%global _empty_manifest_terminate_build 0 Name: python-pycm Version: 3.8 Release: 1 Summary: Multi-class confusion matrix library in Python License: MIT URL: https://github.com/sepandhaghighi/pycm Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c0/31/81a7321247dc1972a11145deaae2fcdda4876a20136783a13d135da64799/pycm-3.8.tar.gz BuildArch: noarch %description

PyCM: Python Confusion Matrix


built with Python3 PyPI version Document Discord Channel
## Table of contents * [Overview](https://github.com/sepandhaghighi/pycm#overview) * [Installation](https://github.com/sepandhaghighi/pycm#installation) * [Usage](https://github.com/sepandhaghighi/pycm#usage) * [Document](https://github.com/sepandhaghighi/pycm/tree/master/Document) * [Try PyCM in Your Browser](https://github.com/sepandhaghighi/pycm#try-pycm-in-your-browser) * [Issues & Bug Reports](https://github.com/sepandhaghighi/pycm#issues--bug-reports) * [Todo](https://github.com/sepandhaghighi/pycm/blob/master/TODO.md) * [Contribution](https://github.com/sepandhaghighi/pycm/blob/master/.github/CONTRIBUTING.md) * [Acknowledgments](https://github.com/sepandhaghighi/pycm#acknowledgments) * [Cite](https://github.com/sepandhaghighi/pycm#cite) * [Authors](https://github.com/sepandhaghighi/pycm/blob/master/AUTHORS.md) * [License](https://github.com/sepandhaghighi/pycm/blob/master/LICENSE) * [Show Your Support](https://github.com/sepandhaghighi/pycm#show-your-support) * [Changelog](https://github.com/sepandhaghighi/pycm/blob/master/CHANGELOG.md) * [Code of Conduct](https://github.com/sepandhaghighi/pycm/blob/master/.github/CODE_OF_CONDUCT.md) ## Overview

PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and accurate evaluation of a large variety of classifiers.

Fig1. ConfusionMatrix Block Diagram

Open Hub
PyPI Counter
Github Stars
Branch master dev
CI
Code Quality CodeFactor codebeat badge
## Installation ⚠️ PyCM 2.4 is the last version to support **Python 2.7** & **Python 3.4** ⚠️ Plotting capability requires **Matplotlib (>= 3.0.0)** or **Seaborn (>= 0.9.1)** ### Source code - Download [Version 3.8](https://github.com/sepandhaghighi/pycm/archive/v3.8.zip) or [Latest Source ](https://github.com/sepandhaghighi/pycm/archive/dev.zip) - Run `pip install -r requirements.txt` or `pip3 install -r requirements.txt` (Need root access) - Run `python3 setup.py install` or `python setup.py install` (Need root access) ### PyPI - Check [Python Packaging User Guide](https://packaging.python.org/installing/) - Run `pip install pycm==3.8` or `pip3 install pycm==3.8` (Need root access) ### Conda - Check [Conda Managing Package](https://conda.io/) - Update Conda using `conda update conda` (Need root access) - Run `conda install -c sepandhaghighi pycm` (Need root access) ### Easy install - Run `easy_install --upgrade pycm` (Need root access) ### MATLAB - Download and install [MATLAB](https://www.mathworks.com/products/matlab.html) (>=8.5, 64/32 bit) - Download and install [Python3.x](https://www.python.org/downloads/) (>=3.5, 64/32 bit) - [x] Select `Add to PATH` option - [x] Select `Install pip` option - Run `pip install pycm` or `pip3 install pycm` (Need root access) - Configure Python interpreter ```matlab >> pyversion PYTHON_EXECUTABLE_FULL_PATH ``` - Visit [MATLAB Examples](https://github.com/sepandhaghighi/pycm/tree/master/MATLAB) ## Usage ### From vector ```pycon >>> from pycm import * >>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2] >>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2] >>> cm = ConfusionMatrix(actual_vector=y_actu, predict_vector=y_pred) >>> cm.classes [0, 1, 2] >>> cm.table {0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}} >>> cm.print_matrix() Predict 0 1 2 Actual 0 3 0 0 1 0 1 2 2 2 1 3 >>> cm.print_normalized_matrix() Predict 0 1 2 Actual 0 1.0 0.0 0.0 1 0.0 0.33333 0.66667 2 0.33333 0.16667 0.5 >>> cm.stat(summary=True) Overall Statistics : ACC Macro 0.72222 F1 Macro 0.56515 FPR Macro 0.22222 Kappa 0.35484 Overall ACC 0.58333 PPV Macro 0.56667 SOA1(Landis & Koch) Fair TPR Macro 0.61111 Zero-one Loss 5 Class Statistics : Classes 0 1 2 ACC(Accuracy) 0.83333 0.75 0.58333 AUC(Area under the ROC curve) 0.88889 0.61111 0.58333 AUCI(AUC value interpretation) Very Good Fair Poor F1(F1 score - harmonic mean of precision and sensitivity) 0.75 0.4 0.54545 FN(False negative/miss/type 2 error) 0 2 3 FP(False positive/type 1 error/false alarm) 2 1 2 FPR(Fall-out or false positive rate) 0.22222 0.11111 0.33333 N(Condition negative) 9 9 6 P(Condition positive or support) 3 3 6 POP(Population) 12 12 12 PPV(Precision or positive predictive value) 0.6 0.5 0.6 TN(True negative/correct rejection) 7 8 4 TON(Test outcome negative) 7 10 7 TOP(Test outcome positive) 5 2 5 TP(True positive/hit) 3 1 3 TPR(Sensitivity, recall, hit rate, or true positive rate) 1.0 0.33333 0.5 ``` ### Direct CM ```pycon >>> from pycm import * >>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2":2}, "Class2": {"Class1": 0, "Class2": 5}}) >>> cm2 pycm.ConfusionMatrix(classes: ['Class1', 'Class2']) >>> cm2.classes ['Class1', 'Class2'] >>> cm2.print_matrix() Predict Class1 Class2 Actual Class1 1 2 Class2 0 5 >>> cm2.print_normalized_matrix() Predict Class1 Class2 Actual Class1 0.33333 0.66667 Class2 0.0 1.0 >>> cm2.stat(summary=True) Overall Statistics : ACC Macro 0.75 F1 Macro 0.66667 FPR Macro 0.33333 Kappa 0.38462 Overall ACC 0.75 PPV Macro 0.85714 SOA1(Landis & Koch) Fair TPR Macro 0.66667 Zero-one Loss 2 Class Statistics : Classes Class1 Class2 ACC(Accuracy) 0.75 0.75 AUC(Area under the ROC curve) 0.66667 0.66667 AUCI(AUC value interpretation) Fair Fair F1(F1 score - harmonic mean of precision and sensitivity) 0.5 0.83333 FN(False negative/miss/type 2 error) 2 0 FP(False positive/type 1 error/false alarm) 0 2 FPR(Fall-out or false positive rate) 0.0 0.66667 N(Condition negative) 5 3 P(Condition positive or support) 3 5 POP(Population) 8 8 PPV(Precision or positive predictive value) 1.0 0.71429 TN(True negative/correct rejection) 5 1 TON(Test outcome negative) 7 1 TOP(Test outcome positive) 1 7 TP(True positive/hit) 1 5 TPR(Sensitivity, recall, hit rate, or true positive rate) 0.33333 1.0 ``` * `matrix()` and `normalized_matrix()` renamed to `print_matrix()` and `print_normalized_matrix()` in `version 1.5` ### Activation threshold `threshold` is added in `version 0.9` for real value prediction. For more information visit [Example3](http://www.pycm.io/doc/Example3.html "Example3") ### Load from file `file` is added in `version 0.9.5` in order to load saved confusion matrix with `.obj` format generated by `save_obj` method. For more information visit [Example4](http://www.pycm.io/doc/Example4.html "Example4") ### Sample weights `sample_weight` is added in `version 1.2` For more information visit [Example5](http://www.pycm.io/doc/Example5.html "Example5") ### Transpose `transpose` is added in `version 1.2` in order to transpose input matrix (only in `Direct CM` mode) ### Relabel `relabel` method is added in `version 1.5` in order to change ConfusionMatrix classnames. ```pycon >>> cm.relabel(mapping={0:"L1",1:"L2",2:"L3"}) >>> cm pycm.ConfusionMatrix(classes: ['L1', 'L2', 'L3']) ``` ### Position `position` method is added in `version 2.8` in order to find the indexes of observations in `predict_vector` which made TP, TN, FP, FN. ```pycon >>> cm.position() {0: {'FN': [], 'FP': [0, 7], 'TP': [1, 4, 9], 'TN': [2, 3, 5, 6, 8, 10, 11]}, 1: {'FN': [5, 10], 'FP': [3], 'TP': [6], 'TN': [0, 1, 2, 4, 7, 8, 9, 11]}, 2: {'FN': [0, 3, 7], 'FP': [5, 10], 'TP': [2, 8, 11], 'TN': [1, 4, 6, 9]}} ``` ### To array `to_array` method is added in `version 2.9` in order to returns the confusion matrix in the form of a NumPy array. This can be helpful to apply different operations over the confusion matrix for different purposes such as aggregation, normalization, and combination. ```pycon >>> cm.to_array() array([[3, 0, 0], [0, 1, 2], [2, 1, 3]]) >>> cm.to_array(normalized=True) array([[1. , 0. , 0. ], [0. , 0.33333, 0.66667], [0.33333, 0.16667, 0.5 ]]) >>> cm.to_array(normalized=True, one_vs_all=True, class_name="L1") array([[1. , 0. ], [0.22222, 0.77778]]) ``` ### Combine `combine` method is added in `version 3.0` in order to merge two confusion matrices. This option will be useful in mini-batch learning. ```pycon >>> cm_combined = cm2.combine(cm3) >>> cm_combined.print_matrix() Predict Class1 Class2 Actual Class1 2 4 Class2 0 10 ``` ### Plot `plot` method is added in `version 3.0` in order to plot a confusion matrix using Matplotlib or Seaborn. ```pycon >>> cm.plot() ``` ```pycon >>> from matplotlib import pyplot as plt >>> cm.plot(cmap=plt.cm.Greens, number_label=True, plot_lib="matplotlib") ``` ```pycon >>> cm.plot(cmap=plt.cm.Reds, normalized=True, number_label=True, plot_lib="seaborn") ``` ### ROC curve `ROCCurve`, added in `version 3.7`, is devised to compute the Receiver Operating Characteristic (ROC) or simply ROC curve. In ROC curves, the Y axis represents the True Positive Rate, and the X axis represents the False Positive Rate. Thus, the ideal point is located at the top left of the curve, and a larger area under the curve represents better performance. ROC curve is a graphical representation of binary classifiers' performance. In PyCM, `ROCCurve` binarizes the output based on the "One vs. Rest" strategy to provide an extension of ROC for multi-class classifiers. Getting the actual labels vector, the target probability estimates of the positive classes, and the list of ordered labels of classes, this method is able to compute and plot TPR-FPR pairs for different discrimination thresholds and compute the area under the ROC curve. ```pycon >>> crv = ROCCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1]) >>> crv.thresholds [0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9] >>> auc_trp = crv.area() >>> auc_trp[1] 0.75 >>> auc_trp[2] 0.75 ``` ### Precision-Recall curve `PRCurve`, added in `version 3.7`, is devised to compute the Precision-Recall curve in which the Y axis represents the Precision, and the X axis represents the Recall of a classifier. Thus, the ideal point is located at the top right of the curve, and a larger area under the curve represents better performance. Precision-Recall curve is a graphical representation of binary classifiers' performance. In PyCM, `PRCurve` binarizes the output based on the "One vs. Rest" strategy to provide an extension of this curve for multi-class classifiers. Getting the actual labels vector, the target probability estimates of the positive classes, and the list of ordered labels of classes, this method is able to compute and plot Precision-Recall pairs for different discrimination thresholds and compute the area under the curve. ```pycon >>> crv = PRCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1]) >>> crv.thresholds [0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9] >>> auc_trp = crv.area() >>> auc_trp[1] 0.29166666666666663 >>> auc_trp[2] 0.29166666666666663 ``` ### Parameter recommender This option has been added in `version 1.9` to recommend the most related parameters considering the characteristics of the input dataset. The suggested parameters are selected according to some characteristics of the input such as being balance/imbalance and binary/multi-class. All suggestions can be categorized into three main groups: imbalanced dataset, binary classification for a balanced dataset, and multi-class classification for a balanced dataset. The recommendation lists have been gathered according to the respective paper of each parameter and the capabilities which had been claimed by the paper. ```pycon >>> cm.imbalance False >>> cm.binary False >>> cm.recommended_list ['MCC', 'TPR Micro', 'ACC', 'PPV Macro', 'BCD', 'Overall MCC', 'Hamming Loss', 'TPR Macro', 'Zero-one Loss', 'ERR', 'PPV Micro', 'Overall ACC'] ``` `is_imbalanced` parameter has been added in `version 3.3`, so the user can indicate whether the concerned dataset is imbalanced or not. As long as the user does not provide any information in this regard, the automatic detection algorithm will be used. ```pycon >>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced = True) >>> cm.imbalance True >>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced = False) >>> cm.imbalance False ``` ### Compare In `version 2.0`, a method for comparing several confusion matrices is introduced. This option is a combination of several overall and class-based benchmarks. Each of the benchmarks evaluates the performance of the classification algorithm from good to poor and give them a numeric score. The score of good and poor performances are 1 and 0, respectively. After that, two scores are calculated for each confusion matrices, overall and class-based. The overall score is the average of the score of seven overall benchmarks which are Landis & Koch, Cramer, Matthews, Goodman-Kruskal's Lambda A, Goodman-Kruskal's Lambda B, Krippendorff's Alpha, and Pearson's C. In the same manner, the class-based score is the average of the score of six class-based benchmarks which are Positive Likelihood Ratio Interpretation, Negative Likelihood Ratio Interpretation, Discriminant Power Interpretation, AUC value Interpretation, Matthews Correlation Coefficient Interpretation and Yule's Q Interpretation. It should be noticed that if one of the benchmarks returns none for one of the classes, that benchmarks will be eliminated in total averaging. If the user sets weights for the classes, the averaging over the value of class-based benchmark scores will transform to a weighted average. If the user sets the value of `by_class` boolean input `True`, the best confusion matrix is the one with the maximum class-based score. Otherwise, if a confusion matrix obtains the maximum of both overall and class-based scores, that will be reported as the best confusion matrix, but in any other case, the compared object doesn’t select the best confusion matrix. ```pycon >>> cm2 = ConfusionMatrix(matrix={0:{0:2, 1:50, 2:6}, 1:{0:5, 1:50, 2:3}, 2:{0:1, 1:7, 2:50}}) >>> cm3 = ConfusionMatrix(matrix={0:{0:50, 1:2, 2:6}, 1:{0:50, 1:5, 2:3}, 2:{0:1, 1:55, 2:2}}) >>> cp = Compare({"cm2":cm2, "cm3":cm3}) >>> print(cp) Best : cm2 Rank Name Class-Score Overall-Score 1 cm2 0.50278 0.58095 2 cm3 0.33611 0.52857 >>> cp.best pycm.ConfusionMatrix(classes: [0, 1, 2]) >>> cp.sorted ['cm2', 'cm3'] >>> cp.best_name 'cm2' ``` ### Online help `online_help` function is added in `version 1.1` in order to open each statistics definition in web browser ```pycon >>> from pycm import online_help >>> online_help("J") >>> online_help("SOA1(Landis & Koch)") >>> online_help(2) ``` * List of items are available by calling `online_help()` (without argument) * If PyCM website is not available, set `alt_link = True` (new in `version 2.4`) ### Acceptable data types **ConfusionMatrix** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `predict_vector` : python `list` or numpy `array` of any stringable objects 3. `matrix` : `dict` 4. `digit`: `int` 5. `threshold` : `FunctionType (function or lambda)` 6. `file` : `File object` 7. `sample_weight` : python `list` or numpy `array` of numbers 8. `transpose` : `bool` 9. `classes` : python `list` 10. `is_imbalanced` : `bool` * Run `help(ConfusionMatrix)` for `ConfusionMatrix` object details **Compare** 1. `cm_dict` : python `dict` of `ConfusionMatrix` object (`str` : `ConfusionMatrix`) 2. `by_class` : `bool` 3. `class_weight` : python `dict` of class weights (`class_name` : `float`) 4. `class_benchmark_weight`: python `dict` of class benchmark weights (`class_benchmark_name` : `float`) 5. `overall_benchmark_weight`: python `dict` of overall benchmark weights (`overall_benchmark_name` : `float`) 6. `digit`: `int` * Run `help(Compare)` for `Compare` object details **ROCCurve** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `probs` : python `list` or numpy `array` 3. `classes` : python `list` 4. `thresholds`: python `list` or numpy `array` 5. `sample_weight`: python `list` or numpy `array` **PRCurve** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `probs` : python `list` or numpy `array` 3. `classes` : python `list` 4. `thresholds`: python `list` or numpy `array` 5. `sample_weight`: python `list` or numpy `array` For more information visit [here](https://github.com/sepandhaghighi/pycm/tree/master/Document "Document")
## Try PyCM in your browser! PyCM can be used online in interactive Jupyter Notebooks via the Binder or Colab services! Try it out now! : [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/sepandhaghighi/pycm/master) [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sepandhaghighi/pycm/blob/master) * Check `Examples` in `Document` folder ## Issues & bug reports 1. Fill an issue and describe it. We'll check it ASAP! - Please complete the issue template 2. Discord : [https://discord.com/invite/zqpU2b3J3f](https://discord.com/invite/zqpU2b3J3f) 3. Website : [https://www.pycm.io](https://www.pycm.io) 4. Mailing List : [https://mail.python.org/mailman3/lists/pycm.python.org/](https://mail.python.org/mailman3/lists/pycm.python.org/) 5. Email : [info@pycm.io](mailto:info@pycm.io "info@pycm.io") ## Acknowledgments [NLnet foundation](https://nlnet.nl) has supported the PyCM project from version **3.6** to **4.0** through the [NGI Assure](https://nlnet.nl/assure) Fund. This fund is set up by [NLnet foundation](https://nlnet.nl) with funding from the European Commission's [Next Generation Internet program](https://ngi.eu), administered by DG Communications Networks, Content, and Technology under grant agreement [**No 957073**](https://nlnet.nl/project/PyCM/). NLnet foundation   NGI Assure [Python Software Foundation (PSF)](https://www.python.org/psf/) grants PyCM library partially for version **3.7**. [PSF](https://www.python.org/psf/) is the organization behind Python. Their mission is to promote, protect, and advance the Python programming language and to support and facilitate the growth of a diverse and international community of Python programmers. Python Software Foundation ## Cite If you use PyCM in your research, we would appreciate citations to the following paper :
Haghighi, S., Jasemi, M., Hessabi, S. and Zolanvari, A. (2018). PyCM: Multiclass confusion matrix library in Python. Journal of Open Source Software, 3(25), p.729.

