%global _empty_manifest_terminate_build 0 Name: python-huey Version: 2.4.5 Release: 1 Summary: huey, a little task queue License: None URL: http://github.com/coleifer/huey/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a7/2e/a1afc46dd8fadf43eaa7ca7232d1c766d444d636e840278bd1b6c2b6d873/huey-2.4.5.tar.gz BuildArch: noarch %description from huey import RedisHuey, crontab huey = RedisHuey('my-app', host='redis.myapp.com') @huey.task() def add_numbers(a, b): return a + b @huey.task(retries=2, retry_delay=60) def flaky_task(url): # This task might fail, in which case it will be retried up to 2 times # with a delay of 60s between retries. return this_might_fail(url) @huey.periodic_task(crontab(minute='0', hour='3')) def nightly_backup(): sync_all_data() Calling a ``task``-decorated function will enqueue the function call for execution by the consumer. A special result handle is returned immediately, which can be used to fetch the result once the task is finished: >>> from demo import add_numbers >>> res = add_numbers(1, 2) >>> res >>> res() 3 Tasks can be scheduled to run in the future: >>> res = add_numbers.schedule((2, 3), delay=10) # Will be run in ~10s. >>> res(blocking=True) # Will block until task finishes, in ~10s. 5 For much more, check out the `guide `_ or take a look at the `example code `_. Running the consumer ^^^^^^^^^^^^^^^^^^^^ Run the consumer with four worker processes: $ huey_consumer.py my_app.huey -k process -w 4 To run the consumer with a single worker thread (default): $ huey_consumer.py my_app.huey If your work-loads are mostly IO-bound, you can run the consumer with threads or greenlets instead. Because greenlets are so lightweight, you can run quite a few of them efficiently: $ huey_consumer.py my_app.huey -k greenlet -w 32 %package -n python3-huey Summary: huey, a little task queue Provides: python-huey BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-huey from huey import RedisHuey, crontab huey = RedisHuey('my-app', host='redis.myapp.com') @huey.task() def add_numbers(a, b): return a + b @huey.task(retries=2, retry_delay=60) def flaky_task(url): # This task might fail, in which case it will be retried up to 2 times # with a delay of 60s between retries. return this_might_fail(url) @huey.periodic_task(crontab(minute='0', hour='3')) def nightly_backup(): sync_all_data() Calling a ``task``-decorated function will enqueue the function call for execution by the consumer. A special result handle is returned immediately, which can be used to fetch the result once the task is finished: >>> from demo import add_numbers >>> res = add_numbers(1, 2) >>> res >>> res() 3 Tasks can be scheduled to run in the future: >>> res = add_numbers.schedule((2, 3), delay=10) # Will be run in ~10s. >>> res(blocking=True) # Will block until task finishes, in ~10s. 5 For much more, check out the `guide `_ or take a look at the `example code `_. Running the consumer ^^^^^^^^^^^^^^^^^^^^ Run the consumer with four worker processes: $ huey_consumer.py my_app.huey -k process -w 4 To run the consumer with a single worker thread (default): $ huey_consumer.py my_app.huey If your work-loads are mostly IO-bound, you can run the consumer with threads or greenlets instead. Because greenlets are so lightweight, you can run quite a few of them efficiently: $ huey_consumer.py my_app.huey -k greenlet -w 32 %package help Summary: Development documents and examples for huey Provides: python3-huey-doc %description help from huey import RedisHuey, crontab huey = RedisHuey('my-app', host='redis.myapp.com') @huey.task() def add_numbers(a, b): return a + b @huey.task(retries=2, retry_delay=60) def flaky_task(url): # This task might fail, in which case it will be retried up to 2 times # with a delay of 60s between retries. return this_might_fail(url) @huey.periodic_task(crontab(minute='0', hour='3')) def nightly_backup(): sync_all_data() Calling a ``task``-decorated function will enqueue the function call for execution by the consumer. A special result handle is returned immediately, which can be used to fetch the result once the task is finished: >>> from demo import add_numbers >>> res = add_numbers(1, 2) >>> res >>> res() 3 Tasks can be scheduled to run in the future: >>> res = add_numbers.schedule((2, 3), delay=10) # Will be run in ~10s. >>> res(blocking=True) # Will block until task finishes, in ~10s. 5 For much more, check out the `guide `_ or take a look at the `example code `_. Running the consumer ^^^^^^^^^^^^^^^^^^^^ Run the consumer with four worker processes: $ huey_consumer.py my_app.huey -k process -w 4 To run the consumer with a single worker thread (default): $ huey_consumer.py my_app.huey If your work-loads are mostly IO-bound, you can run the consumer with threads or greenlets instead. Because greenlets are so lightweight, you can run quite a few of them efficiently: $ huey_consumer.py my_app.huey -k greenlet -w 32 %prep %autosetup -n huey-2.4.5 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-huey -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 2.4.5-1 - Package Spec generated