%global _empty_manifest_terminate_build 0 Name: python-alphashape Version: 1.3.1 Release: 1 Summary: Toolbox for generating alpha shapes. License: MIT license URL: https://github.com/bellockk/alphashape Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2e/83/67ff905694df5b34a777123b59fdfd05998d5a31766f188aafbf5b340055/alphashape-1.3.1.tar.gz BuildArch: noarch Requires: python3-Click Requires: python3-click-log Requires: python3-shapely Requires: python3-numpy Requires: python3-trimesh Requires: python3-networkx Requires: python3-rtree Requires: python3-scipy %description # Alpha Shape Toolbox [![Travis](https://api.travis-ci.org/bellockk/alphashape.svg?branch=master)](https://travis-ci.org/bellockk/alphashape/) [![Documentation Status](https://readthedocs.org/projects/alphashape/badge/?version=latest)](http://alphashape.readthedocs.io/?badge=latest) [![CodeCov](https://codecov.io/gh/bellockk/alphashape/branch/master/graph/badge.svg)](https://codecov.io/gh/bellockk/alphashape) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/bellockk/alphashape/master) [![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://lbesson.mit-license.org/) [![DOI](https://zenodo.org/badge/183085167.svg)](https://zenodo.org/badge/latestdoi/183085167) [![PyPI version](https://img.shields.io/pypi/v/alphashape.svg)](https://pypi.python.org/pypi/alphashape/) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/alphashape.svg)](https://pypi.python.org/pypi/alphashape/) [![PyPI downloads](https://img.shields.io/pypi/dm/alphashape)](https://pypi.python.org/pypi/alphashape/) [![Anaconda version](https://anaconda.org/conda-forge/alphashape/badges/version.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda downloads](https://anaconda.org/conda-forge/alphashape/badges/downloads.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda platforms](https://anaconda.org/conda-forge/alphashape/badges/platforms.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda lastupdated](https://anaconda.org/conda-forge/alphashape/badges/latest_release_date.svg)](https://anaconda.org/conda-forge/alphashape) Toolbox for generating n-dimensional alpha shapes. Alpha shapes are often used to generalize bounding polygons containing sets of points. The alpha parameter is defined as the value `a`, such that an edge of a disk of radius 1/`a` can be drawn between any two edge members of a set of points and still contain all the points. The convex hull, a shape resembling what you would see if you wrapped a rubber band around pegs at all the data points, is an alpha shape where the alpha parameter is equal to zero. In this toolbox we will be generating alpha complexes, which are closely related to alpha shapes, but which consist of straight lines between the edge points instead of arcs of circles. https://en.wikipedia.org/wiki/Alpha_shape https://en.wikipedia.org/wiki/Convex_hull Creating alpha shapes around sets of points usually requires a visually interactive step where the alpha parameter for a concave hull is determined by iterating over or bisecting values to approach a best fit. The alpha shape toolbox provides workflows to shorten the development loop on this manual process, or to bypass it completely by solving for an alpha shape with particular characteristics. A python API is provided to aid in the scripted generation of alpha shapes. A console application is also provided as an example usage of the alpha shape toolbox, and to facilitate generation of alpha shapes from the command line. * Free software: MIT license * Documentation: https://alphashape.readthedocs.io. ## Features ### Import Dependencies ```python import os import sys import pandas as pd import numpy as np from descartes import PolygonPatch import matplotlib.pyplot as plt sys.path.insert(0, os.path.dirname(os.getcwd())) import alphashape ``` ### 2 Dimensional Example #### Define a set of points ```python points_2d = [(0., 0.), (0., 1.), (1., 1.), (1., 0.), (0.5, 0.25), (0.5, 0.75), (0.25, 0.5), (0.75, 0.5)] ``` #### Visualize Test Coordinates ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_5_0.png) #### Generate an Alpha Shape ($\alpha=0.0$) (Convex Hull) Every convex hull is an alpha shape, but not every alpha shape is a convex hull. When the `alphashape` function is called with an alpha parameter of 0, a convex hull will always be returned. ##### Create the alpha shape You can visualize the shape within Jupyter notebooks using the built-in shapely renderer as shown below. ```python alpha_shape = alphashape.alphashape(points_2d, 0.) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_9_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_10_0.png) #### Generate an Alpha Shape ($\alpha=2.0$) (Concave Hull) As we increase the alpha parameter value, the bounding shape will begin to fit the sample data with a more tightly fitting bounding box. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d, 2.0) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_1.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_15_0.png) #### Generate an Alpha Shape ($\alpha=3.5$) If you go too high on the alpha parameter, you will start to lose points from the original data set. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d, 3.5) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_19_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_20_0.png) #### Generate an Alpha Shape (Alpha=5.0) If you go too far, you will lose everything. ```python alpha_shape = alphashape.alphashape(points_2d, 5.0) print(alpha_shape) ``` GEOMETRYCOLLECTION EMPTY ## Using a varying Alpha Parameter The alpha parameter can be defined locally within a region of points by supplying a callback that will return what alpha parameter to use. This can be utilized to create tighter fitting alpha shapes where point densitities are different in different regions of a data set. In the following example, the alpha parameter is changed based off of the value of the x-coordinate of the points. ```python alpha_shape = alphashape.alphashape( points_2d, lambda ind, r: 1.0 + any(np.array(points_2d)[ind][:,0] == 0.0)) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_25_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_27_1.png) #### Generate an Alpha Shape by Solving for an Optimal Alpha Value The alpha parameter can be solved for if it is not provided as an argument, but with large datasets this can take a long time to calculate. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_1.png) ##### Plotting the alpha shape over the input data ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_27_0.png) ### 3 Dimensional Example #### Define a set of points ```python points_3d = [ (0., 0., 0.), (0., 0., 1.), (0., 1., 0.), (1., 0., 0.), (1., 1., 0.), (1., 0., 1.), (0., 1., 1.), (1., 1., 1.), (.25, .5, .5), (.5, .25, .5), (.5, .5, .25), (.75, .5, .5), (.5, .75, .5), (.5, .5, .75) ] ``` #### Visualize Test Coordinates ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter(df_3d['x'], df_3d['y'], df_3d['z']) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_37_0.png) #### Alphashape with Static Alpha Parameter You can visualize the shape within Jupyter notebooks using the built-in trimesh renderer by calling the `.show()` method as shown below. ```python alpha_shape = alphashape.alphashape(points_3d, 1.1) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-1.1.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_40_0.png) #### Alphashape with Dymanic Alpha Parameter ```python alpha_shape = alphashape.alphashape(points_3d, lambda ind, r: 1.0 + any( np.array(points_3d)[ind][:,0] == 0.0)) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-vary.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_43_0.png) #### Alphashape found by solving for the Alpha Parameter ```python alpha_shape = alphashape.alphashape(points_3d) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-solve.