@article{Haghighi2018,
  doi = {10.21105/joss.00729},
  url = {https://doi.org/10.21105/joss.00729},
  year  = {2018},
  month = {may},
  publisher = {The Open Journal},
  volume = {3},
  number = {25},
  pages = {729},
  author = {Sepand Haghighi and Masoomeh Jasemi and Shaahin Hessabi and Alireza Zolanvari},
  title = {{PyCM}: Multiclass confusion matrix library in Python},
  journal = {Journal of Open Source Software}
}

Download [PyCM.bib](http://www.pycm.io/PYCM.bib)
JOSS
Zenodo DOI
Researchgate
## Show your support ### Star this repo Give a ⭐️ if this project helped you! ### Donate to our project If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) . PyCM Donation # Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.html). ## [Unreleased] ## [3.8] - 2023-02-01 ### Added - `distance` method - `__contains__` method - `__getitem__` method - Goodman-Kruskal's Lambda A benchmark - Goodman-Kruskal's Lambda B benchmark - Krippendorff's Alpha benchmark - Pearson's C benchmark - 30 new distance/similarity 1. AMPLE 2. Anderberg's D 3. Andres & Marzo's Delta 4. Baroni-Urbani & Buser I 5. Baroni-Urbani & Buser II 6. Batagelj & Bren 7. Baulieu I 8. Baulieu II 9. Baulieu III 10. Baulieu IV 11. Baulieu V 12. Baulieu VI 13. Baulieu VII 14. Baulieu VIII 15. Baulieu IX 16. Baulieu X 17. Baulieu XI 18. Baulieu XII 19. Baulieu XIII 20. Baulieu XIV 21. Baulieu XV 22. Benini I 23. Benini II 24. Canberra 25. Clement 26. Consonni & Todeschini I 27. Consonni & Todeschini II 28. Consonni & Todeschini III 29. Consonni & Todeschini IV 30. Consonni & Todeschini V ### Changed - `relabel` method sort bug fixed - `README.md` modified - `Compare` overall benchmarks default weights updated - Document modified - Test system modified ## [3.7] - 2022-12-15 ### Added - `Curve` class - `ROCCurve` class - `PRCurve` class - `pycmCurveError` class ### Changed - `CONTRIBUTING.md` updated - `matrix_params_calc` function optimized - `README.md` modified - Document modified - Test system modified - `Python 3.11` added to `test.yml` ## [3.6] - 2022-08-17 ### Added - Hamming distance - Braun-Blanquet similarity ### Changed - `classes` parameter added to `matrix_params_from_table` function - Matrices with `numpy.integer` elements are now accepted - Arrays added to `matrix` parameter accepting formats - Website changed to [http://www.pycm.io](http://www.pycm.io) - Document modified - `README.md` modified ## [3.5] - 2022-04-27 ### Added - Anaconda workflow - Custom iterating setting - Custom casting setting ### Changed - `plot` method updated - `class_statistics` function modified - `overall_statistics` function modified - `BCD_calc` function modified - `CONTRIBUTING.md` updated - `CODE_OF_CONDUCT.md` updated - Document modified ## [3.4] - 2022-01-26 ### Added - Colab badge - Discord badge - `brier_score` method ### Changed - `J (Jaccard index)` section in `Document.ipynb` updated - `save_obj` method updated - `Python 3.10` added to `test.yml` - Example-3 updated - Docstrings of the functions updated - `CONTRIBUTING.md` updated ## [3.3] - 2021-10-27 ### Added - `__compare_weight_handler__` function ### Changed - `is_imbalanced` parameter added to ConfusionMatrix `__init__` method - `class_benchmark_weight` and `overall_benchmark_weight` parameters added to Compare `__init__` method - `statistic_recommend` function modified - Compare `weight` parameter renamed to `class_weight` - Document modified - License updated - `AUTHORS.md` updated - `README.md` modified - Block diagrams updated ## [3.2] - 2021-08-11 ### Added - `classes_filter` function ### Changed - `classes` parameter added to `matrix_params_calc` function - `classes` parameter added to `__obj_vector_handler__` function - `classes` parameter added to ConfusionMatrix `__init__` method - `name` parameter removed from `html_init` function - `shortener` parameter added to `html_table` function - `shortener` parameter added to `save_html` method - Document modified - HTML report modified ## [3.1] - 2021-03-11 ### Added - `requirements-splitter.py` - `sensitivity_index` method ### Changed - Test system modified - `overall_statistics` function modified - HTML report modified - Document modified - References format updated - `CONTRIBUTING.md` updated ## [3.0] - 2020-10-26 ### Added - `plot_test.py` - `axes_gen` function - `add_number_label` function - `plot` method - `combine` method - `matrix_combine` function ### Changed - Document modified - `README.md` modified - Example-2 deprecated - Example-7 deprecated - Error messages modified ## [2.9] - 2020-09-23 ### Added - `notebook_check.py` - `to_array` method - `__copy__` method - `copy` method ### Changed - `average` method refactored ## [2.8] - 2020-07-09 ### Added - `label_map` attribute - `positions` attribute - `position` method - Krippendorff's Alpha - Aickin's Alpha - `weighted_alpha` method ### Changed - Single class bug fixed - `CLASS_NUMBER_ERROR` error type changed to `pycmMatrixError` - `relabel` method bug fixed - Document modified - `README.md` modified ## [2.7] - 2020-05-11 ### Added - `average` method - `weighted_average` method - `weighted_kappa` method - `pycmAverageError` class - Bangdiwala's B - MATLAB examples - Github action ### Changed - Document modified - `README.md` modified - `relabel` method bug fixed - `sparse_table_print` function bug fixed - `matrix_check` function bug fixed - Minor bug in `Compare` class fixed - Class names mismatch bug fixed ## [2.6] - 2020-03-25 ### Added - `custom_rounder` function - `complement` function - `sparse_matrix` attribute - `sparse_normalized_matrix` attribute - Net benefit (NB) - Yule's Q interpretation (QI) - Adjusted Rand index (ARI) - TNR micro/macro - FPR micro/macro - FNR micro/macro ### Changed - `sparse` parameter added to `print_matrix`,`print_normalized_matrix` and `save_stat` methods - `header` parameter added to `save_csv` method - Handler functions moved to `pycm_handler.py` - Error objects moved to `pycm_error.py` - Verified tests references updated - Verified tests moved to `verified_test.py` - Test system modified - `CONTRIBUTING.md` updated - Namespace optimized - `README.md` modified - Document modified - `print_normalized_matrix` method modified - `normalized_table_calc` function modified - `setup.py` modified - summary mode updated - Dockerfile updated - `Python 3.8` added to `.travis.yaml` and `appveyor.yml` ### Removed - `PC_PI_calc` function ## [2.5] - 2019-10-16 ### Added - `__version__` variable - Individual classification success index (ICSI) - Classification success index (CSI) - Example-8 (Confidence interval) - `install.sh` - `autopep8.sh` - Dockerfile - `CI` method (supported statistics : `ACC`,`AUC`,`Overall ACC`,`Kappa`,`TPR`,`TNR`,`PPV`,`NPV`,`PLR`,`NLR`,`PRE`) ### Changed - `test.sh` moved to `.travis` folder - Python 3.4 support dropped - Python 2.7 support dropped - `AUTHORS.md` updated - `save_stat`,`save_csv` and `save_html` methods Non-ASCII character bug fixed - Mixed type input vectors bug fixed - `CONTRIBUTING.md` updated - Example-3 updated - `README.md` modified - Document modified - `CI` attribute renamed to `CI95` - `kappa_se_calc` function renamed to `kappa_SE_calc` - `se_calc` function modified and renamed to `SE_calc` - CI/SE functions moved to `pycm_ci.py` - Minor bug in `save_html` method fixed ## [2.4] - 2019-07-31 ### Added - Tversky index (TI) - Area under the PR curve (AUPR) - `FUNDING.yml` ### Changed - `AUC_calc` function modified - Document modified - `summary` parameter added to `save_html`,`save_stat`,`save_csv` and `stat` methods - `sample_weight` bug in `numpy` array format fixed - Inputs manipulation bug fixed - Test system modified - Warning system modified - `alt_link` parameter added to `save_html` method and `online_help` function - `Compare` class tests moved to `compare_test.py` - Warning tests moved to `warning_test.py` ## [2.3] - 2019-06-27 ### Added - Adjusted F-score (AGF) - Overlap coefficient (OC) - Otsuka-Ochiai coefficient (OOC) ### Changed - `save_stat` and `save_vector` parameters added to `save_obj` method - Document modified - `README.md` modified - Parameters recommendation for imbalance dataset modified - Minor bug in `Compare` class fixed - `pycm_help` function modified - Benchmarks color modified ## [2.2] - 2019-05-30 ### Added - Negative likelihood ratio interpretation (NLRI) - Cramer's benchmark (SOA5) - Matthews correlation coefficient interpretation (MCCI) - Matthews's benchmark (SOA6) - F1 macro - F1 micro - Accuracy macro ### Changed - `Compare` class score calculation modified - Parameters recommendation for multi-class dataset modified - Parameters recommendation for imbalance dataset modified - `README.md` modified - Document modified - Logo updated ## [2.1] - 2019-05-06 ### Added - Adjusted geometric mean (AGM) - Yule's Q (Q) - `Compare` class and parameters recommendation system block diagrams ### Changed - Document links bug fixed - Document modified ## [2.0] - 2019-04-15 ### Added - G-Mean (GM) - Index of balanced accuracy (IBA) - Optimized precision (OP) - Pearson's C (C) - `Compare` class - Parameters recommendation warning - `ConfusionMatrix` equal method ### Changed - Document modified - `stat_print` function bug fixed - `table_print` function bug fixed - `Beta` parameter renamed to `beta` (`F_calc` function & `F_beta` method) - Parameters recommendation for imbalance dataset modified - `normalize` parameter added to `save_html` method - `pycm_func.py` splitted into `pycm_class_func.py` and `pycm_overall_func.py` - `vector_filter`,`vector_check`,`class_check` and `matrix_check` functions moved to `pycm_util.py` - `RACC_calc` and `RACCU_calc` functions exception handler modified - Docstrings modified ## [1.9] - 2019-02-25 ### Added - Automatic/Manual (AM) - Bray-Curtis dissimilarity (BCD) - `CODE_OF_CONDUCT.md` - `ISSUE_TEMPLATE.md` - `PULL_REQUEST_TEMPLATE.md` - `CONTRIBUTING.md` - X11 color names support for `save_html` method - Parameters recommendation system - Warning message for high dimension matrix print - Interactive notebooks section (binder) ### Changed - `save_matrix` and `normalize` parameters added to `save_csv` method - `README.md` modified - Document modified - `ConfusionMatrix.__init__` optimized - Document and examples output files moved to different folders - Test system modified - `relabel` method bug fixed ## [1.8] - 2019-01-05 ### Added - Lift score (LS) - `version_check.py` ### Changed - `color` parameter added to `save_html` method - Error messages modified - Document modified - Website changed to [http://www.pycm.ir](http://www.pycm.ir) - Interpretation functions moved to `pycm_interpret.py` - Utility functions moved to `pycm_util.py` - Unnecessary `else` and `elif` removed - `==` changed to `is` ## [1.7] - 2018-12-18 ### Added - Gini index (GI) - Example-7 - `pycm_profile.py` ### Changed - `class_name` parameter added to `stat`,`save_stat`,`save_csv` and `save_html` methods - `overall_param` and `class_param` parameters empty list bug fixed - `matrix_params_calc`, `matrix_params_from_table` and `vector_filter` functions optimized - `overall_MCC_calc`, `CEN_misclassification_calc` and `convex_combination` functions optimized - Document modified ## [1.6] - 2018-12-06 ### Added - AUC value interpretation (AUCI) - Example-6 - Anaconda cloud package ### Changed - `overall_param` and `class_param` parameters added to `stat`,`save_stat` and `save_html` methods - `class_param` parameter added to `save_csv` method - `_` removed from overall statistics names - `README.md` modified - Document modified ## [1.5] - 2018-11-26 ### Added - Relative classifier information (RCI) - Discriminator power (DP) - Youden's index (Y) - Discriminant power interpretation (DPI) - Positive likelihood ratio interpretation (PLRI) - `__len__` method - `relabel` method - `__class_stat_init__` function - `__overall_stat_init__` function - `matrix` attribute as dict - `normalized_matrix` attribute as dict - `normalized_table` attribute as dict ### Changed - `README.md` modified - Document modified - `LR+` renamed to `PLR` - `LR-` renamed to `NLR` - `normalized_matrix` method renamed to `print_normalized_matrix` - `matrix` method renamed to `print_matrix` - `entropy_calc` fixed - `cross_entropy_calc` fixed - `conditional_entropy_calc` fixed - `print_table` bug for large numbers fixed - JSON key bug in `save_obj` fixed - `transpose` bug in `save_obj` fixed - `Python 3.7` added to `.travis.yaml` and `appveyor.yml` ## [1.4] - 2018-11-12 ### Added - Area under curve (AUC) - AUNU - AUNP - Class balance accuracy (CBA) - Global performance index (RR) - Overall MCC - Distance index (dInd) - Similarity index (sInd) - `one_vs_all` - `dev-requirements.txt` ### Changed - `README.md` modified - Document modified - `save_stat` modified - `requirements.txt` modified ## [1.3] - 2018-10-10 ### Added - Confusion entropy (CEN) - Overall confusion entropy (Overall CEN) - Modified confusion entropy (MCEN) - Overall modified confusion entropy (Overall MCEN) - Information score (IS) ### Changed - `README.md` modified ## [1.2] - 2018-10-01 ### Added - No information rate (NIR) - P-Value - `sample_weight` - `transpose` ### Changed - `README.md` modified - Key error in some parameters fixed - `OSX` env added to `.travis.yml` ## [1.1] - 2018-09-08 ### Added - Zero-one loss - Support - `online_help` function ### Changed - `README.md` modified - `html_table` function modified - `table_print` function modified - `normalized_table_print` function modified ## [1.0] - 2018-08-30 ### Added - Hamming loss ### Changed - `README.md` modified ## [0.9.5] - 2018-07-08 ### Added - Obj load - Obj save - Example-4 ### Changed - `README.md` modified - Block diagram updated ## [0.9] - 2018-06-28 ### Added - Activation threshold - Example-3 - Jaccard index - Overall Jaccard index ### Changed - `README.md` modified - `setup.py` modified ## [0.8.6] - 2018-05-31 ### Added - Example section in document - Python 2.7 CI - JOSS paper pdf ### Changed - Cite section - ConfusionMatrix docstring - round function changed to numpy.around - `README.md` modified ## [0.8.5] - 2018-05-21 ### Added - Example-1 (Comparison of three different classifiers) - Example-2 (How to plot via matplotlib) - JOSS paper - ConfusionMatrix docstring ### Changed - Table size in HTML report - Test system - `README.md` modified ## [0.8.1] - 2018-03-22 ### Added - Goodman and Kruskal's lambda B - Goodman and Kruskal's lambda A - Cross entropy - Conditional entropy - Joint entropy - Reference entropy - Response entropy - Kullback-Liebler divergence - Direct ConfusionMatrix - Kappa unbiased - Kappa no prevalence - Random accuracy unbiased - `pycmVectorError` class - `pycmMatrixError` class - Mutual information - Support `numpy` arrays ### Changed - Notebook file updated ### Removed - `pycmError` class ## [0.7] - 2018-02-26 ### Added - Cramer's V - 95% confidence interval - Chi-Squared - Phi-Squared - Chi-Squared DF - Standard error - Kappa standard error - Kappa 95% confidence interval - Cicchetti benchmark ### Changed - Overall statistics color in HTML report - Parameters description link in HTML report ## [0.6] - 2018-02-21 ### Added - CSV report - Changelog - Output files - `digit` parameter to `ConfusionMatrix` object ### Changed - Confusion matrix color in HTML report - Parameters description link in HTML report - Capitalize descriptions ## [0.5] - 2018-02-17 ### Added - Scott's pi - Gwet's AC1 - Bennett S score - HTML report ## [0.4] - 2018-02-05 ### Added - TPR micro/macro - PPV micro/macro - Overall RACC - Error rate (ERR) - FBeta score - F0.5 - F2 - Fleiss benchmark - Altman benchmark - Output file(.pycm) ### Changed - Class with zero item - Normalized matrix ### Removed - Kappa and SOA for each class ## [0.3] - 2018-01-27 ### Added - Kappa - Random accuracy - Landis and Koch benchmark - `overall_stat` ## [0.2] - 2018-01-24 ### Added - Population - Condition positive - Condition negative - Test outcome positive - Test outcome negative - Prevalence - G-measure - Matrix method - Normalized matrix method - Params method ### Changed - `statistic_result` to `class_stat` - `params` to `stat` ## [0.1] - 2018-01-22 ### Added - ACC - BM - DOR - F1-Score - FDR - FNR - FOR - FPR - LR+ - LR- - MCC - MK - NPV - PPV - TNR - TPR - documents and `README.md` [Unreleased]: https://github.com/sepandhaghighi/pycm/compare/v3.8...dev [3.8]: https://github.com/sepandhaghighi/pycm/compare/v3.7...v3.8 [3.7]: https://github.com/sepandhaghighi/pycm/compare/v3.6...v3.7 [3.6]: https://github.com/sepandhaghighi/pycm/compare/v3.5...v3.6 [3.5]: https://github.com/sepandhaghighi/pycm/compare/v3.4...v3.5 [3.4]: https://github.com/sepandhaghighi/pycm/compare/v3.3...v3.4 [3.3]: https://github.com/sepandhaghighi/pycm/compare/v3.2...v3.3 [3.2]: https://github.com/sepandhaghighi/pycm/compare/v3.1...v3.2 [3.1]: https://github.com/sepandhaghighi/pycm/compare/v3.0...v3.1 [3.0]: https://github.com/sepandhaghighi/pycm/compare/v2.9...v3.0 [2.9]: https://github.com/sepandhaghighi/pycm/compare/v2.8...v2.9 [2.8]: https://github.com/sepandhaghighi/pycm/compare/v2.7...v2.8 [2.7]: https://github.com/sepandhaghighi/pycm/compare/v2.6...v2.7 [2.6]: https://github.com/sepandhaghighi/pycm/compare/v2.5...v2.6 [2.5]: https://github.com/sepandhaghighi/pycm/compare/v2.4...v2.5 [2.4]: https://github.com/sepandhaghighi/pycm/compare/v2.3...v2.4 [2.3]: https://github.com/sepandhaghighi/pycm/compare/v2.2...v2.3 [2.2]: https://github.com/sepandhaghighi/pycm/compare/v2.1...v2.2 [2.1]: https://github.com/sepandhaghighi/pycm/compare/v2.0...v2.1 [2.0]: https://github.com/sepandhaghighi/pycm/compare/v1.9...v2.0 [1.9]: https://github.com/sepandhaghighi/pycm/compare/v1.8...v1.9 [1.8]: https://github.com/sepandhaghighi/pycm/compare/v1.7...v1.8 [1.7]: https://github.com/sepandhaghighi/pycm/compare/v1.6...v1.7 [1.6]: https://github.com/sepandhaghighi/pycm/compare/v1.5...v1.6 [1.5]: https://github.com/sepandhaghighi/pycm/compare/v1.4...v1.5 [1.4]: https://github.com/sepandhaghighi/pycm/compare/v1.3...v1.4 [1.3]: https://github.com/sepandhaghighi/pycm/compare/v1.2...v1.3 [1.2]: https://github.com/sepandhaghighi/pycm/compare/v1.1...v1.2 [1.1]: https://github.com/sepandhaghighi/pycm/compare/v1.0...v1.1 [1.0]: https://github.com/sepandhaghighi/pycm/compare/v0.9.5...v1.0 [0.9.5]: https://github.com/sepandhaghighi/pycm/compare/v0.9...v0.9.5 [0.9]: https://github.com/sepandhaghighi/pycm/compare/v0.8.6...v0.9 [0.8.6]: https://github.com/sepandhaghighi/pycm/compare/v0.8.5...v0.8.6 [0.8.5]: https://github.com/sepandhaghighi/pycm/compare/v0.8.1...v0.8.5 [0.8.1]: https://github.com/sepandhaghighi/pycm/compare/v0.7...v0.8.1 [0.7]: https://github.com/sepandhaghighi/pycm/compare/v0.6...v0.7 [0.6]: https://github.com/sepandhaghighi/pycm/compare/v0.5...v0.6 [0.5]: https://github.com/sepandhaghighi/pycm/compare/v0.4...v0.5 [0.4]: https://github.com/sepandhaghighi/pycm/compare/v0.3...v0.4 [0.3]: https://github.com/sepandhaghighi/pycm/compare/v0.2...v0.3 [0.2]: https://github.com/sepandhaghighi/pycm/compare/v0.1...v0.2 [0.1]: https://github.com/sepandhaghighi/pycm/compare/1e238cd...v0.1 %package -n python3-pycm Summary: Multi-class confusion matrix library in Python Provides: python-pycm BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pycm

