%global _empty_manifest_terminate_build 0 Name: python-textblob Version: 0.17.1 Release: 1 Summary: Simple, Pythonic text processing. Sentiment analysis, part-of-speech tagging, noun phrase parsing, and more. License: MIT URL: https://github.com/sloria/TextBlob Source0: https://mirrors.nju.edu.cn/pypi/web/packages/bc/63/8c6f75b7edce0bbaed1d74f03b14c399767fcf08966c227182b62ad63426/textblob-0.17.1.tar.gz BuildArch: noarch Requires: python3-nltk Requires: python3-nltk %description Homepage: `https://textblob.readthedocs.io/ `_ `TextBlob` is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. from textblob import TextBlob text = ''' The titular threat of The Blob has always struck me as the ultimate movie monster: an insatiably hungry, amoeba-like mass able to penetrate virtually any safeguard, capable of--as a doomed doctor chillingly describes it--"assimilating flesh on contact. Snide comparisons to gelatin be damned, it's a concept with the most devastating of potential consequences, not unlike the grey goo scenario proposed by technological theorists fearful of artificial intelligence run rampant. ''' blob = TextBlob(text) blob.tags # [('The', 'DT'), ('titular', 'JJ'), # ('threat', 'NN'), ('of', 'IN'), ...] blob.noun_phrases # WordList(['titular threat', 'blob', # 'ultimate movie monster', # 'amoeba-like mass', ...]) for sentence in blob.sentences: print(sentence.sentiment.polarity) # 0.060 # -0.341 TextBlob stands on the giant shoulders of `NLTK`_ and `pattern`_, and plays nicely with both. %package -n python3-textblob Summary: Simple, Pythonic text processing. Sentiment analysis, part-of-speech tagging, noun phrase parsing, and more. Provides: python-textblob BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-textblob Homepage: `https://textblob.readthedocs.io/ `_ `TextBlob` is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. from textblob import TextBlob text = ''' The titular threat of The Blob has always struck me as the ultimate movie monster: an insatiably hungry, amoeba-like mass able to penetrate virtually any safeguard, capable of--as a doomed doctor chillingly describes it--"assimilating flesh on contact. Snide comparisons to gelatin be damned, it's a concept with the most devastating of potential consequences, not unlike the grey goo scenario proposed by technological theorists fearful of artificial intelligence run rampant. ''' blob = TextBlob(text) blob.tags # [('The', 'DT'), ('titular', 'JJ'), # ('threat', 'NN'), ('of', 'IN'), ...] blob.noun_phrases # WordList(['titular threat', 'blob', # 'ultimate movie monster', # 'amoeba-like mass', ...]) for sentence in blob.sentences: print(sentence.sentiment.polarity) # 0.060 # -0.341 TextBlob stands on the giant shoulders of `NLTK`_ and `pattern`_, and plays nicely with both. %package help Summary: Development documents and examples for textblob Provides: python3-textblob-doc %description help Homepage: `https://textblob.readthedocs.io/ `_ `TextBlob` is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. from textblob import TextBlob text = ''' The titular threat of The Blob has always struck me as the ultimate movie monster: an insatiably hungry, amoeba-like mass able to penetrate virtually any safeguard, capable of--as a doomed doctor chillingly describes it--"assimilating flesh on contact. Snide comparisons to gelatin be damned, it's a concept with the most devastating of potential consequences, not unlike the grey goo scenario proposed by technological theorists fearful of artificial intelligence run rampant. ''' blob = TextBlob(text) blob.tags # [('The', 'DT'), ('titular', 'JJ'), # ('threat', 'NN'), ('of', 'IN'), ...] blob.noun_phrases # WordList(['titular threat', 'blob', # 'ultimate movie monster', # 'amoeba-like mass', ...]) for sentence in blob.sentences: print(sentence.sentiment.polarity) # 0.060 # -0.341 TextBlob stands on the giant shoulders of `NLTK`_ and `pattern`_, and plays nicely with both. %prep %autosetup -n textblob-0.17.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-textblob -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 0.17.1-1 - Package Spec generated