%global _empty_manifest_terminate_build 0 Name: python-FLAML Version: 1.2.0 Release: 1 Summary: A fast library for automated machine learning and tuning License: MIT License URL: https://github.com/microsoft/FLAML Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fb/f7/38298ae67a633f668e68bf08cc13d7c401852b036ddfb95098a86315f028/FLAML-1.2.0.tar.gz BuildArch: noarch Requires: python3-NumPy Requires: python3-lightgbm Requires: python3-xgboost Requires: python3-scipy Requires: python3-pandas Requires: python3-scikit-learn Requires: python3-azureml-mlflow Requires: python3-catboost Requires: python3-psutil Requires: python3-xgboost Requires: python3-optuna Requires: python3-catboost Requires: python3-holidays Requires: python3-prophet Requires: python3-statsmodels Requires: python3-hcrystalball Requires: python3-pytorch-forecasting Requires: python3-transformers[torch] Requires: python3-datasets Requires: python3-nltk Requires: python3-rouge-score Requires: python3-seqeval Requires: python3-transformers[torch] Requires: python3-datasets Requires: python3-nltk Requires: python3-rouge-score Requires: python3-seqeval Requires: python3-nni Requires: python3-jupyter Requires: python3-matplotlib Requires: python3-openml Requires: python3-openai Requires: python3-diskcache Requires: python3-optuna Requires: python3-ray[tune] Requires: python3-pyspark Requires: python3-joblibspark Requires: python3-joblibspark Requires: python3-optuna Requires: python3-pyspark Requires: python3-flake8 Requires: python3-thop Requires: python3-pytest Requires: python3-coverage Requires: python3-pre-commit Requires: python3-torch Requires: python3-torchvision Requires: python3-catboost Requires: python3-rgf-python Requires: python3-optuna Requires: python3-openml Requires: python3-statsmodels Requires: python3-psutil Requires: python3-dataclasses Requires: python3-transformers[torch] Requires: python3-datasets Requires: python3-nltk Requires: python3-rouge-score Requires: python3-hcrystalball Requires: python3-seqeval Requires: python3-pytorch-forecasting Requires: python3-mlflow Requires: python3-pyspark Requires: python3-joblibspark Requires: python3-nbconvert Requires: python3-nbformat Requires: python3-ipykernel Requires: python3-pytorch-lightning Requires: python3-holidays Requires: python3-prophet Requires: python3-statsmodels Requires: python3-hcrystalball Requires: python3-vowpalwabbit %description [![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML) ![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml) [![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml) ![Python Version](https://img.shields.io/badge/3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue) [![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml) [![Join the chat at https://gitter.im/FLAMLer/community](https://badges.gitter.im/FLAMLer/community.svg)](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP) # A Fast Library for Automated Machine Learning & Tuning


:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0. :fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023. :fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022 ## What is FLAML FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on. 1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series. 1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code). 1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm) and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research). FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience. ## Installation ### Python FLAML requires **Python version >= 3.7**. It can be installed from pip: ```bash pip install flaml ``` To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook), install flaml with the [notebook] option: ```bash pip install flaml[notebook] ``` ### .NET Use the following guides to get started with FLAML in .NET: - [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022) - [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows) - [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0) ## Quickstart * With three lines of code, you can start using this economical and fast AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML). ```python from flaml import AutoML automl = AutoML() automl.fit(X_train, y_train, task="classification") ``` * You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space). ```python automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"]) ``` * You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function). ```python from flaml import tune tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600) ``` * [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task. ```python from flaml.default import LGBMRegressor # Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor. estimator = LGBMRegressor() # The hyperparameters are automatically set according to the training data. estimator.fit(X_train, y_train) ``` * (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets. ```python from flaml import oai config, analysis = oai.Completion.tune( data=tune_data, metric="success", mode="max", eval_func=eval_func, inference_budget=0.05, optimization_budget=3, num_samples=-1, ) ``` ## Documentation You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples. In addition, you can find: - [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML. - Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research). - FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ). - Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute). - ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api). ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit . If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments. %package -n python3-FLAML Summary: A fast library for automated machine learning and tuning Provides: python-FLAML BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-FLAML [![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML) ![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml) [![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml) ![Python Version](https://img.shields.io/badge/3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue) [![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml) [![Join the chat at https://gitter.im/FLAMLer/community](https://badges.gitter.im/FLAMLer/community.svg)](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP) # A Fast Library for Automated Machine Learning & Tuning


:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0. :fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023. :fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022 ## What is FLAML FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on. 1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series. 1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code). 1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm) and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research). FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience. ## Installation ### Python FLAML requires **Python version >= 3.7**. It can be installed from pip: ```bash pip install flaml ``` To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook), install flaml with the [notebook] option: ```bash pip install flaml[notebook] ``` ### .NET Use the following guides to get started with FLAML in .NET: - [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022) - [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows) - [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0) ## Quickstart * With three lines of code, you can start using this economical and fast AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML). ```python from flaml import AutoML automl = AutoML() automl.fit(X_train, y_train, task="classification") ``` * You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space). ```python automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"]) ``` * You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function). ```python from flaml import tune tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600) ``` * [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task. ```python from flaml.default import LGBMRegressor # Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor. estimator = LGBMRegressor() # The hyperparameters are automatically set according to the training data. estimator.fit(X_train, y_train) ``` * (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets. ```python from flaml import oai config, analysis = oai.Completion.tune( data=tune_data, metric="success", mode="max", eval_func=eval_func, inference_budget=0.05, optimization_budget=3, num_samples=-1, ) ``` ## Documentation You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples. In addition, you can find: - [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML. - Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research). - FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ). - Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute). - ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api). ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit . If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments. %package help Summary: Development documents and examples for FLAML Provides: python3-FLAML-doc %description help [![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML) ![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml) [![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml) ![Python Version](https://img.shields.io/badge/3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue) [![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml) [![Join the chat at https://gitter.im/FLAMLer/community](https://badges.gitter.im/FLAMLer/community.svg)](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP) # A Fast Library for Automated Machine Learning & Tuning


:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0. :fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023. :fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022 ## What is FLAML FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on. 1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series. 1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code). 1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm) and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research). FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience. ## Installation ### Python FLAML requires **Python version >= 3.7**. It can be installed from pip: ```bash pip install flaml ``` To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook), install flaml with the [notebook] option: ```bash pip install flaml[notebook] ``` ### .NET Use the following guides to get started with FLAML in .NET: - [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022) - [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows) - [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0) ## Quickstart * With three lines of code, you can start using this economical and fast AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML). ```python from flaml import AutoML automl = AutoML() automl.fit(X_train, y_train, task="classification") ``` * You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space). ```python automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"]) ``` * You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function). ```python from flaml import tune tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600) ``` * [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task. ```python from flaml.default import LGBMRegressor # Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor. estimator = LGBMRegressor() # The hyperparameters are automatically set according to the training data. estimator.fit(X_train, y_train) ``` * (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets. ```python from flaml import oai config, analysis = oai.Completion.tune( data=tune_data, metric="success", mode="max", eval_func=eval_func, inference_budget=0.05, optimization_budget=3, num_samples=-1, ) ``` ## Documentation You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples. In addition, you can find: - [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML. - Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research). - FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ). - Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute). - ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api). ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit . If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments. %prep %autosetup -n FLAML-1.2.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-FLAML -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 1.2.0-1 - Package Spec generated