PyCM: Python Confusion Matrix


built with Python3 PyPI version Document Discord Channel
## Table of contents * [Overview](https://github.com/sepandhaghighi/pycm#overview) * [Installation](https://github.com/sepandhaghighi/pycm#installation) * [Usage](https://github.com/sepandhaghighi/pycm#usage) * [Document](https://github.com/sepandhaghighi/pycm/tree/master/Document) * [Try PyCM in Your Browser](https://github.com/sepandhaghighi/pycm#try-pycm-in-your-browser) * [Issues & Bug Reports](https://github.com/sepandhaghighi/pycm#issues--bug-reports) * [Todo](https://github.com/sepandhaghighi/pycm/blob/master/TODO.md) * [Contribution](https://github.com/sepandhaghighi/pycm/blob/master/.github/CONTRIBUTING.md) * [Acknowledgments](https://github.com/sepandhaghighi/pycm#acknowledgments) * [Cite](https://github.com/sepandhaghighi/pycm#cite) * [Authors](https://github.com/sepandhaghighi/pycm/blob/master/AUTHORS.md) * [License](https://github.com/sepandhaghighi/pycm/blob/master/LICENSE) * [Show Your Support](https://github.com/sepandhaghighi/pycm#show-your-support) * [Changelog](https://github.com/sepandhaghighi/pycm/blob/master/CHANGELOG.md) * [Code of Conduct](https://github.com/sepandhaghighi/pycm/blob/master/.github/CODE_OF_CONDUCT.md) ## Overview

PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and accurate evaluation of a large variety of classifiers.

