folder dbfs:/PATH_TO_LOGS ``` NOTE: If this is an existing cluster, after adding new configs or changing existing properties you need to restart it. ### S3 Integration In Spark NLP we can define S3 locations to: - Export log files of training models - Store tensorflow graphs used in `NerDLApproach` **Logging:** To configure S3 path for logging while training models. We need to set up AWS credentials as well as an S3 path ```bash spark.conf.set("spark.jsl.settings.annotator.log_folder", "s3://my/s3/path/logs") spark.conf.set("spark.jsl.settings.aws.credentials.access_key_id", "MY_KEY_ID") spark.conf.set("spark.jsl.settings.aws.credentials.secret_access_key", "MY_SECRET_ACCESS_KEY") spark.conf.set("spark.jsl.settings.aws.s3_bucket", "my.bucket") spark.conf.set("spark.jsl.settings.aws.region", "my-region") ``` Now you can check the log on your S3 path defined in *spark.jsl.settings.annotator.log_folder* property. Make sure to use the prefix *s3://*, otherwise it will use the default configuration. **Tensorflow Graphs:** To reference S3 location for downloading graphs. We need to set up AWS credentials ```bash spark.conf.set("spark.jsl.settings.aws.credentials.access_key_id", "MY_KEY_ID") spark.conf.set("spark.jsl.settings.aws.credentials.secret_access_key", "MY_SECRET_ACCESS_KEY") spark.conf.set("spark.jsl.settings.aws.region", "my-region") ``` **MFA Configuration:** In case your AWS account is configured with MFA. You will need first to get temporal credentials and add session token to the configuration as shown in the examples below For logging: ```bash spark.conf.set("spark.jsl.settings.aws.credentials.session_token", "MY_TOKEN") ``` An example of a bash script that gets temporal AWS credentials can be found [here](https://github.com/JohnSnowLabs/spark-nlp/blob/master/scripts/aws_tmp_credentials.sh) This script requires three arguments: ```bash ./aws_tmp_credentials.sh iam_user duration serial_number ``` ## Pipelines and Models ### Pipelines **Quick example:** ```scala import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline import com.johnsnowlabs.nlp.SparkNLP SparkNLP.version() val testData = spark.createDataFrame(Seq( (1, "Google has announced the release of a beta version of the popular TensorFlow machine learning library"), (2, "Donald John Trump (born June 14, 1946) is the 45th and current president of the United States") )).toDF("id", "text") val pipeline = PretrainedPipeline("explain_document_dl", lang = "en") val annotation = pipeline.transform(testData) annotation.show() /* import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline import com.johnsnowlabs.nlp.SparkNLP 2.5.0 testData: org.apache.spark.sql.DataFrame = [id: int, text: string] pipeline: com.johnsnowlabs.nlp.pretrained.PretrainedPipeline = PretrainedPipeline(explain_document_dl,en,public/models) annotation: org.apache.spark.sql.DataFrame = [id: int, text: string ... 10 more fields] +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ | id| text| document| token| sentence| checked| lemma| stem| pos| embeddings| ner| entities| +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ | 1|Google has announ...|[[document, 0, 10...|[[token, 0, 5, Go...|[[document, 0, 10...|[[token, 0, 5, Go...|[[token, 0, 5, Go...|[[token, 0, 5, go...|[[pos, 0, 5, NNP,...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 0, 5, Go...| | 2|The Paris metro w...|[[document, 0, 11...|[[token, 0, 2, Th...|[[document, 0, 11...|[[token, 0, 2, Th...|[[token, 0, 2, Th...|[[token, 0, 2, th...|[[pos, 0, 2, DT, ...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 4, 8, Pa...| +---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+ */ annotation.select("entities.result").show(false) /* +----------------------------------+ |result | +----------------------------------+ |[Google, TensorFlow] | |[Donald John Trump, United States]| +----------------------------------+ */ ``` #### Showing Available Pipelines There are functions in Spark NLP that will list all the available Pipelines of a particular language for you: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicPipelines(lang = "en") /* +--------------------------------------------+------+---------+ | Pipeline | lang | version | +--------------------------------------------+------+---------+ | dependency_parse | en | 2.0.2 | | analyze_sentiment_ml | en | 2.0.2 | | check_spelling | en | 2.1.0 | | match_datetime | en | 2.1.0 | ... | explain_document_ml | en | 3.1.3 | +--------------------------------------------+------+---------+ */ ``` Or if we want to check for a particular version: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicPipelines(lang = "en", version = "3.1.0") /* +---------------------------------------+------+---------+ | Pipeline | lang | version | +---------------------------------------+------+---------+ | dependency_parse | en | 2.0.2 | ... | clean_slang | en | 3.0.0 | | clean_pattern | en | 3.0.0 | | check_spelling | en | 3.0.0 | | dependency_parse | en | 3.0.0 | +---------------------------------------+------+---------+ */ ``` #### Please check out our Models Hub for the full list of [pre-trained pipelines](https://nlp.johnsnowlabs.com/models) with examples, demos, benchmarks, and more ### Models **Some selected languages: ** `Afrikaans, Arabic, Armenian, Basque, Bengali, Breton, Bulgarian, Catalan, Czech, Dutch, English, Esperanto, Finnish, French, Galician, German, Greek, Hausa, Hebrew, Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Latin, Latvian, Marathi, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Somali, Southern Sotho, Spanish, Swahili, Swedish, Tswana, Turkish, Ukrainian, Zulu` **Quick online example:** ```python # load NER model trained by deep learning approach and GloVe word embeddings ner_dl = NerDLModel.pretrained('ner_dl') # load NER model trained by deep learning approach and BERT word embeddings ner_bert = NerDLModel.pretrained('ner_dl_bert') ``` ```scala // load French POS tagger model trained by Universal Dependencies val french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang = "fr") // load Italian LemmatizerModel val italian_lemma = LemmatizerModel.pretrained("lemma_dxc", lang = "it") ```` **Quick offline example:** - Loading `PerceptronModel` annotator model inside Spark NLP Pipeline ```scala val french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/") .setInputCols("document", "token") .setOutputCol("pos") ``` #### Showing Available Models There are functions in Spark NLP that will list all the available Models of a particular Annotator and language for you: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicModels(annotator = "NerDLModel", lang = "en") /* +---------------------------------------------+------+---------+ | Model | lang | version | +---------------------------------------------+------+---------+ | onto_100 | en | 2.1.0 | | onto_300 | en | 2.1.0 | | ner_dl_bert | en | 2.2.0 | | onto_100 | en | 2.4.0 | | ner_conll_elmo | en | 3.2.2 | +---------------------------------------------+------+---------+ */ ``` Or if we want to check for a particular version: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showPublicModels(annotator = "NerDLModel", lang = "en", version = "3.1.0") /* +----------------------------+------+---------+ | Model | lang | version | +----------------------------+------+---------+ | onto_100 | en | 2.1.0 | | ner_aspect_based_sentiment | en | 2.6.2 | | ner_weibo_glove_840B_300d | en | 2.6.2 | | nerdl_atis_840b_300d | en | 2.7.1 | | nerdl_snips_100d | en | 2.7.3 | +----------------------------+------+---------+ */ ``` And to see a list of available annotators, you can use: ```scala import com.johnsnowlabs.nlp.pretrained.ResourceDownloader ResourceDownloader.showAvailableAnnotators() /* AlbertEmbeddings AlbertForTokenClassification AssertionDLModel ... XlmRoBertaSentenceEmbeddings XlnetEmbeddings */ ``` #### Please check out our Models Hub for the full list of [pre-trained models](https://nlp.johnsnowlabs.com/models) with examples, demo, benchmark, and more ## Offline Spark NLP library and all the pre-trained models/pipelines can be used entirely offline with no access to the Internet. If you are behind a proxy or a firewall with no access to the Maven repository (to download packages) or/and no access to S3 (to automatically download models and pipelines), you can simply follow the instructions to have Spark NLP without any limitations offline: - Instead of using the Maven package, you need to load our Fat JAR - Instead of using PretrainedPipeline for pretrained pipelines or the `.pretrained()` function to download pretrained models, you will need to manually download your pipeline/model from [Models Hub](https://nlp.johnsnowlabs.com/models), extract it, and load it. Example of `SparkSession` with Fat JAR to have Spark NLP offline: ```python spark = SparkSession.builder .appName("Spark NLP") .master("local[*]") .config("spark.driver.memory", "16G") .config("spark.driver.maxResultSize", "0") .config("spark.kryoserializer.buffer.max", "2000M") .config("spark.jars", "/tmp/spark-nlp-assembly-4.3.2.jar") .getOrCreate() ``` - You can download provided Fat JARs from each [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases), please pay attention to pick the one that suits your environment depending on the device (CPU/GPU) and Apache Spark version (3.0.x, 3.1.x, 3.2.x, and 3.3.x) - If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. ( i.e., `hdfs:///tmp/spark-nlp-assembly-4.3.2.jar`) Example of using pretrained Models and Pipelines in offline: ```python # instead of using pretrained() for online: # french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang="fr") # you download this model, extract it, and use .load french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/") .setInputCols("document", "token") .setOutputCol("pos") # example for pipelines # instead of using PretrainedPipeline # pipeline = PretrainedPipeline('explain_document_dl', lang='en') # you download this pipeline, extract it, and use PipelineModel PipelineModel.load("/tmp/explain_document_dl_en_2.0.2_2.4_1556530585689/") ``` - Since you are downloading and loading models/pipelines manually, this means Spark NLP is not downloading the most recent and compatible models/pipelines for you. Choosing the right model/pipeline is on you - If you are local, you can load the model/pipeline from your local FileSystem, however, if you are in a cluster setup you need to put the model/pipeline on a distributed FileSystem such as HDFS, DBFS, S3, etc. ( i.e., `hdfs:///tmp/explain_document_dl_en_2.0.2_2.4_1556530585689/`) ## Examples Need more **examples**? Check out our dedicated [Spark NLP Examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) repository to showcase all Spark NLP use cases! Also, don't forget to check [Spark NLP in Action](https://nlp.johnsnowlabs.com/demo) built by Streamlit. ### All examples: [spark-nlp/examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) ## FAQ [Check our Articles and Videos page here](https://nlp.johnsnowlabs.com/learn) ## Citation We have published a [paper](https://www.sciencedirect.com/science/article/pii/S2665963821000063) that you can cite for the Spark NLP library: ```bibtex @article{KOCAMAN2021100058, title = {Spark NLP: Natural language understanding at scale}, journal = {Software Impacts}, pages = {100058}, year = {2021}, issn = {2665-9638}, doi = {https://doi.org/10.1016/j.simpa.2021.100058}, url = {https://www.sciencedirect.com/science/article/pii/S2665963.2.300063}, author = {Veysel Kocaman and David Talby}, keywords = {Spark, Natural language processing, Deep learning, Tensorflow, Cluster}, abstract = {Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise.} } } ``` ## Contributing We appreciate any sort of contributions: - ideas - feedback - documentation - bug reports - NLP training and testing corpora - Development and testing Clone the repo and submit your pull-requests! Or directly create issues in this repo. ## John Snow Labs [http://johnsnowlabs.com](http://johnsnowlabs.com) %prep %autosetup -n spark-nlp-4.3.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-spark-nlp -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 4.3.2-1 - Package Spec generated