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_46_0.png) ### 4 Dimensional Example #### Define a set of points ```python points_4d = [ (0., 0., 0., 0.), (0., 0., 0., 1.), (0., 0., 1., 0.), (0., 1., 0., 0.), (0., 1., 1., 0.), (0., 1., 0., 1.), (0., 0., 1., 1.), (0., 1., 1., 1.), (1., 0., 0., 0.), (1., 0., 0., 1.), (1., 0., 1., 0.), (1., 1., 0., 0.), (1., 1., 1., 0.), (1., 1., 0., 1.), (1., 0., 1., 1.), (1., 1., 1., 1.), (.25, .5, .5, .5), (.5, .25, .5, .5), (.5, .5, .25, .5), (.5, .5, .5, .25), (.75, .5, .5, .5), (.5, .75, .5, .5), (.5, .5, .75, .5), (.5, .5, .5, .75) ] df_4d = pd.DataFrame(points_4d, columns=['x', 'y', 'z', 'r']) ``` #### Visualize Test Coordinates ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter(df_4d['x'], df_4d['y'], df_4d['z'], c=df_4d['r']) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_51_0.png) #### The Edges of a 4 Dimensional Alpha Shape are Tetrahedrons Defined by the Following Coordinates (No Visualizations) ```python alphashape.alphashape(points_4d, 1.0) ``` ```python {(16, 1, 2, 0), (16, 1, 3, 0), (16, 2, 3, 0), (16, 4, 2, 3), (16, 4, 7, 2), (16, 4, 7, 3), (16, 5, 1, 3), (16, 5, 7, 1), (16, 5, 7, 3), (16, 6, 1, 2), (16, 6, 7, 1), (16, 6, 7, 2), (17, 1, 2, 0), (17, 1, 8, 0), (17, 2, 8, 0), (17, 6, 1, 2), (17, 6, 14, 1), (17, 6, 14, 2), (17, 9, 1, 8), (17, 9, 14, 1), (17, 9, 14, 8), (17, 10, 2, 8), (17, 10, 14, 2), (17, 10, 14, 8), (18, 1, 3, 0), (18, 1, 8, 0), (18, 3, 8, 0), (18, 5, 1, 3), (18, 5, 13, 1), (18, 5, 13, 3), (18, 9, 1, 8), (18, 9, 13, 1), (18, 9, 13, 8), (18, 11, 3, 8), (18, 11, 13, 3), (18, 11, 13, 8), (19, 2, 3, 0), (19, 2, 8, 0), (19, 3, 8, 0), (19, 4, 2, 3), (19, 4, 12, 2), (19, 4, 12, 3), (19, 10, 2, 8), (19, 10, 12, 2), (19, 10, 12, 8), (19, 11, 3, 8), (19, 11, 12, 3), (19, 11, 12, 8), (20, 9, 13, 8), (20, 9, 14, 8), (20, 9, 14, 13), (20, 10, 12, 8), (20, 10, 14, 8), (20, 10, 14, 12), (20, 11, 12, 8), (20, 11, 13, 8), (20, 11, 13, 12), (20, 13, 12, 15), (20, 14, 12, 15), (20, 14, 13, 15), (21, 4, 7, 3), (21, 4, 7, 12), (21, 4, 12, 3), (21, 5, 7, 3), (21, 5, 7, 13), (21, 5, 13, 3), (21, 7, 12, 15), (21, 7, 13, 15), (21, 11, 12, 3), (21, 11, 13, 3), (21, 11, 13, 12), (21, 13, 12, 15), (22, 4, 7, 2), (22, 4, 7, 12), (22, 4, 12, 2), (22, 6, 7, 2), (22, 6, 7, 14), (22, 6, 14, 2), (22, 7, 12, 15), (22, 7, 14, 15), (22, 10, 12, 2), (22, 10, 14, 2), (22, 10, 14, 12), (22, 14, 12, 15), (23, 5, 7, 1), (23, 5, 7, 13), (23, 5, 13, 1), (23, 6, 7, 1), (23, 6, 7, 14), (23, 6, 14, 1), (23, 7, 13, 15), (23, 7, 14, 15), (23, 9, 13, 1), (23, 9, 14, 1), (23, 9, 14, 13), (23, 14, 13, 15)} ``` ## Alpha Shapes with GeoPandas ##### Sample Data The data used in this notebook can be obtained from the Alaska Department of Transportation and Public Facilities website at the link below. It consists of a point collection for each of the public airports in Alaska. [http://www.dot.alaska.gov/stwdplng/mapping/shapefiles.shtml](http://www.dot.alaska.gov/stwdplng/mapping/shapefiles.shtml) ##### Load the Shapefile ```python import os import geopandas data = os.path.join(os.getcwd(), 'data', 'Public_Airports_March2018.shp') gdf = geopandas.read_file(data) ``` ```python %matplotlib inline gdf.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_4_1.png) ```python gdf.crs ``` {'init': 'epsg:4269'} ##### Generate Alpha Shape The alpha shape will be generated in the coordinate frame the geodataframe is in. In this example, we will project into an Albers Equal Area projection, construct our alpha shape in that coordinate system, and then convert back to the source projection. ##### Project to Albers Equal Area Spatial Reference ```python import cartopy.crs as ccrs gdf_proj = gdf.to_crs(ccrs.AlbersEqualArea().proj4_init) gdf_proj.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_8_1.png) ##### Determine the Alpha Shape ```python import alphashape alpha_shape = alphashape.alphashape(gdf_proj) alpha_shape.