Fig1. ConfusionMatrix Block Diagram

Open Hub
PyPI Counter
Github Stars
Branch master dev
CI
Code Quality CodeFactor codebeat badge
## Installation ⚠️ PyCM 2.4 is the last version to support **Python 2.7** & **Python 3.4** ⚠️ Plotting capability requires **Matplotlib (>= 3.0.0)** or **Seaborn (>= 0.9.1)** ### Source code - Download [Version 3.8](https://github.com/sepandhaghighi/pycm/archive/v3.8.zip) or [Latest Source ](https://github.com/sepandhaghighi/pycm/archive/dev.zip) - Run `pip install -r requirements.txt` or `pip3 install -r requirements.txt` (Need root access) - Run `python3 setup.py install` or `python setup.py install` (Need root access) ### PyPI - Check [Python Packaging User Guide](https://packaging.python.org/installing/) - Run `pip install pycm==3.8` or `pip3 install pycm==3.8` (Need root access) ### Conda - Check [Conda Managing Package](https://conda.io/) - Update Conda using `conda update conda` (Need root access) - Run `conda install -c sepandhaghighi pycm` (Need root access) ### Easy install - Run `easy_install --upgrade pycm` (Need root access) ### MATLAB - Download and install [MATLAB](https://www.mathworks.com/products/matlab.html) (>=8.5, 64/32 bit) - Download and install [Python3.x](https://www.python.org/downloads/) (>=3.5, 64/32 bit) - [x] Select `Add to PATH` option - [x] Select `Install pip` option - Run `pip install pycm` or `pip3 install pycm` (Need root access) - Configure Python interpreter ```matlab >> pyversion PYTHON_EXECUTABLE_FULL_PATH ``` - Visit [MATLAB Examples](https://github.com/sepandhaghighi/pycm/tree/master/MATLAB) ## Usage ### From vector ```pycon >>> from pycm import * >>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2] >>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2] >>> cm = ConfusionMatrix(actual_vector=y_actu, predict_vector=y_pred) >>> cm.classes [0, 1, 2] >>> cm.table {0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}} >>> cm.print_matrix() Predict 0 1 2 Actual 0 3 0 0 1 0 1 2 2 2 1 3 >>> cm.print_normalized_matrix() Predict 0 1 2 Actual 0 1.0 0.0 0.0 1 0.0 0.33333 0.66667 2 0.33333 0.16667 0.5 >>> cm.stat(summary=True) Overall Statistics : ACC Macro 0.72222 F1 Macro 0.56515 FPR Macro 0.22222 Kappa 0.35484 Overall ACC 0.58333 PPV Macro 0.56667 SOA1(Landis & Koch) Fair TPR Macro 0.61111 Zero-one Loss 5 Class Statistics : Classes 0 1 2 ACC(Accuracy) 0.83333 0.75 0.58333 AUC(Area under the ROC curve) 0.88889 0.61111 0.58333 AUCI(AUC value interpretation) Very Good Fair Poor F1(F1 score - harmonic mean of precision and sensitivity) 0.75 0.4 0.54545 FN(False negative/miss/type 2 error) 0 2 3 FP(False positive/type 1 error/false alarm) 2 1 2 FPR(Fall-out or false positive rate) 0.22222 0.11111 0.33333 N(Condition negative) 9 9 6 P(Condition positive or support) 3 3 6 POP(Population) 12 12 12 PPV(Precision or positive predictive value) 0.6 0.5 0.6 TN(True negative/correct rejection) 7 8 4 TON(Test outcome negative) 7 10 7 TOP(Test outcome positive) 5 2 5 TP(True positive/hit) 3 1 3 TPR(Sensitivity, recall, hit rate, or true positive rate) 1.0 0.33333 0.5 ``` ### Direct CM ```pycon >>> from pycm import * >>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2":2}, "Class2": {"Class1": 0, "Class2": 5}}) >>> cm2 pycm.ConfusionMatrix(classes: ['Class1', 'Class2']) >>> cm2.classes ['Class1', 'Class2'] >>> cm2.print_matrix() Predict Class1 Class2 Actual Class1 1 2 Class2 0 5 >>> cm2.print_normalized_matrix() Predict Class1 Class2 Actual Class1 0.33333 0.66667 Class2 0.0 1.0 >>> cm2.stat(summary=True) Overall Statistics : ACC Macro 0.75 F1 Macro 0.66667 FPR Macro 0.33333 Kappa 0.38462 Overall ACC 0.75 PPV Macro 0.85714 SOA1(Landis & Koch) Fair TPR Macro 0.66667 Zero-one Loss 2 Class Statistics : Classes Class1 Class2 ACC(Accuracy) 0.75 0.75 AUC(Area under the ROC curve) 0.66667 0.66667 AUCI(AUC value interpretation) Fair Fair F1(F1 score - harmonic mean of precision and sensitivity) 0.5 0.83333 FN(False negative/miss/type 2 error) 2 0 FP(False positive/type 1 error/false alarm) 0 2 FPR(Fall-out or false positive rate) 0.0 0.66667 N(Condition negative) 5 3 P(Condition positive or support) 3 5 POP(Population) 8 8 PPV(Precision or positive predictive value) 1.0 0.71429 TN(True negative/correct rejection) 5 1 TON(Test outcome negative) 7 1 TOP(Test outcome positive) 1 7 TP(True positive/hit) 1 5 TPR(Sensitivity, recall, hit rate, or true positive rate) 0.33333 1.0 ``` * `matrix()` and `normalized_matrix()` renamed to `print_matrix()` and `print_normalized_matrix()` in `version 1.5` ### Activation threshold `threshold` is added in `version 0.9` for real value prediction. For more information visit [Example3](http://www.pycm.io/doc/Example3.html "Example3") ### Load from file `file` is added in `version 0.9.5` in order to load saved confusion matrix with `.obj` format generated by `save_obj` method. For more information visit [Example4](http://www.pycm.io/doc/Example4.html "Example4") ### Sample weights `sample_weight` is added in `version 1.2` For more information visit [Example5](http://www.pycm.io/doc/Example5.html "Example5") ### Transpose `transpose` is added in `version 1.2` in order to transpose input matrix (only in `Direct CM` mode) ### Relabel `relabel` method is added in `version 1.5` in order to change ConfusionMatrix classnames. ```pycon >>> cm.relabel(mapping={0:"L1",1:"L2",2:"L3"}) >>> cm pycm.ConfusionMatrix(classes: ['L1', 'L2', 'L3']) ``` ### Position `position` method is added in `version 2.8` in order to find the indexes of observations in `predict_vector` which made TP, TN, FP, FN. ```pycon >>> cm.position() {0: {'FN': [], 'FP': [0, 7], 'TP': [1, 4, 9], 'TN': [2, 3, 5, 6, 8, 10, 11]}, 1: {'FN': [5, 10], 'FP': [3], 'TP': [6], 'TN': [0, 1, 2, 4, 7, 8, 9, 11]}, 2: {'FN': [0, 3, 7], 'FP': [5, 10], 'TP': [2, 8, 11], 'TN': [1, 4, 6, 9]}} ``` ### To array `to_array` method is added in `version 2.9` in order to returns the confusion matrix in the form of a NumPy array. This can be helpful to apply different operations over the confusion matrix for different purposes such as aggregation, normalization, and combination. ```pycon >>> cm.to_array() array([[3, 0, 0], [0, 1, 2], [2, 1, 3]]) >>> cm.to_array(normalized=True) array([[1. , 0. , 0. ], [0. , 0.33333, 0.66667], [0.33333, 0.16667, 0.5 ]]) >>> cm.to_array(normalized=True, one_vs_all=True, class_name="L1") array([[1. , 0. ], [0.22222, 0.77778]]) ``` ### Combine `combine` method is added in `version 3.0` in order to merge two confusion matrices. This option will be useful in mini-batch learning. ```pycon >>> cm_combined = cm2.combine(cm3) >>> cm_combined.print_matrix() Predict Class1 Class2 Actual Class1 2 4 Class2 0 10 ``` ### Plot `plot` method is added in `version 3.0` in order to plot a confusion matrix using Matplotlib or Seaborn. ```pycon >>> cm.plot() ``` ```pycon >>> from matplotlib import pyplot as plt >>> cm.plot(cmap=plt.cm.Greens, number_label=True, plot_lib="matplotlib") ``` ```pycon >>> cm.plot(cmap=plt.cm.Reds, normalized=True, number_label=True, plot_lib="seaborn") ``` ### ROC curve `ROCCurve`, added in `version 3.7`, is devised to compute the Receiver Operating Characteristic (ROC) or simply ROC curve. In ROC curves, the Y axis represents the True Positive Rate, and the X axis represents the False Positive Rate. Thus, the ideal point is located at the top left of the curve, and a larger area under the curve represents better performance. ROC curve is a graphical representation of binary classifiers' performance. In PyCM, `ROCCurve` binarizes the output based on the "One vs. Rest" strategy to provide an extension of ROC for multi-class classifiers. Getting the actual labels vector, the target probability estimates of the positive classes, and the list of ordered labels of classes, this method is able to compute and plot TPR-FPR pairs for different discrimination thresholds and compute the area under the ROC curve. ```pycon >>> crv = ROCCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1]) >>> crv.thresholds [0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9] >>> auc_trp = crv.area() >>> auc_trp[1] 0.75 >>> auc_trp[2] 0.75 ``` ### Precision-Recall curve `PRCurve`, added in `version 3.7`, is devised to compute the Precision-Recall curve in which the Y axis represents the Precision, and the X axis represents the Recall of a classifier. Thus, the ideal point is located at the top right of the curve, and a larger area under the curve represents better performance. Precision-Recall curve is a graphical representation of binary classifiers' performance. In PyCM, `PRCurve` binarizes the output based on the "One vs. Rest" strategy to provide an extension of this curve for multi-class classifiers. Getting the actual labels vector, the target probability estimates of the positive classes, and the list of ordered labels of classes, this method is able to compute and plot Precision-Recall pairs for different discrimination thresholds and compute the area under the curve. ```pycon >>> crv = PRCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1]) >>> crv.thresholds [0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9] >>> auc_trp = crv.area() >>> auc_trp[1] 0.29166666666666663 >>> auc_trp[2] 0.29166666666666663 ``` ### Parameter recommender This option has been added in `version 1.9` to recommend the most related parameters considering the characteristics of the input dataset. The suggested parameters are selected according to some characteristics of the input such as being balance/imbalance and binary/multi-class. All suggestions can be categorized into three main groups: imbalanced dataset, binary classification for a balanced dataset, and multi-class classification for a balanced dataset. The recommendation lists have been gathered according to the respective paper of each parameter and the capabilities which had been claimed by the paper. ```pycon >>> cm.imbalance False >>> cm.binary False >>> cm.recommended_list ['MCC', 'TPR Micro', 'ACC', 'PPV Macro', 'BCD', 'Overall MCC', 'Hamming Loss', 'TPR Macro', 'Zero-one Loss', 'ERR', 'PPV Micro', 'Overall ACC'] ``` `is_imbalanced` parameter has been added in `version 3.3`, so the user can indicate whether the concerned dataset is imbalanced or not. As long as the user does not provide any information in this regard, the automatic detection algorithm will be used. ```pycon >>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced = True) >>> cm.imbalance True >>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced = False) >>> cm.imbalance False ``` ### Compare In `version 2.0`, a method for comparing several confusion matrices is introduced. This option is a combination of several overall and class-based benchmarks. Each of the benchmarks evaluates the performance of the classification algorithm from good to poor and give them a numeric score. The score of good and poor performances are 1 and 0, respectively. After that, two scores are calculated for each confusion matrices, overall and class-based. The overall score is the average of the score of seven overall benchmarks which are Landis & Koch, Cramer, Matthews, Goodman-Kruskal's Lambda A, Goodman-Kruskal's Lambda B, Krippendorff's Alpha, and Pearson's C. In the same manner, the class-based score is the average of the score of six class-based benchmarks which are Positive Likelihood Ratio Interpretation, Negative Likelihood Ratio Interpretation, Discriminant Power Interpretation, AUC value Interpretation, Matthews Correlation Coefficient Interpretation and Yule's Q Interpretation. It should be noticed that if one of the benchmarks returns none for one of the classes, that benchmarks will be eliminated in total averaging. If the user sets weights for the classes, the averaging over the value of class-based benchmark scores will transform to a weighted average. If the user sets the value of `by_class` boolean input `True`, the best confusion matrix is the one with the maximum class-based score. Otherwise, if a confusion matrix obtains the maximum of both overall and class-based scores, that will be reported as the best confusion matrix, but in any other case, the compared object doesn’t select the best confusion matrix. ```pycon >>> cm2 = ConfusionMatrix(matrix={0:{0:2, 1:50, 2:6}, 1:{0:5, 1:50, 2:3}, 2:{0:1, 1:7, 2:50}}) >>> cm3 = ConfusionMatrix(matrix={0:{0:50, 1:2, 2:6}, 1:{0:50, 1:5, 2:3}, 2:{0:1, 1:55, 2:2}}) >>> cp = Compare({"cm2":cm2, "cm3":cm3}) >>> print(cp) Best : cm2 Rank Name Class-Score Overall-Score 1 cm2 0.50278 0.58095 2 cm3 0.33611 0.52857 >>> cp.best pycm.ConfusionMatrix(classes: [0, 1, 2]) >>> cp.sorted ['cm2', 'cm3'] >>> cp.best_name 'cm2' ``` ### Online help `online_help` function is added in `version 1.1` in order to open each statistics definition in web browser ```pycon >>> from pycm import online_help >>> online_help("J") >>> online_help("SOA1(Landis & Koch)") >>> online_help(2) ``` * List of items are available by calling `online_help()` (without argument) * If PyCM website is not available, set `alt_link = True` (new in `version 2.4`) ### Acceptable data types **ConfusionMatrix** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `predict_vector` : python `list` or numpy `array` of any stringable objects 3. `matrix` : `dict` 4. `digit`: `int` 5. `threshold` : `FunctionType (function or lambda)` 6. `file` : `File object` 7. `sample_weight` : python `list` or numpy `array` of numbers 8. `transpose` : `bool` 9. `classes` : python `list` 10. `is_imbalanced` : `bool` * Run `help(ConfusionMatrix)` for `ConfusionMatrix` object details **Compare** 1. `cm_dict` : python `dict` of `ConfusionMatrix` object (`str` : `ConfusionMatrix`) 2. `by_class` : `bool` 3. `class_weight` : python `dict` of class weights (`class_name` : `float`) 4. `class_benchmark_weight`: python `dict` of class benchmark weights (`class_benchmark_name` : `float`) 5. `overall_benchmark_weight`: python `dict` of overall benchmark weights (`overall_benchmark_name` : `float`) 6. `digit`: `int` * Run `help(Compare)` for `Compare` object details **ROCCurve** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `probs` : python `list` or numpy `array` 3. `classes` : python `list` 4. `thresholds`: python `list` or numpy `array` 5. `sample_weight`: python `list` or numpy `array` **PRCurve** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `probs` : python `list` or numpy `array` 3. `classes` : python `list` 4. `thresholds`: python `list` or numpy `array` 5. `sample_weight`: python `list` or numpy `array` For more information visit [here](https://github.com/sepandhaghighi/pycm/tree/master/Document "Document")
## Try PyCM in your browser! PyCM can be used online in interactive Jupyter Notebooks via the Binder or Colab services! Try it out now! : [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/sepandhaghighi/pycm/master) [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sepandhaghighi/pycm/blob/master) * Check `Examples` in `Document` folder ## Issues & bug reports 1. Fill an issue and describe it. We'll check it ASAP! - Please complete the issue template 2. Discord : [https://discord.com/invite/zqpU2b3J3f](https://discord.com/invite/zqpU2b3J3f) 3. Website : [https://www.pycm.io](https://www.pycm.io) 4. Mailing List : [https://mail.python.org/mailman3/lists/pycm.python.org/](https://mail.python.org/mailman3/lists/pycm.python.org/) 5. Email : [info@pycm.io](mailto:info@pycm.io "info@pycm.io") ## Acknowledgments [NLnet foundation](https://nlnet.nl) has supported the PyCM project from version **3.6** to **4.0** through the [NGI Assure](https://nlnet.nl/assure) Fund. This fund is set up by [NLnet foundation](https://nlnet.nl) with funding from the European Commission's [Next Generation Internet program](https://ngi.eu), administered by DG Communications Networks, Content, and Technology under grant agreement [**No 957073**](https://nlnet.nl/project/PyCM/). NLnet foundation   NGI Assure [Python Software Foundation (PSF)](https://www.python.org/psf/) grants PyCM library partially for version **3.7**. [PSF](https://www.python.org/psf/) is the organization behind Python. Their mission is to promote, protect, and advance the Python programming language and to support and facilitate the growth of a diverse and international community of Python programmers. Python Software Foundation ## Cite If you use PyCM in your research, we would appreciate citations to the following paper :
Haghighi, S., Jasemi, M., Hessabi, S. and Zolanvari, A. (2018). PyCM: Multiclass confusion matrix library in Python. Journal of Open Source Software, 3(25), p.729.

