%global _empty_manifest_terminate_build 0 Name: python-requests-futures Version: 1.0.0 Release: 1 Summary: Asynchronous Python HTTP for Humans. License: Apache License v2 URL: https://github.com/ross/requests-futures Source0: https://mirrors.nju.edu.cn/pypi/web/packages/47/c4/fd48d1ac5110a5457c71ac7cc4caa93da10a80b8de71112430e439bdee22/requests-futures-1.0.0.tar.gz BuildArch: noarch %description Small add-on for the python requests_ http library. Makes use of python 3.2's `concurrent.futures`_ or the backport_ for prior versions of python. The additional API and changes are minimal and strives to avoid surprises. The following synchronous code: from requests import Session session = Session() # first requests starts and blocks until finished response_one = session.get('http://httpbin.org/get') # second request starts once first is finished response_two = session.get('http://httpbin.org/get?foo=bar') # both requests are complete print('response one status: {0}'.format(response_one.status_code)) print(response_one.content) print('response two status: {0}'.format(response_two.status_code)) print(response_two.content) Can be translated to make use of futures, and thus be asynchronous by creating a FuturesSession and catching the returned Future in place of Response. The Response can be retrieved by calling the result method on the Future: from requests_futures.sessions import FuturesSession session = FuturesSession() # first request is started in background future_one = session.get('http://httpbin.org/get') # second requests is started immediately future_two = session.get('http://httpbin.org/get?foo=bar') # wait for the first request to complete, if it hasn't already response_one = future_one.result() print('response one status: {0}'.format(response_one.status_code)) print(response_one.content) # wait for the second request to complete, if it hasn't already response_two = future_two.result() print('response two status: {0}'.format(response_two.status_code)) print(response_two.content) By default a ThreadPoolExecutor is created with 8 workers. If you would like to adjust that value or share a executor across multiple sessions you can provide one to the FuturesSession constructor. from concurrent.futures import ThreadPoolExecutor from requests_futures.sessions import FuturesSession session = FuturesSession(executor=ThreadPoolExecutor(max_workers=10)) # ... As a shortcut in case of just increasing workers number you can pass `max_workers` straight to the `FuturesSession` constructor: from requests_futures.sessions import FuturesSession session = FuturesSession(max_workers=10) FutureSession will use an existing session object if supplied: from requests import session from requests_futures.sessions import FuturesSession my_session = session() future_session = FuturesSession(session=my_session) That's it. The api of requests.Session is preserved without any modifications beyond returning a Future rather than Response. As with all futures exceptions are shifted (thrown) to the future.result() call so try/except blocks should be moved there. %package -n python3-requests-futures Summary: Asynchronous Python HTTP for Humans. Provides: python-requests-futures BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-requests-futures Small add-on for the python requests_ http library. Makes use of python 3.2's `concurrent.futures`_ or the backport_ for prior versions of python. The additional API and changes are minimal and strives to avoid surprises. The following synchronous code: from requests import Session session = Session() # first requests starts and blocks until finished response_one = session.get('http://httpbin.org/get') # second request starts once first is finished response_two = session.get('http://httpbin.org/get?foo=bar') # both requests are complete print('response one status: {0}'.format(response_one.status_code)) print(response_one.content) print('response two status: {0}'.format(response_two.status_code)) print(response_two.content) Can be translated to make use of futures, and thus be asynchronous by creating a FuturesSession and catching the returned Future in place of Response. The Response can be retrieved by calling the result method on the Future: from requests_futures.sessions import FuturesSession session = FuturesSession() # first request is started in background future_one = session.get('http://httpbin.org/get') # second requests is started immediately future_two = session.get('http://httpbin.org/get?foo=bar') # wait for the first request to complete, if it hasn't already response_one = future_one.result() print('response one status: {0}'.format(response_one.status_code)) print(response_one.content) # wait for the second request to complete, if it hasn't already response_two = future_two.result() print('response two status: {0}'.format(response_two.status_code)) print(response_two.content) By default a ThreadPoolExecutor is created with 8 workers. If you would like to adjust that value or share a executor across multiple sessions you can provide one to the FuturesSession constructor. from concurrent.futures import ThreadPoolExecutor from requests_futures.sessions import FuturesSession session = FuturesSession(executor=ThreadPoolExecutor(max_workers=10)) # ... As a shortcut in case of just increasing workers number you can pass `max_workers` straight to the `FuturesSession` constructor: from requests_futures.sessions import FuturesSession session = FuturesSession(max_workers=10) FutureSession will use an existing session object if supplied: from requests import session from requests_futures.sessions import FuturesSession my_session = session() future_session = FuturesSession(session=my_session) That's it. The api of requests.Session is preserved without any modifications beyond returning a Future rather than Response. As with all futures exceptions are shifted (thrown) to the future.result() call so try/except blocks should be moved there. %package help Summary: Development documents and examples for requests-futures Provides: python3-requests-futures-doc %description help Small add-on for the python requests_ http library. Makes use of python 3.2's `concurrent.futures`_ or the backport_ for prior versions of python. The additional API and changes are minimal and strives to avoid surprises. The following synchronous code: from requests import Session session = Session() # first requests starts and blocks until finished response_one = session.get('http://httpbin.org/get') # second request starts once first is finished response_two = session.get('http://httpbin.org/get?foo=bar') # both requests are complete print('response one status: {0}'.format(response_one.status_code)) print(response_one.content) print('response two status: {0}'.format(response_two.status_code)) print(response_two.content) Can be translated to make use of futures, and thus be asynchronous by creating a FuturesSession and catching the returned Future in place of Response. The Response can be retrieved by calling the result method on the Future: from requests_futures.sessions import FuturesSession session = FuturesSession() # first request is started in background future_one = session.get('http://httpbin.org/get') # second requests is started immediately future_two = session.get('http://httpbin.org/get?foo=bar') # wait for the first request to complete, if it hasn't already response_one = future_one.result() print('response one status: {0}'.format(response_one.status_code)) print(response_one.content) # wait for the second request to complete, if it hasn't already response_two = future_two.result() print('response two status: {0}'.format(response_two.status_code)) print(response_two.content) By default a ThreadPoolExecutor is created with 8 workers. If you would like to adjust that value or share a executor across multiple sessions you can provide one to the FuturesSession constructor. from concurrent.futures import ThreadPoolExecutor from requests_futures.sessions import FuturesSession session = FuturesSession(executor=ThreadPoolExecutor(max_workers=10)) # ... As a shortcut in case of just increasing workers number you can pass `max_workers` straight to the `FuturesSession` constructor: from requests_futures.sessions import FuturesSession session = FuturesSession(max_workers=10) FutureSession will use an existing session object if supplied: from requests import session from requests_futures.sessions import FuturesSession my_session = session() future_session = FuturesSession(session=my_session) That's it. The api of requests.Session is preserved without any modifications beyond returning a Future rather than Response. As with all futures exceptions are shifted (thrown) to the future.result() call so try/except blocks should be moved there. %prep %autosetup -n requests-futures-1.0.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-requests-futures -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 1.0.0-1 - Package Spec generated