%global _empty_manifest_terminate_build 0 Name: python-datasketch Version: 1.5.9 Release: 1 Summary: Probabilistic data structures for processing and searching very large datasets License: MIT URL: https://ekzhu.github.io/datasketch Source0: https://mirrors.nju.edu.cn/pypi/web/packages/34/42/22ca877495066c15f05ed0fef1769545ff81efc97de0bfca49e703e06a49/datasketch-1.5.9.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scipy Requires: python3-pyhash Requires: python3-matplotlib Requires: python3-scikit-learn Requires: python3-scipy Requires: python3-pandas Requires: python3-SetSimilaritySearch Requires: python3-pyfarmhash Requires: python3-nltk Requires: python3-cassandra-driver Requires: python3-aiounittest Requires: python3-motor Requires: python3-redis Requires: python3-cassandra-driver Requires: python3-redis Requires: python3-mock Requires: python3-mockredispy Requires: python3-coverage Requires: python3-pymongo Requires: python3-nose Requires: python3-nose-exclude Requires: python3-pytest %description datasketch gives you probabilistic data structures that can process and search very large amount of data super fast, with little loss of accuracy. This package contains the following data sketches: +-------------------------+-----------------------------------------------+ | Data Sketch | Usage | +=========================+===============================================+ | `MinHash`_ | estimate Jaccard similarity and cardinality | +-------------------------+-----------------------------------------------+ | `Weighted MinHash`_ | estimate weighted Jaccard similarity | +-------------------------+-----------------------------------------------+ | `HyperLogLog`_ | estimate cardinality | +-------------------------+-----------------------------------------------+ | `HyperLogLog++`_ | estimate cardinality | +-------------------------+-----------------------------------------------+ The following indexes for data sketches are provided to support sub-linear query time: +---------------------------+-----------------------------+------------------------+ | Index | For Data Sketch | Supported Query Type | +===========================+=============================+========================+ | `MinHash LSH`_ | MinHash, Weighted MinHash | Jaccard Threshold | +---------------------------+-----------------------------+------------------------+ | `MinHash LSH Forest`_ | MinHash, Weighted MinHash | Jaccard Top-K | +---------------------------+-----------------------------+------------------------+ | `MinHash LSH Ensemble`_ | MinHash | Containment Threshold | +---------------------------+-----------------------------+------------------------+ datasketch must be used with Python 2.7 or above, NumPy 1.11 or above, and Scipy. Note that `MinHash LSH`_ and `MinHash LSH Ensemble`_ also support Redis and Cassandra storage layer (see `MinHash LSH at Scale`_). %package -n python3-datasketch Summary: Probabilistic data structures for processing and searching very large datasets Provides: python-datasketch BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-datasketch datasketch gives you probabilistic data structures that can process and search very large amount of data super fast, with little loss of accuracy. This package contains the following data sketches: +-------------------------+-----------------------------------------------+ | Data Sketch | Usage | +=========================+===============================================+ | `MinHash`_ | estimate Jaccard similarity and cardinality | +-------------------------+-----------------------------------------------+ | `Weighted MinHash`_ | estimate weighted Jaccard similarity | +-------------------------+-----------------------------------------------+ | `HyperLogLog`_ | estimate cardinality | +-------------------------+-----------------------------------------------+ | `HyperLogLog++`_ | estimate cardinality | +-------------------------+-----------------------------------------------+ The following indexes for data sketches are provided to support sub-linear query time: +---------------------------+-----------------------------+------------------------+ | Index | For Data Sketch | Supported Query Type | +===========================+=============================+========================+ | `MinHash LSH`_ | MinHash, Weighted MinHash | Jaccard Threshold | +---------------------------+-----------------------------+------------------------+ | `MinHash LSH Forest`_ | MinHash, Weighted MinHash | Jaccard Top-K | +---------------------------+-----------------------------+------------------------+ | `MinHash LSH Ensemble`_ | MinHash | Containment Threshold | +---------------------------+-----------------------------+------------------------+ datasketch must be used with Python 2.7 or above, NumPy 1.11 or above, and Scipy. Note that `MinHash LSH`_ and `MinHash LSH Ensemble`_ also support Redis and Cassandra storage layer (see `MinHash LSH at Scale`_). %package help Summary: Development documents and examples for datasketch Provides: python3-datasketch-doc %description help datasketch gives you probabilistic data structures that can process and search very large amount of data super fast, with little loss of accuracy. This package contains the following data sketches: +-------------------------+-----------------------------------------------+ | Data Sketch | Usage | +=========================+===============================================+ | `MinHash`_ | estimate Jaccard similarity and cardinality | +-------------------------+-----------------------------------------------+ | `Weighted MinHash`_ | estimate weighted Jaccard similarity | +-------------------------+-----------------------------------------------+ | `HyperLogLog`_ | estimate cardinality | +-------------------------+-----------------------------------------------+ | `HyperLogLog++`_ | estimate cardinality | +-------------------------+-----------------------------------------------+ The following indexes for data sketches are provided to support sub-linear query time: +---------------------------+-----------------------------+------------------------+ | Index | For Data Sketch | Supported Query Type | +===========================+=============================+========================+ | `MinHash LSH`_ | MinHash, Weighted MinHash | Jaccard Threshold | +---------------------------+-----------------------------+------------------------+ | `MinHash LSH Forest`_ | MinHash, Weighted MinHash | Jaccard Top-K | +---------------------------+-----------------------------+------------------------+ | `MinHash LSH Ensemble`_ | MinHash | Containment Threshold | +---------------------------+-----------------------------+------------------------+ datasketch must be used with Python 2.7 or above, NumPy 1.11 or above, and Scipy. Note that `MinHash LSH`_ and `MinHash LSH Ensemble`_ also support Redis and Cassandra storage layer (see `MinHash LSH at Scale`_). %prep %autosetup -n datasketch-1.5.9 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-datasketch -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 1.5.9-1 - Package Spec generated