@article{Haghighi2018,
  doi = {10.21105/joss.00729},
  url = {https://doi.org/10.21105/joss.00729},
  year  = {2018},
  month = {may},
  publisher = {The Open Journal},
  volume = {3},
  number = {25},
  pages = {729},
  author = {Sepand Haghighi and Masoomeh Jasemi and Shaahin Hessabi and Alireza Zolanvari},
  title = {{PyCM}: Multiclass confusion matrix library in Python},
  journal = {Journal of Open Source Software}
}

Download [PyCM.bib](http://www.pycm.io/PYCM.bib)
JOSS
Zenodo DOI
Researchgate
## Show your support ### Star this repo Give a ⭐️ if this project helped you! ### Donate to our project If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) . PyCM Donation # Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.html). ## [Unreleased] ## [3.8] - 2023-02-01 ### Added - `distance` method - `__contains__` method - `__getitem__` method - Goodman-Kruskal's Lambda A benchmark - Goodman-Kruskal's Lambda B benchmark - Krippendorff's Alpha benchmark - Pearson's C benchmark - 30 new distance/similarity 1. AMPLE 2. Anderberg's D 3. Andres & Marzo's Delta 4. Baroni-Urbani & Buser I 5. Baroni-Urbani & Buser II 6. Batagelj & Bren 7. Baulieu I 8. Baulieu II 9. Baulieu III 10. Baulieu IV 11. Baulieu V 12. Baulieu VI 13. Baulieu VII 14. Baulieu VIII 15. Baulieu IX 16. Baulieu X 17. Baulieu XI 18. Baulieu XII 19. Baulieu XIII 20. Baulieu XIV 21. Baulieu XV 22. Benini I 23. Benini II 24. Canberra 25. Clement 26. Consonni & Todeschini I 27. Consonni & Todeschini II 28. Consonni & Todeschini III 29. Consonni & Todeschini IV 30. Consonni & Todeschini V ### Changed - `relabel` method sort bug fixed - `README.md` modified - `Compare` overall benchmarks default weights updated - Document modified - Test system modified ## [3.7] - 2022-12-15 ### Added - `Curve` class - `ROCCurve` class - `PRCurve` class - `pycmCurveError` class ### Changed - `CONTRIBUTING.md` updated - `matrix_params_calc` function optimized - `README.md` modified - Document modified - Test system modified - `Python 3.11` added to `test.yml` ## [3.6] - 2022-08-17 ### Added - Hamming distance - Braun-Blanquet similarity ### Changed - `classes` parameter added to `matrix_params_from_table` function - Matrices with `numpy.integer` elements are now accepted - Arrays added to `matrix` parameter accepting formats - Website changed to [http://www.pycm.io](http://www.pycm.io) - Document modified - `README.md` modified ## [3.5] - 2022-04-27 ### Added - Anaconda workflow - Custom iterating setting - Custom casting setting ### Changed - `plot` method updated - `class_statistics` function modified - `overall_statistics` function modified - `BCD_calc` function modified - `CONTRIBUTING.md` updated - `CODE_OF_CONDUCT.md` updated - Document modified ## [3.4] - 2022-01-26 ### Added - Colab badge - Discord badge - `brier_score` method ### Changed - `J (Jaccard index)` section in `Document.ipynb` updated - `save_obj` method updated - `Python 3.10` added to `test.yml` - Example-3 updated - Docstrings of the functions updated - `CONTRIBUTING.md` updated ## [3.3] - 2021-10-27 ### Added - `__compare_weight_handler__` function ### Changed - `is_imbalanced` parameter added to ConfusionMatrix `__init__` method - `class_benchmark_weight` and `overall_benchmark_weight` parameters added to Compare `__init__` method - `statistic_recommend` function modified - Compare `weight` parameter renamed to `class_weight` - Document modified - License updated - `AUTHORS.md` updated - `README.md` modified - Block diagrams updated ## [3.2] - 2021-08-11 ### Added - `classes_filter` function ### Changed - `classes` parameter added to `matrix_params_calc` function - `classes` parameter added to `__obj_vector_handler__` function - `classes` parameter added to ConfusionMatrix `__init__` method - `name` parameter removed from `html_init` function - `shortener` parameter added to `html_table` function - `shortener` parameter added to `save_html` method - Document modified - HTML report modified ## [3.1] - 2021-03-11 ### Added - `requirements-splitter.py` - `sensitivity_index` method ### Changed - Test system modified - `overall_statistics` function modified - HTML report modified - Document modified - References format updated - `CONTRIBUTING.md` updated ## [3.0] - 2020-10-26 ### Added - `plot_test.py` - `axes_gen` function - `add_number_label` function - `plot` method - `combine` method - `matrix_combine` function ### Changed - Document modified - `README.md` modified - Example-2 deprecated - Example-7 deprecated - Error messages modified ## [2.9] - 2020-09-23 ### Added - `notebook_check.py` - `to_array` method - `__copy__` method - `copy` method ### Changed - `average` method refactored ## [2.8] - 2020-07-09 ### Added - `label_map` attribute - `positions` attribute - `position` method - Krippendorff's Alpha - Aickin's Alpha - `weighted_alpha` method ### Changed - Single class bug fixed - `CLASS_NUMBER_ERROR` error type changed to `pycmMatrixError` - `relabel` method bug fixed - Document modified - `README.md` modified ## [2.7] - 2020-05-11 ### Added - `average` method - `weighted_average` method - `weighted_kappa` method - `pycmAverageError` class - Bangdiwala's B - MATLAB examples - Github action ### Changed - Document modified - `README.md` modified - `relabel` method bug fixed - `sparse_table_print` function bug fixed - `matrix_check` function bug fixed - Minor bug in `Compare` class fixed - Class names mismatch bug fixed ## [2.6] - 2020-03-25 ### Added - `custom_rounder` function - `complement` function - `sparse_matrix` attribute - `sparse_normalized_matrix` attribute - Net benefit (NB) - Yule's Q interpretation (QI) - Adjusted Rand index (ARI) - TNR micro/macro - FPR micro/macro - FNR micro/macro ### Changed - `sparse` parameter added to `print_matrix`,`print_normalized_matrix` and `save_stat` methods - `header` parameter added to `save_csv` method - Handler functions moved to `pycm_handler.py` - Error objects moved to `pycm_error.py` - Verified tests references updated - Verified tests moved to `verified_test.py` - Test system modified - `CONTRIBUTING.md` updated - Namespace optimized - `README.md` modified - Document modified - `print_normalized_matrix` method modified - `normalized_table_calc` function modified - `setup.py` modified - summary mode updated - Dockerfile updated - `Python 3.8` added to `.travis.yaml` and `appveyor.yml` ### Removed - `PC_PI_calc` function ## [2.5] - 2019-10-16 ### Added - `__version__` variable - Individual classification success index (ICSI) - Classification success index (CSI) - Example-8 (Confidence interval) - `install.sh` - `autopep8.sh` - Dockerfile - `CI` method (supported statistics : `ACC`,`AUC`,`Overall ACC`,`Kappa`,`TPR`,`TNR`,`PPV`,`NPV`,`PLR`,`NLR`,`PRE`) ### Changed - `test.sh` moved to `.travis` folder - Python 3.4 support dropped - Python 2.7 support dropped - `AUTHORS.md` updated - `save_stat`,`save_csv` and `save_html` methods Non-ASCII character bug fixed - Mixed type input vectors bug fixed - `CONTRIBUTING.md` updated - Example-3 updated - `README.md` modified - Document modified - `CI` attribute renamed to `CI95` - `kappa_se_calc` function renamed to `kappa_SE_calc` - `se_calc` function modified and renamed to `SE_calc` - CI/SE functions moved to `pycm_ci.py` - Minor bug in `save_html` method fixed ## [2.4] - 2019-07-31 ### Added - Tversky index (TI) - Area under the PR curve (AUPR) - `FUNDING.yml` ### Changed - `AUC_calc` function modified - Document modified - `summary` parameter added to `save_html`,`save_stat`,`save_csv` and `stat` methods - `sample_weight` bug in `numpy` array format fixed - Inputs manipulation bug fixed - Test system modified - Warning system modified - `alt_link` parameter added to `save_html` method and `online_help` function - `Compare` class tests moved to `compare_test.py` - Warning tests moved to `warning_test.py` ## [2.3] - 2019-06-27 ### Added - Adjusted F-score (AGF) - Overlap coefficient (OC) - Otsuka-Ochiai coefficient (OOC) ### Changed - `save_stat` and `save_vector` parameters added to `save_obj` method - Document modified - `README.md` modified - Parameters recommendation for imbalance dataset modified - Minor bug in `Compare` class fixed - `pycm_help` function modified - Benchmarks color modified ## [2.2] - 2019-05-30 ### Added - Negative likelihood ratio interpretation (NLRI) - Cramer's benchmark (SOA5) - Matthews correlation coefficient interpretation (MCCI) - Matthews's benchmark (SOA6) - F1 macro - F1 micro - Accuracy macro ### Changed - `Compare` class score calculation modified - Parameters recommendation for multi-class dataset modified - Parameters recommendation for imbalance dataset modified - `README.md` modified - Document modified - Logo updated ## [2.1] - 2019-05-06 ### Added - Adjusted geometric mean (AGM) - Yule's Q (Q) - `Compare` class and parameters recommendation system block diagrams ### Changed - Document links bug fixed - Document modified ## [2.0] - 2019-04-15 ### Added - G-Mean (GM) - Index of balanced accuracy (IBA) - Optimized precision (OP) - Pearson's C (C) - `Compare` class - Parameters recommendation warning - `ConfusionMatrix` equal method ### Changed - Document modified - `stat_print` function bug fixed - `table_print` function bug fixed - `Beta` parameter renamed to `beta` (`F_calc` function & `F_beta` method) - Parameters recommendation for imbalance dataset modified - `normalize` parameter added to `save_html` method - `pycm_func.py` splitted into `pycm_class_func.py` and `pycm_overall_func.py` - `vector_filter`,`vector_check`,`class_check` and `matrix_check` functions moved to `pycm_util.py` - `RACC_calc` and `RACCU_calc` functions exception handler modified - Docstrings modified ## [1.9] - 2019-02-25 ### Added - Automatic/Manual (AM) - Bray-Curtis dissimilarity (BCD) - `CODE_OF_CONDUCT.md` - `ISSUE_TEMPLATE.md` - `PULL_REQUEST_TEMPLATE.md` - `CONTRIBUTING.md` - X11 color names support for `save_html` method - Parameters recommendation system - Warning message for high dimension matrix print - Interactive notebooks section (binder) ### Changed - `save_matrix` and `normalize` parameters added to `save_csv` method - `README.md` modified - Document modified - `ConfusionMatrix.__init__` optimized - Document and examples output files moved to different folders - Test system modified - `relabel` method bug fixed ## [1.8] - 2019-01-05 ### Added - Lift score (LS) - `version_check.py` ### Changed - `color` parameter added to `save_html` method - Error messages modified - Document modified - Website changed to [http://www.pycm.ir](http://www.pycm.ir) - Interpretation functions moved to `pycm_interpret.py` - Utility functions moved to `pycm_util.py` - Unnecessary `else` and `elif` removed - `==` changed to `is` ## [1.7] - 2018-12-18 ### Added - Gini index (GI) - Example-7 - `pycm_profile.py` ### Changed - `class_name` parameter added to `stat`,`save_stat`,`save_csv` and `save_html` methods - `overall_param` and `class_param` parameters empty list bug fixed - `matrix_params_calc`, `matrix_params_from_table` and `vector_filter` functions optimized - `overall_MCC_calc`, `CEN_misclassification_calc` and `convex_combination` functions optimized - Document modified ## [1.6] - 2018-12-06 ### Added - AUC value interpretation (AUCI) - Example-6 - Anaconda cloud package ### Changed - `overall_param` and `class_param` parameters added to `stat`,`save_stat` and `save_html` methods - `class_param` parameter added to `save_csv` method - `_` removed from overall statistics names - `README.md` modified - Document modified ## [1.5] - 2018-11-26 ### Added - Relative classifier information (RCI) - Discriminator power (DP) - Youden's index (Y) - Discriminant power interpretation (DPI) - Positive likelihood ratio interpretation (PLRI) - `__len__` method - `relabel` method - `__class_stat_init__` function - `__overall_stat_init__` function - `matrix` attribute as dict - `normalized_matrix` attribute as dict - `normalized_table` attribute as dict ### Changed - `README.md` modified - Document modified - `LR+` renamed to `PLR` - `LR-` renamed to `NLR` - `normalized_matrix` method renamed to `print_normalized_matrix` - `matrix` method renamed to `print_matrix` - `entropy_calc` fixed - `cross_entropy_calc` fixed - `conditional_entropy_calc` fixed - `print_table` bug for large numbers fixed - JSON key bug in `save_obj` fixed - `transpose` bug in `save_obj` fixed - `Python 3.7` added to `.travis.yaml` and `appveyor.yml` ## [1.4] - 2018-11-12 ### Added - Area under curve (AUC) - AUNU - AUNP - Class balance accuracy (CBA) - Global performance index (RR) - Overall MCC - Distance index (dInd) - Similarity index (sInd) - `one_vs_all` - `dev-requirements.txt` ### Changed - `README.md` modified - Document modified - `save_stat` modified - `requirements.txt` modified ## [1.3] - 2018-10-10 ### Added - Confusion entropy (CEN) - Overall confusion entropy (Overall CEN) - Modified confusion entropy (MCEN) - Overall modified confusion entropy (Overall MCEN) - Information score (IS) ### Changed - `README.md` modified ## [1.2] - 2018-10-01 ### Added - No information rate (NIR) - P-Value - `sample_weight` - `transpose` ### Changed - `README.md` modified - Key error in some parameters fixed - `OSX` env added to `.travis.yml` ## [1.1] - 2018-09-08 ### Added - Zero-one loss - Support - `online_help` function ### Changed - `README.md` modified - `html_table` function modified - `table_print` function modified - `normalized_table_print` function modified ## [1.0] - 2018-08-30 ### Added - Hamming loss ### Changed - `README.md` modified ## [0.9.5] - 2018-07-08 ### Added - Obj load - Obj save - Example-4 ### Changed - `README.md` modified - Block diagram updated ## [0.9] - 2018-06-28 ### Added - Activation threshold - Example-3 - Jaccard index - Overall Jaccard index ### Changed - `README.md` modified - `setup.py` modified ## [0.8.6] - 2018-05-31 ### Added - Example section in document - Python 2.7 CI - JOSS paper pdf ### Changed - Cite section - ConfusionMatrix docstring - round function changed to numpy.around - `README.md` modified ## [0.8.5] - 2018-05-21 ### Added - Example-1 (Comparison of three different classifiers) - Example-2 (How to plot via matplotlib) - JOSS paper - ConfusionMatrix docstring ### Changed - Table size in HTML report - Test system - `README.md` modified ## [0.8.1] - 2018-03-22 ### Added - Goodman and Kruskal's lambda B - Goodman and Kruskal's lambda A - Cross entropy - Conditional entropy - Joint entropy - Reference entropy - Response entropy - Kullback-Liebler divergence - Direct ConfusionMatrix - Kappa unbiased - Kappa no prevalence - Random accuracy unbiased - `pycmVectorError` class - `pycmMatrixError` class - Mutual information - Support `numpy` arrays ### Changed - Notebook file updated ### Removed - `pycmError` class ## [0.7] - 2018-02-26 ### Added - Cramer's V - 95% confidence interval - Chi-Squared - Phi-Squared - Chi-Squared DF - Standard error - Kappa standard error - Kappa 95% confidence interval - Cicchetti benchmark ### Changed - Overall statistics color in HTML report - Parameters description link in HTML report ## [0.6] - 2018-02-21 ### Added - CSV report - Changelog - Output files - `digit` parameter to `ConfusionMatrix` object ### Changed - Confusion matrix color in HTML report - Parameters description link in HTML report - Capitalize descriptions ## [0.5] - 2018-02-17 ### Added - Scott's pi - Gwet's AC1 - Bennett S score - HTML report ## [0.4] - 2018-02-05 ### Added - TPR micro/macro - PPV micro/macro - Overall RACC - Error rate (ERR) - FBeta score - F0.5 - F2 - Fleiss benchmark - Altman benchmark - Output file(.pycm) ### Changed - Class with zero item - Normalized matrix ### Removed - Kappa and SOA for each class ## [0.3] - 2018-01-27 ### Added - Kappa - Random accuracy - Landis and Koch benchmark - `overall_stat` ## [0.2] - 2018-01-24 ### Added - Population - Condition positive - Condition negative - Test outcome positive - Test outcome negative - Prevalence - G-measure - Matrix method - Normalized matrix method - Params method ### Changed - `statistic_result` to `class_stat` - `params` to `stat` ## [0.1] - 2018-01-22 ### Added - ACC - BM - DOR - F1-Score - FDR - FNR - FOR - FPR - LR+ - LR- - MCC - MK - NPV - PPV - TNR - TPR - documents and `README.md` [Unreleased]: https://github.com/sepandhaghighi/pycm/compare/v3.8...dev [3.8]: https://github.com/sepandhaghighi/pycm/compare/v3.7...v3.8 [3.7]: https://github.com/sepandhaghighi/pycm/compare/v3.6...v3.7 [3.6]: https://github.com/sepandhaghighi/pycm/compare/v3.5...v3.6 [3.5]: https://github.com/sepandhaghighi/pycm/compare/v3.4...v3.5 [3.4]: https://github.com/sepandhaghighi/pycm/compare/v3.3...v3.4 [3.3]: https://github.com/sepandhaghighi/pycm/compare/v3.2...v3.3 [3.2]: https://github.com/sepandhaghighi/pycm/compare/v3.1...v3.2 [3.1]: https://github.com/sepandhaghighi/pycm/compare/v3.0...v3.1 [3.0]: https://github.com/sepandhaghighi/pycm/compare/v2.9...v3.0 [2.9]: https://github.com/sepandhaghighi/pycm/compare/v2.8...v2.9 [2.8]: https://github.com/sepandhaghighi/pycm/compare/v2.7...v2.8 [2.7]: https://github.com/sepandhaghighi/pycm/compare/v2.6...v2.7 [2.6]: https://github.com/sepandhaghighi/pycm/compare/v2.5...v2.6 [2.5]: https://github.com/sepandhaghighi/pycm/compare/v2.4...v2.5 [2.4]: https://github.com/sepandhaghighi/pycm/compare/v2.3...v2.4 [2.3]: https://github.com/sepandhaghighi/pycm/compare/v2.2...v2.3 [2.2]: https://github.com/sepandhaghighi/pycm/compare/v2.1...v2.2 [2.1]: https://github.com/sepandhaghighi/pycm/compare/v2.0...v2.1 [2.0]: https://github.com/sepandhaghighi/pycm/compare/v1.9...v2.0 [1.9]: https://github.com/sepandhaghighi/pycm/compare/v1.8...v1.9 [1.8]: https://github.com/sepandhaghighi/pycm/compare/v1.7...v1.8 [1.7]: https://github.com/sepandhaghighi/pycm/compare/v1.6...v1.7 [1.6]: https://github.com/sepandhaghighi/pycm/compare/v1.5...v1.6 [1.5]: https://github.com/sepandhaghighi/pycm/compare/v1.4...v1.5 [1.4]: https://github.com/sepandhaghighi/pycm/compare/v1.3...v1.4 [1.3]: https://github.com/sepandhaghighi/pycm/compare/v1.2...v1.3 [1.2]: https://github.com/sepandhaghighi/pycm/compare/v1.1...v1.2 [1.1]: https://github.com/sepandhaghighi/pycm/compare/v1.0...v1.1 [1.0]: https://github.com/sepandhaghighi/pycm/compare/v0.9.5...v1.0 [0.9.5]: https://github.com/sepandhaghighi/pycm/compare/v0.9...v0.9.5 [0.9]: https://github.com/sepandhaghighi/pycm/compare/v0.8.6...v0.9 [0.8.6]: https://github.com/sepandhaghighi/pycm/compare/v0.8.5...v0.8.6 [0.8.5]: https://github.com/sepandhaghighi/pycm/compare/v0.8.1...v0.8.5 [0.8.1]: https://github.com/sepandhaghighi/pycm/compare/v0.7...v0.8.1 [0.7]: https://github.com/sepandhaghighi/pycm/compare/v0.6...v0.7 [0.6]: https://github.com/sepandhaghighi/pycm/compare/v0.5...v0.6 [0.5]: https://github.com/sepandhaghighi/pycm/compare/v0.4...v0.5 [0.4]: https://github.com/sepandhaghighi/pycm/compare/v0.3...v0.4 [0.3]: https://github.com/sepandhaghighi/pycm/compare/v0.2...v0.3 [0.2]: https://github.com/sepandhaghighi/pycm/compare/v0.1...v0.2 [0.1]: https://github.com/sepandhaghighi/pycm/compare/1e238cd...v0.1 %package help Summary: Development documents and examples for pycm Provides: python3-pycm-doc %description help

PyCM: Python Confusion Matrix


built with Python3 PyPI version Document Discord Channel
## Table of contents * [Overview](https://github.com/sepandhaghighi/pycm#overview) * [Installation](https://github.com/sepandhaghighi/pycm#installation) * [Usage](https://github.com/sepandhaghighi/pycm#usage) * [Document](https://github.com/sepandhaghighi/pycm/tree/master/Document) * [Try PyCM in Your Browser](https://github.com/sepandhaghighi/pycm#try-pycm-in-your-browser) * [Issues & Bug Reports](https://github.com/sepandhaghighi/pycm#issues--bug-reports) * [Todo](https://github.com/sepandhaghighi/pycm/blob/master/TODO.md) * [Contribution](https://github.com/sepandhaghighi/pycm/blob/master/.github/CONTRIBUTING.md) * [Acknowledgments](https://github.com/sepandhaghighi/pycm#acknowledgments) * [Cite](https://github.com/sepandhaghighi/pycm#cite) * [Authors](https://github.com/sepandhaghighi/pycm/blob/master/AUTHORS.md) * [License](https://github.com/sepandhaghighi/pycm/blob/master/LICENSE) * [Show Your Support](https://github.com/sepandhaghighi/pycm#show-your-support) * [Changelog](https://github.com/sepandhaghighi/pycm/blob/master/CHANGELOG.md) * [Code of Conduct](https://github.com/sepandhaghighi/pycm/blob/master/.github/CODE_OF_CONDUCT.md) ## Overview

PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and accurate evaluation of a large variety of classifiers.

Fig1. ConfusionMatrix Block Diagram

Open Hub
PyPI Counter
Github Stars
Branch master dev
CI
Code Quality CodeFactor codebeat badge
## Installation ⚠️ PyCM 2.4 is the last version to support **Python 2.7** & **Python 3.4** ⚠️ Plotting capability requires **Matplotlib (>= 3.0.0)** or **Seaborn (>= 0.9.1)** ### Source code - Download [Version 3.8](https://github.com/sepandhaghighi/pycm/archive/v3.8.zip) or [Latest Source ](https://github.com/sepandhaghighi/pycm/archive/dev.zip) - Run `pip install -r requirements.txt` or `pip3 install -r requirements.txt` (Need root access) - Run `python3 setup.py install` or `python setup.py install` (Need root access) ### PyPI - Check [Python Packaging User Guide](https://packaging.python.org/installing/) - Run `pip install pycm==3.8` or `pip3 install pycm==3.8` (Need root access) ### Conda - Check [Conda Managing Package](https://conda.io/) - Update Conda using `conda update conda` (Need root access) - Run `conda install -c sepandhaghighi pycm` (Need root access) ### Easy install - Run `easy_install --upgrade pycm` (Need root access) ### MATLAB - Download and install [MATLAB](https://www.mathworks.com/products/matlab.html) (>=8.5, 64/32 bit) - Download and install [Python3.x](https://www.python.org/downloads/) (>=3.5, 64/32 bit) - [x] Select `Add to PATH` option - [x] Select `Install pip` option - Run `pip install pycm` or `pip3 install pycm` (Need root access) - Configure Python interpreter ```matlab >> pyversion PYTHON_EXECUTABLE_FULL_PATH ``` - Visit [MATLAB Examples](https://github.com/sepandhaghighi/pycm/tree/master/MATLAB) ## Usage ### From vector ```pycon >>> from pycm import * >>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2] >>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2] >>> cm = ConfusionMatrix(actual_vector=y_actu, predict_vector=y_pred) >>> cm.classes [0, 1, 2] >>> cm.table {0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}} >>> cm.print_matrix() Predict 0 1 2 Actual 0 3 0 0 1 0 1 2 2 2 1 3 >>> cm.print_normalized_matrix() Predict 0 1 2 Actual 0 1.0 0.0 0.0 1 0.0 0.33333 0.66667 2 0.33333 0.16667 0.5 >>> cm.stat(summary=True) Overall Statistics : ACC Macro 0.72222 F1 Macro 0.56515 FPR Macro 0.22222 Kappa 0.35484 Overall ACC 0.58333 PPV Macro 0.56667 SOA1(Landis & Koch) Fair TPR Macro 0.61111 Zero-one Loss 5 Class Statistics : Classes 0 1 2 ACC(Accuracy) 0.83333 0.75 0.58333 AUC(Area under the ROC curve) 0.88889 0.61111 0.58333 AUCI(AUC value interpretation) Very Good Fair Poor F1(F1 score - harmonic mean of precision and sensitivity) 0.75 0.4 0.54545 FN(False negative/miss/type 2 error) 0 2 3 FP(False positive/type 1 error/false alarm) 2 1 2 FPR(Fall-out or false positive rate) 0.22222 0.11111 0.33333 N(Condition negative) 9 9 6 P(Condition positive or support) 3 3 6 POP(Population) 12 12 12 PPV(Precision or positive predictive value) 0.6 0.5 0.6 TN(True negative/correct rejection) 7 8 4 TON(Test outcome negative) 7 10 7 TOP(Test outcome positive) 5 2 5 TP(True positive/hit) 3 1 3 TPR(Sensitivity, recall, hit rate, or true positive rate) 1.0 0.33333 0.5 ``` ### Direct CM ```pycon >>> from pycm import * >>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2":2}, "Class2": {"Class1": 0, "Class2": 5}}) >>> cm2 pycm.ConfusionMatrix(classes: ['Class1', 'Class2']) >>> cm2.classes ['Class1', 'Class2'] >>> cm2.print_matrix() Predict Class1 Class2 Actual Class1 1 2 Class2 0 5 >>> cm2.print_normalized_matrix() Predict Class1 Class2 Actual Class1 0.33333 0.66667 Class2 0.0 1.0 >>> cm2.stat(summary=True) Overall Statistics : ACC Macro 0.75 F1 Macro 0.66667 FPR Macro 0.33333 Kappa 0.38462 Overall ACC 0.75 PPV Macro 0.85714 SOA1(Landis & Koch) Fair TPR Macro 0.66667 Zero-one Loss 2 Class Statistics : Classes Class1 Class2 ACC(Accuracy) 0.75 0.75 AUC(Area under the ROC curve) 0.66667 0.66667 AUCI(AUC value interpretation) Fair Fair F1(F1 score - harmonic mean of precision and sensitivity) 0.5 0.83333 FN(False negative/miss/type 2 error) 2 0 FP(False positive/type 1 error/false alarm) 0 2 FPR(Fall-out or false positive rate) 0.0 0.66667 N(Condition negative) 5 3 P(Condition positive or support) 3 5 POP(Population) 8 8 PPV(Precision or positive predictive value) 1.0 0.71429 TN(True negative/correct rejection) 5 1 TON(Test outcome negative) 7 1 TOP(Test outcome positive) 1 7 TP(True positive/hit) 1 5 TPR(Sensitivity, recall, hit rate, or true positive rate) 0.33333 1.0 ``` * `matrix()` and `normalized_matrix()` renamed to `print_matrix()` and `print_normalized_matrix()` in `version 1.5` ### Activation threshold `threshold` is added in `version 0.9` for real value prediction. For more information visit [Example3](http://www.pycm.io/doc/Example3.html "Example3") ### Load from file `file` is added in `version 0.9.5` in order to load saved confusion matrix with `.obj` format generated by `save_obj` method. For more information visit [Example4](http://www.pycm.io/doc/Example4.html "Example4") ### Sample weights `sample_weight` is added in `version 1.2` For more information visit [Example5](http://www.pycm.io/doc/Example5.html "Example5") ### Transpose `transpose` is added in `version 1.2` in order to transpose input matrix (only in `Direct CM` mode) ### Relabel `relabel` method is added in `version 1.5` in order to change ConfusionMatrix classnames. ```pycon >>> cm.relabel(mapping={0:"L1",1:"L2",2:"L3"}) >>> cm pycm.ConfusionMatrix(classes: ['L1', 'L2', 'L3']) ``` ### Position `position` method is added in `version 2.8` in order to find the indexes of observations in `predict_vector` which made TP, TN, FP, FN. ```pycon >>> cm.position() {0: {'FN': [], 'FP': [0, 7], 'TP': [1, 4, 9], 'TN': [2, 3, 5, 6, 8, 10, 11]}, 1: {'FN': [5, 10], 'FP': [3], 'TP': [6], 'TN': [0, 1, 2, 4, 7, 8, 9, 11]}, 2: {'FN': [0, 3, 7], 'FP': [5, 10], 'TP': [2, 8, 11], 'TN': [1, 4, 6, 9]}} ``` ### To array `to_array` method is added in `version 2.9` in order to returns the confusion matrix in the form of a NumPy array. This can be helpful to apply different operations over the confusion matrix for different purposes such as aggregation, normalization, and combination. ```pycon >>> cm.to_array() array([[3, 0, 0], [0, 1, 2], [2, 1, 3]]) >>> cm.to_array(normalized=True) array([[1. , 0. , 0. ], [0. , 0.33333, 0.66667], [0.33333, 0.16667, 0.5 ]]) >>> cm.to_array(normalized=True, one_vs_all=True, class_name="L1") array([[1. , 0. ], [0.22222, 0.77778]]) ``` ### Combine `combine` method is added in `version 3.0` in order to merge two confusion matrices. This option will be useful in mini-batch learning. ```pycon >>> cm_combined = cm2.combine(cm3) >>> cm_combined.print_matrix() Predict Class1 Class2 Actual Class1 2 4 Class2 0 10 ``` ### Plot `plot` method is added in `version 3.0` in order to plot a confusion matrix using Matplotlib or Seaborn. ```pycon >>> cm.plot() ``` ```pycon >>> from matplotlib import pyplot as plt >>> cm.plot(cmap=plt.cm.Greens, number_label=True, plot_lib="matplotlib") ``` ```pycon >>> cm.plot(cmap=plt.cm.Reds, normalized=True, number_label=True, plot_lib="seaborn") ``` ### ROC curve `ROCCurve`, added in `version 3.7`, is devised to compute the Receiver Operating Characteristic (ROC) or simply ROC curve. In ROC curves, the Y axis represents the True Positive Rate, and the X axis represents the False Positive Rate. Thus, the ideal point is located at the top left of the curve, and a larger area under the curve represents better performance. ROC curve is a graphical representation of binary classifiers' performance. In PyCM, `ROCCurve` binarizes the output based on the "One vs. Rest" strategy to provide an extension of ROC for multi-class classifiers. Getting the actual labels vector, the target probability estimates of the positive classes, and the list of ordered labels of classes, this method is able to compute and plot TPR-FPR pairs for different discrimination thresholds and compute the area under the ROC curve. ```pycon >>> crv = ROCCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1]) >>> crv.thresholds [0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9] >>> auc_trp = crv.area() >>> auc_trp[1] 0.75 >>> auc_trp[2] 0.75 ``` ### Precision-Recall curve `PRCurve`, added in `version 3.7`, is devised to compute the Precision-Recall curve in which the Y axis represents the Precision, and the X axis represents the Recall of a classifier. Thus, the ideal point is located at the top right of the curve, and a larger area under the curve represents better performance. Precision-Recall curve is a graphical representation of binary classifiers' performance. In PyCM, `PRCurve` binarizes the output based on the "One vs. Rest" strategy to provide an extension of this curve for multi-class classifiers. Getting the actual labels vector, the target probability estimates of the positive classes, and the list of ordered labels of classes, this method is able to compute and plot Precision-Recall pairs for different discrimination thresholds and compute the area under the curve. ```pycon >>> crv = PRCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1]) >>> crv.thresholds [0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9] >>> auc_trp = crv.area() >>> auc_trp[1] 0.29166666666666663 >>> auc_trp[2] 0.29166666666666663 ``` ### Parameter recommender This option has been added in `version 1.9` to recommend the most related parameters considering the characteristics of the input dataset. The suggested parameters are selected according to some characteristics of the input such as being balance/imbalance and binary/multi-class. All suggestions can be categorized into three main groups: imbalanced dataset, binary classification for a balanced dataset, and multi-class classification for a balanced dataset. The recommendation lists have been gathered according to the respective paper of each parameter and the capabilities which had been claimed by the paper. ```pycon >>> cm.imbalance False >>> cm.binary False >>> cm.recommended_list ['MCC', 'TPR Micro', 'ACC', 'PPV Macro', 'BCD', 'Overall MCC', 'Hamming Loss', 'TPR Macro', 'Zero-one Loss', 'ERR', 'PPV Micro', 'Overall ACC'] ``` `is_imbalanced` parameter has been added in `version 3.3`, so the user can indicate whether the concerned dataset is imbalanced or not. As long as the user does not provide any information in this regard, the automatic detection algorithm will be used. ```pycon >>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced = True) >>> cm.imbalance True >>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced = False) >>> cm.imbalance False ``` ### Compare In `version 2.0`, a method for comparing several confusion matrices is introduced. This option is a combination of several overall and class-based benchmarks. Each of the benchmarks evaluates the performance of the classification algorithm from good to poor and give them a numeric score. The score of good and poor performances are 1 and 0, respectively. After that, two scores are calculated for each confusion matrices, overall and class-based. The overall score is the average of the score of seven overall benchmarks which are Landis & Koch, Cramer, Matthews, Goodman-Kruskal's Lambda A, Goodman-Kruskal's Lambda B, Krippendorff's Alpha, and Pearson's C. In the same manner, the class-based score is the average of the score of six class-based benchmarks which are Positive Likelihood Ratio Interpretation, Negative Likelihood Ratio Interpretation, Discriminant Power Interpretation, AUC value Interpretation, Matthews Correlation Coefficient Interpretation and Yule's Q Interpretation. It should be noticed that if one of the benchmarks returns none for one of the classes, that benchmarks will be eliminated in total averaging. If the user sets weights for the classes, the averaging over the value of class-based benchmark scores will transform to a weighted average. If the user sets the value of `by_class` boolean input `True`, the best confusion matrix is the one with the maximum class-based score. Otherwise, if a confusion matrix obtains the maximum of both overall and class-based scores, that will be reported as the best confusion matrix, but in any other case, the compared object doesn’t select the best confusion matrix. ```pycon >>> cm2 = ConfusionMatrix(matrix={0:{0:2, 1:50, 2:6}, 1:{0:5, 1:50, 2:3}, 2:{0:1, 1:7, 2:50}}) >>> cm3 = ConfusionMatrix(matrix={0:{0:50, 1:2, 2:6}, 1:{0:50, 1:5, 2:3}, 2:{0:1, 1:55, 2:2}}) >>> cp = Compare({"cm2":cm2, "cm3":cm3}) >>> print(cp) Best : cm2 Rank Name Class-Score Overall-Score 1 cm2 0.50278 0.58095 2 cm3 0.33611 0.52857 >>> cp.best pycm.ConfusionMatrix(classes: [0, 1, 2]) >>> cp.sorted ['cm2', 'cm3'] >>> cp.best_name 'cm2' ``` ### Online help `online_help` function is added in `version 1.1` in order to open each statistics definition in web browser ```pycon >>> from pycm import online_help >>> online_help("J") >>> online_help("SOA1(Landis & Koch)") >>> online_help(2) ``` * List of items are available by calling `online_help()` (without argument) * If PyCM website is not available, set `alt_link = True` (new in `version 2.4`) ### Acceptable data types **ConfusionMatrix** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `predict_vector` : python `list` or numpy `array` of any stringable objects 3. `matrix` : `dict` 4. `digit`: `int` 5. `threshold` : `FunctionType (function or lambda)` 6. `file` : `File object` 7. `sample_weight` : python `list` or numpy `array` of numbers 8. `transpose` : `bool` 9. `classes` : python `list` 10. `is_imbalanced` : `bool` * Run `help(ConfusionMatrix)` for `ConfusionMatrix` object details **Compare** 1. `cm_dict` : python `dict` of `ConfusionMatrix` object (`str` : `ConfusionMatrix`) 2. `by_class` : `bool` 3. `class_weight` : python `dict` of class weights (`class_name` : `float`) 4. `class_benchmark_weight`: python `dict` of class benchmark weights (`class_benchmark_name` : `float`) 5. `overall_benchmark_weight`: python `dict` of overall benchmark weights (`overall_benchmark_name` : `float`) 6. `digit`: `int` * Run `help(Compare)` for `Compare` object details **ROCCurve** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `probs` : python `list` or numpy `array` 3. `classes` : python `list` 4. `thresholds`: python `list` or numpy `array` 5. `sample_weight`: python `list` or numpy `array` **PRCurve** 1. `actual_vector` : python `list` or numpy `array` of any stringable objects 2. `probs` : python `list` or numpy `array` 3. `classes` : python `list` 4. `thresholds`: python `list` or numpy `array` 5. `sample_weight`: python `list` or numpy `array` For more information visit [here](https://github.com/sepandhaghighi/pycm/tree/master/Document "Document")
## Try PyCM in your browser! PyCM can be used online in interactive Jupyter Notebooks via the Binder or Colab services! Try it out now! : [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/sepandhaghighi/pycm/master) [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sepandhaghighi/pycm/blob/master) * Check `Examples` in `Document` folder ## Issues & bug reports 1. Fill an issue and describe it. We'll check it ASAP! - Please complete the issue template 2. Discord : [https://discord.com/invite/zqpU2b3J3f](https://discord.com/invite/zqpU2b3J3f) 3. Website : [https://www.pycm.io](https://www.pycm.io) 4. Mailing List : [https://mail.python.org/mailman3/lists/pycm.python.org/](https://mail.python.org/mailman3/lists/pycm.python.org/) 5. Email : [info@pycm.io](mailto:info@pycm.io "info@pycm.io") ## Acknowledgments [NLnet foundation](https://nlnet.nl) has supported the PyCM project from version **3.6** to **4.0** through the [NGI Assure](https://nlnet.nl/assure) Fund. This fund is set up by [NLnet foundation](https://nlnet.nl) with funding from the European Commission's [Next Generation Internet program](https://ngi.eu), administered by DG Communications Networks, Content, and Technology under grant agreement [**No 957073**](https://nlnet.nl/project/PyCM/). NLnet foundation   NGI Assure [Python Software Foundation (PSF)](https://www.python.org/psf/) grants PyCM library partially for version **3.7**. [PSF](https://www.python.org/psf/) is the organization behind Python. Their mission is to promote, protect, and advance the Python programming language and to support and facilitate the growth of a diverse and international community of Python programmers. Python Software Foundation ## Cite If you use PyCM in your research, we would appreciate citations to the following paper :
Haghighi, S., Jasemi, M., Hessabi, S. and Zolanvari, A. (2018). PyCM: Multiclass confusion matrix library in Python. Journal of Open Source Software, 3(25), p.729.

@article{Haghighi2018,
  doi = {10.21105/joss.00729},
  url = {https://doi.org/10.21105/joss.00729},
  year  = {2018},
  month = {may},
  publisher = {The Open Journal},
  volume = {3},
  number = {25},
  pages = {729},
  author = {Sepand Haghighi and Masoomeh Jasemi and Shaahin Hessabi and Alireza Zolanvari},
  title = {{PyCM}: Multiclass confusion matrix library in Python},
  journal = {Journal of Open Source Software}
}

Download [PyCM.bib](http://www.pycm.io/PYCM.bib)
JOSS
Zenodo DOI
Researchgate
## Show your support ### Star this repo Give a ⭐️ if this project helped you! ### Donate to our project If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) . PyCM Donation # Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.html). ## [Unreleased] ## [3.8] - 2023-02-01 ### Added - `distance` method - `__contains__` method - `__getitem__` method - Goodman-Kruskal's Lambda A benchmark - Goodman-Kruskal's Lambda B benchmark - Krippendorff's Alpha benchmark - Pearson's C benchmark - 30 new distance/similarity 1. AMPLE 2. Anderberg's D 3. Andres & Marzo's Delta 4. Baroni-Urbani & Buser I 5. Baroni-Urbani & Buser II 6. Batagelj & Bren 7. Baulieu I 8. Baulieu II 9. Baulieu III 10. Baulieu IV 11. Baulieu V 12. Baulieu VI 13. Baulieu VII 14. Baulieu VIII 15. Baulieu IX 16. Baulieu X 17. Baulieu XI 18. Baulieu XII 19. Baulieu XIII 20. Baulieu XIV 21. Baulieu XV 22. Benini I 23. Benini II 24. Canberra 25. Clement 26. Consonni & Todeschini I 27. Consonni & Todeschini II 28. Consonni & Todeschini III 29. Consonni & Todeschini IV 30. Consonni & Todeschini V ### Changed - `relabel` method sort bug fixed - `README.md` modified - `Compare` overall benchmarks default weights updated - Document modified - Test system modified ## [3.7] - 2022-12-15 ### Added - `Curve` class - `ROCCurve` class - `PRCurve` class - `pycmCurveError` class ### Changed - `CONTRIBUTING.md` updated - `matrix_params_calc` function optimized - `README.md` modified - Document modified - Test system modified - `Python 3.11` added to `test.yml` ## [3.6] - 2022-08-17 ### Added - Hamming distance - Braun-Blanquet similarity ### Changed - `classes` parameter added to `matrix_params_from_table` function - Matrices with `numpy.integer` elements are now accepted - Arrays added to `matrix` parameter accepting formats - Website changed to [http://www.pycm.io](http://www.pycm.io) - Document modified - `README.md` modified ## [3.5] - 2022-04-27 ### Added - Anaconda workflow - Custom iterating setting - Custom casting setting ### Changed - `plot` method updated - `class_statistics` function modified - `overall_statistics` function modified - `BCD_calc` function modified - `CONTRIBUTING.md` updated - `CODE_OF_CONDUCT.md` updated - Document modified ## [3.4] - 2022-01-26 ### Added - Colab badge - Discord badge - `brier_score` method ### Changed - `J (Jaccard index)` section in `Document.ipynb` updated - `save_obj` method updated - `Python 3.10` added to `test.yml` - Example-3 updated - Docstrings of the functions updated - `CONTRIBUTING.md` updated ## [3.3] - 2021-10-27 ### Added - `__compare_weight_handler__` function ### Changed - `is_imbalanced` parameter added to ConfusionMatrix `__init__` method - `class_benchmark_weight` and `overall_benchmark_weight` parameters added to Compare `__init__` method - `statistic_recommend` function modified - Compare `weight` parameter renamed to `class_weight` - Document modified - License updated - `AUTHORS.md` updated - `README.md` modified - Block diagrams updated ## [3.2] - 2021-08-11 ### Added - `classes_filter` function ### Changed - `classes` parameter added to `matrix_params_calc` function - `classes` parameter added to `__obj_vector_handler__` function - `classes` parameter added to ConfusionMatrix `__init__` method - `name` parameter removed from `html_init` function - `shortener` parameter added to `html_table` function - `shortener` parameter added to `save_html` method - Document modified - HTML report modified ## [3.1] - 2021-03-11 ### Added - `requirements-splitter.py` - `sensitivity_index` method ### Changed - Test system modified - `overall_statistics` function modified - HTML report modified - Document modified - References format updated - `CONTRIBUTING.md` updated ## [3.0] - 2020-10-26 ### Added - `plot_test.py` - `axes_gen` function - `add_number_label` function - `plot` method - `combine` method - `matrix_combine` function ### Changed - Document modified - `README.md` modified - Example-2 deprecated - Example-7 deprecated - Error messages modified ## [2.9] - 2020-09-23 ### Added - `notebook_check.py` - `to_array` method - `__copy__` method - `copy` method ### Changed - `average` method refactored ## [2.8] - 2020-07-09 ### Added - `label_map` attribute - `positions` attribute - `position` method - Krippendorff's Alpha - Aickin's Alpha - `weighted_alpha` method ### Changed - Single class bug fixed - `CLASS_NUMBER_ERROR` error type changed to `pycmMatrixError` - `relabel` method bug fixed - Document modified - `README.md` modified ## [2.7] - 2020-05-11 ### Added - `average` method - `weighted_average` method - `weighted_kappa` method - `pycmAverageError` class - Bangdiwala's B - MATLAB examples - Github action ### Changed - Document modified - `README.md` modified - `relabel` method bug fixed - `sparse_table_print` function bug fixed - `matrix_check` function bug fixed - Minor bug in `Compare` class fixed - Class names mismatch bug fixed ## [2.6] - 2020-03-25 ### Added - `custom_rounder` function - `complement` function - `sparse_matrix` attribute - `sparse_normalized_matrix` attribute - Net benefit (NB) - Yule's Q interpretation (QI) - Adjusted Rand index (ARI) - TNR micro/macro - FPR micro/macro - FNR micro/macro ### Changed - `sparse` parameter added to `print_matrix`,`print_normalized_matrix` and `save_stat` methods - `header` parameter added to `save_csv` method - Handler functions moved to `pycm_handler.py` - Error objects moved to `pycm_error.py` - Verified tests references updated - Verified tests moved to `verified_test.py` - Test system modified - `CONTRIBUTING.md` updated - Namespace optimized - `README.md` modified - Document modified - `print_normalized_matrix` method modified - `normalized_table_calc` function modified - `setup.py` modified - summary mode updated - Dockerfile updated - `Python 3.8` added to `.travis.yaml` and `appveyor.yml` ### Removed - `PC_PI_calc` function ## [2.5] - 2019-10-16 ### Added - `__version__` variable - Individual classification success index (ICSI) - Classification success index (CSI) - Example-8 (Confidence interval) - `install.sh` - `autopep8.sh` - Dockerfile - `CI` method (supported statistics : `ACC`,`AUC`,`Overall ACC`,`Kappa`,`TPR`,`TNR`,`PPV`,`NPV`,`PLR`,`NLR`,`PRE`) ### Changed - `test.sh` moved to `.travis` folder - Python 3.4 support dropped - Python 2.7 support dropped - `AUTHORS.md` updated - `save_stat`,`save_csv` and `save_html` methods Non-ASCII character bug fixed - Mixed type input vectors bug fixed - `CONTRIBUTING.md` updated - Example-3 updated - `README.md` modified - Document modified - `CI` attribute renamed to `CI95` - `kappa_se_calc` function renamed to `kappa_SE_calc` - `se_calc` function modified and renamed to `SE_calc` - CI/SE functions moved to `pycm_ci.py` - Minor bug in `save_html` method fixed ## [2.4] - 2019-07-31 ### Added - Tversky index (TI) - Area under the PR curve (AUPR) - `FUNDING.yml` ### Changed - `AUC_calc` function modified - Document modified - `summary` parameter added to `save_html`,`save_stat`,`save_csv` and `stat` methods - `sample_weight` bug in `numpy` array format fixed - Inputs manipulation bug fixed - Test system modified - Warning system modified - `alt_link` parameter added to `save_html` method and `online_help` function - `Compare` class tests moved to `compare_test.py` - Warning tests moved to `warning_test.py` ## [2.3] - 2019-06-27 ### Added - Adjusted F-score (AGF) - Overlap coefficient (OC) - Otsuka-Ochiai coefficient (OOC) ### Changed - `save_stat` and `save_vector` parameters added to `save_obj` method - Document modified - `README.md` modified - Parameters recommendation for imbalance dataset modified - Minor bug in `Compare` class fixed - `pycm_help` function modified - Benchmarks color modified ## [2.2] - 2019-05-30 ### Added - Negative likelihood ratio interpretation (NLRI) - Cramer's benchmark (SOA5) - Matthews correlation coefficient interpretation (MCCI) - Matthews's benchmark (SOA6) - F1 macro - F1 micro - Accuracy macro ### Changed - `Compare` class score calculation modified - Parameters recommendation for multi-class dataset modified - Parameters recommendation for imbalance dataset modified - `README.md` modified - Document modified - Logo updated ## [2.1] - 2019-05-06 ### Added - Adjusted geometric mean (AGM) - Yule's Q (Q) - `Compare` class and parameters recommendation system block diagrams ### Changed - Document links bug fixed - Document modified ## [2.0] - 2019-04-15 ### Added - G-Mean (GM) - Index of balanced accuracy (IBA) - Optimized precision (OP) - Pearson's C (C) - `Compare` class - Parameters recommendation warning - `ConfusionMatrix` equal method ### Changed - Document modified - `stat_print` function bug fixed - `table_print` function bug fixed - `Beta` parameter renamed to `beta` (`F_calc` function & `F_beta` method) - Parameters recommendation for imbalance dataset modified - `normalize` parameter added to `save_html` method - `pycm_func.py` splitted into `pycm_class_func.py` and `pycm_overall_func.py` - `vector_filter`,`vector_check`,`class_check` and `matrix_check` functions moved to `pycm_util.py` - `RACC_calc` and `RACCU_calc` functions exception handler modified - Docstrings modified ## [1.9] - 2019-02-25 ### Added - Automatic/Manual (AM) - Bray-Curtis dissimilarity (BCD) - `CODE_OF_CONDUCT.md` - `ISSUE_TEMPLATE.md` - `PULL_REQUEST_TEMPLATE.md` - `CONTRIBUTING.md` - X11 color names support for `save_html` method - Parameters recommendation system - Warning message for high dimension matrix print - Interactive notebooks section (binder) ### Changed - `save_matrix` and `normalize` parameters added to `save_csv` method - `README.md` modified - Document modified - `ConfusionMatrix.__init__` optimized - Document and examples output files moved to different folders - Test system modified - `relabel` method bug fixed ## [1.8] - 2019-01-05 ### Added - Lift score (LS) - `version_check.py` ### Changed - `color` parameter added to `save_html` method - Error messages modified - Document modified - Website changed to [http://www.pycm.ir](http://www.pycm.ir) - Interpretation functions moved to `pycm_interpret.py` - Utility functions moved to `pycm_util.py` - Unnecessary `else` and `elif` removed - `==` changed to `is` ## [1.7] - 2018-12-18 ### Added - Gini index (GI) - Example-7 - `pycm_profile.py` ### Changed - `class_name` parameter added to `stat`,`save_stat`,`save_csv` and `save_html` methods - `overall_param` and `class_param` parameters empty list bug fixed - `matrix_params_calc`, `matrix_params_from_table` and `vector_filter` functions optimized - `overall_MCC_calc`, `CEN_misclassification_calc` and `convex_combination` functions optimized - Document modified ## [1.6] - 2018-12-06 ### Added - AUC value interpretation (AUCI) - Example-6 - Anaconda cloud package ### Changed - `overall_param` and `class_param` parameters added to `stat`,`save_stat` and `save_html` methods - `class_param` parameter added to `save_csv` method - `_` removed from overall statistics names - `README.md` modified - Document modified ## [1.5] - 2018-11-26 ### Added - Relative classifier information (RCI) - Discriminator power (DP) - Youden's index (Y) - Discriminant power interpretation (DPI) - Positive likelihood ratio interpretation (PLRI) - `__len__` method - `relabel` method - `__class_stat_init__` function - `__overall_stat_init__` function - `matrix` attribute as dict - `normalized_matrix` attribute as dict - `normalized_table` attribute as dict ### Changed - `README.md` modified - Document modified - `LR+` renamed to `PLR` - `LR-` renamed to `NLR` - `normalized_matrix` method renamed to `print_normalized_matrix` - `matrix` method renamed to `print_matrix` - `entropy_calc` fixed - `cross_entropy_calc` fixed - `conditional_entropy_calc` fixed - `print_table` bug for large numbers fixed - JSON key bug in `save_obj` fixed - `transpose` bug in `save_obj` fixed - `Python 3.7` added to `.travis.yaml` and `appveyor.yml` ## [1.4] - 2018-11-12 ### Added - Area under curve (AUC) - AUNU - AUNP - Class balance accuracy (CBA) - Global performance index (RR) - Overall MCC - Distance index (dInd) - Similarity index (sInd) - `one_vs_all` - `dev-requirements.txt` ### Changed - `README.md` modified - Document modified - `save_stat` modified - `requirements.txt` modified ## [1.3] - 2018-10-10 ### Added - Confusion entropy (CEN) - Overall confusion entropy (Overall CEN) - Modified confusion entropy (MCEN) - Overall modified confusion entropy (Overall MCEN) - Information score (IS) ### Changed - `README.md` modified ## [1.2] - 2018-10-01 ### Added - No information rate (NIR) - P-Value - `sample_weight` - `transpose` ### Changed - `README.md` modified - Key error in some parameters fixed - `OSX` env added to `.travis.yml` ## [1.1] - 2018-09-08 ### Added - Zero-one loss - Support - `online_help` function ### Changed - `README.md` modified - `html_table` function modified - `table_print` function modified - `normalized_table_print` function modified ## [1.0] - 2018-08-30 ### Added - Hamming loss ### Changed - `README.md` modified ## [0.9.5] - 2018-07-08 ### Added - Obj load - Obj save - Example-4 ### Changed - `README.md` modified - Block diagram updated ## [0.9] - 2018-06-28 ### Added - Activation threshold - Example-3 - Jaccard index - Overall Jaccard index ### Changed - `README.md` modified - `setup.py` modified ## [0.8.6] - 2018-05-31 ### Added - Example section in document - Python 2.7 CI - JOSS paper pdf ### Changed - Cite section - ConfusionMatrix docstring - round function changed to numpy.around - `README.md` modified ## [0.8.5] - 2018-05-21 ### Added - Example-1 (Comparison of three different classifiers) - Example-2 (How to plot via matplotlib) - JOSS paper - ConfusionMatrix docstring ### Changed - Table size in HTML report - Test system - `README.md` modified ## [0.8.1] - 2018-03-22 ### Added - Goodman and Kruskal's lambda B - Goodman and Kruskal's lambda A - Cross entropy - Conditional entropy - Joint entropy - Reference entropy - Response entropy - Kullback-Liebler divergence - Direct ConfusionMatrix - Kappa unbiased - Kappa no prevalence - Random accuracy unbiased - `pycmVectorError` class - `pycmMatrixError` class - Mutual information - Support `numpy` arrays ### Changed - Notebook file updated ### Removed - `pycmError` class ## [0.7] - 2018-02-26 ### Added - Cramer's V - 95% confidence interval - Chi-Squared - Phi-Squared - Chi-Squared DF - Standard error - Kappa standard error - Kappa 95% confidence interval - Cicchetti benchmark ### Changed - Overall statistics color in HTML report - Parameters description link in HTML report ## [0.6] - 2018-02-21 ### Added - CSV report - Changelog - Output files - `digit` parameter to `ConfusionMatrix` object ### Changed - Confusion matrix color in HTML report - Parameters description link in HTML report - Capitalize descriptions ## [0.5] - 2018-02-17 ### Added - Scott's pi - Gwet's AC1 - Bennett S score - HTML report ## [0.4] - 2018-02-05 ### Added - TPR micro/macro - PPV micro/macro - Overall RACC - Error rate (ERR) - FBeta score - F0.5 - F2 - Fleiss benchmark - Altman benchmark - Output file(.pycm) ### Changed - Class with zero item - Normalized matrix ### Removed - Kappa and SOA for each class ## [0.3] - 2018-01-27 ### Added - Kappa - Random accuracy - Landis and Koch benchmark - `overall_stat` ## [0.2] - 2018-01-24 ### Added - Population - Condition positive - Condition negative - Test outcome positive - Test outcome negative - Prevalence - G-measure - Matrix method - Normalized matrix method - Params method ### Changed - `statistic_result` to `class_stat` - `params` to `stat` ## [0.1] - 2018-01-22 ### Added - ACC - BM - DOR - F1-Score - FDR - FNR - FOR - FPR - LR+ - LR- - MCC - MK - NPV - PPV - TNR - TPR - documents and `README.md` [Unreleased]: https://github.com/sepandhaghighi/pycm/compare/v3.8...dev [3.8]: https://github.com/sepandhaghighi/pycm/compare/v3.7...v3.8 [3.7]: https://github.com/sepandhaghighi/pycm/compare/v3.6...v3.7 [3.6]: https://github.com/sepandhaghighi/pycm/compare/v3.5...v3.6 [3.5]: https://github.com/sepandhaghighi/pycm/compare/v3.4...v3.5 [3.4]: https://github.com/sepandhaghighi/pycm/compare/v3.3...v3.4 [3.3]: https://github.com/sepandhaghighi/pycm/compare/v3.2...v3.3 [3.2]: https://github.com/sepandhaghighi/pycm/compare/v3.1...v3.2 [3.1]: https://github.com/sepandhaghighi/pycm/compare/v3.0...v3.1 [3.0]: https://github.com/sepandhaghighi/pycm/compare/v2.9...v3.0 [2.9]: https://github.com/sepandhaghighi/pycm/compare/v2.8...v2.9 [2.8]: https://github.com/sepandhaghighi/pycm/compare/v2.7...v2.8 [2.7]: https://github.com/sepandhaghighi/pycm/compare/v2.6...v2.7 [2.6]: https://github.com/sepandhaghighi/pycm/compare/v2.5...v2.6 [2.5]: https://github.com/sepandhaghighi/pycm/compare/v2.4...v2.5 [2.4]: https://github.com/sepandhaghighi/pycm/compare/v2.3...v2.4 [2.3]: https://github.com/sepandhaghighi/pycm/compare/v2.2...v2.3 [2.2]: https://github.com/sepandhaghighi/pycm/compare/v2.1...v2.2 [2.1]: https://github.com/sepandhaghighi/pycm/compare/v2.0...v2.1 [2.0]: https://github.com/sepandhaghighi/pycm/compare/v1.9...v2.0 [1.9]: https://github.com/sepandhaghighi/pycm/compare/v1.8...v1.9 [1.8]: https://github.com/sepandhaghighi/pycm/compare/v1.7...v1.8 [1.7]: https://github.com/sepandhaghighi/pycm/compare/v1.6...v1.7 [1.6]: https://github.com/sepandhaghighi/pycm/compare/v1.5...v1.6 [1.5]: https://github.com/sepandhaghighi/pycm/compare/v1.4...v1.5 [1.4]: https://github.com/sepandhaghighi/pycm/compare/v1.3...v1.4 [1.3]: https://github.com/sepandhaghighi/pycm/compare/v1.2...v1.3 [1.2]: https://github.com/sepandhaghighi/pycm/compare/v1.1...v1.2 [1.1]: https://github.com/sepandhaghighi/pycm/compare/v1.0...v1.1 [1.0]: https://github.com/sepandhaghighi/pycm/compare/v0.9.5...v1.0 [0.9.5]: https://github.com/sepandhaghighi/pycm/compare/v0.9...v0.9.5 [0.9]: https://github.com/sepandhaghighi/pycm/compare/v0.8.6...v0.9 [0.8.6]: https://github.com/sepandhaghighi/pycm/compare/v0.8.5...v0.8.6 [0.8.5]: https://github.com/sepandhaghighi/pycm/compare/v0.8.1...v0.8.5 [0.8.1]: https://github.com/sepandhaghighi/pycm/compare/v0.7...v0.8.1 [0.7]: https://github.com/sepandhaghighi/pycm/compare/v0.6...v0.7 [0.6]: https://github.com/sepandhaghighi/pycm/compare/v0.5...v0.6 [0.5]: https://github.com/sepandhaghighi/pycm/compare/v0.4...v0.5 [0.4]: https://github.com/sepandhaghighi/pycm/compare/v0.3...v0.4 [0.3]: https://github.com/sepandhaghighi/pycm/compare/v0.2...v0.3 [0.2]: https://github.com/sepandhaghighi/pycm/compare/v0.1...v0.2 [0.1]: https://github.com/sepandhaghighi/pycm/compare/1e238cd...v0.1 %prep %autosetup -n pycm-3.8 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pycm -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 3.8-1 - Package Spec generated