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_10_1.png) ##### Plotting the Alpha Shape over the Data Points ##### Plate Carree Projection ```python import matplotlib.pyplot as plt ax = plt.axes(projection=ccrs.PlateCarree()) ax.scatter([p.x for p in gdf_proj['geometry']], [p.y for p in gdf_proj['geometry']], transform=ccrs.AlbersEqualArea()) ax.add_geometries( alpha_shape['geometry'], crs=ccrs.AlbersEqualArea(), alpha=.2) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_12_0.png) ##### Robinson Projection ```python import matplotlib.pyplot as plt ax = plt.axes(projection=ccrs.Robinson()) ax.scatter([p.x for p in gdf_proj['geometry']], [p.y for p in gdf_proj['geometry']], transform=ccrs.AlbersEqualArea()) ax.add_geometries( alpha_shape['geometry'], crs=ccrs.AlbersEqualArea(), alpha=.2) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_0.png) ## St. Sulpice Point Cloud Data The following data can be obtained from the Lib E57 example data set found at the link below. To reduce the amount of data included in the `alphashape` toolbox repository, only a subset of point data was converted to a shapefile format and all data except point locations were dropped. [http://www.libe57.org/data.html](http://www.libe57.org/data.html) ![St Sulpice](https://raw.github.com/bellockk/alphashape/master/media/Paris-TrimbleRealWorks.png "St Sulpice Point Cloud") ```python import os import geopandas data = os.path.join(os.getcwd(), 'data', 'Trimble_StSulpice-Cloud-50mm.shp') gdf = geopandas.read_file(data) ``` ```python from alphashape import alphashape alphashape([point.coords[0] for point in gdf['geometry'][0]], 0.7).show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-stsulpice.png) ### Credits This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template. # History ## 1.3.1 (2021-04-16) * Small bug fixes * Documentation cleanup ## 1.3.0 (2021-04-02) * Support for generating alphashapes for 3 or more dimensional input data. * GeoJSON support in command line interface. ## 1.2.1 (2021-03-13) * Adding in support for Python 3.6 and 3.9 ## 1.2.0 (2021-02-25) * Updated dependencies for geopandas notebook examples. * Updated source information for Alaska Airports example data set. * Dropping support for Python 3.6. ## 1.1.0 (2020-08-19) * Updated dependency version numbers. * Including optional bounds for alpha paramter solver. ## 1.0.1 (2019-05-06) * Added gallery plot for optimized alpha function. * Documentation cleanup. ## 1.0.0 (2019-05-06) * [#1 Update features in README.md](https://github.com/bellockk/alphashape/issues/1) * [#2 Create Application Utilizing the alphashape Toolbox](https://github.com/bellockk/alphashape/issues/2) ## 0.1.10 (2019-05-05) * Correcting formatting on PyPi long description. ## 0.1.9 (2019-05-05) * [#7 Include GeoPandas Integration](https://github.com/bellockk/alphashape/issues/7) ## 0.1.8 (2019-05-05) * [#8 Include capability to optimize alpha parameter](https://github.com/bellockk/alphashape/issues/8) ## 0.1.7 (2019-04-26) * Complete code coverage of existing capabilities. ## 0.1.6 (2019-04-24) * [#6 Include Jupyter Notebook in Examples](https://github.com/bellockk/alphashape/issues/6) ## 0.1.5 (2019-04-24) * [#5 Create an Example Gallery in the Documentation](https://github.com/bellockk/alphashape/issues/5) ## 0.1.4 (2019-04-24) * Bug fixes. ## 0.1.3 (2019-04-24) * Bug fixes. ## 0.1.2 (2019-04-24) * Bug fixes. ## 0.1.1 (2019-04-24) * Bug fixes. ## 0.1.0 (2019-04-23) * First release on PyPI. %package -n python3-alphashape Summary: Toolbox for generating alpha shapes. Provides: python-alphashape BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-alphashape # Alpha Shape Toolbox [![Travis](https://api.travis-ci.org/bellockk/alphashape.svg?branch=master)](https://travis-ci.org/bellockk/alphashape/) [![Documentation Status](https://readthedocs.org/projects/alphashape/badge/?version=latest)](http://alphashape.readthedocs.io/?badge=latest) [![CodeCov](https://codecov.io/gh/bellockk/alphashape/branch/master/graph/badge.svg)](https://codecov.io/gh/bellockk/alphashape) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/bellockk/alphashape/master) [![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://lbesson.mit-license.org/) [![DOI](https://zenodo.org/badge/183085167.svg)](https://zenodo.org/badge/latestdoi/183085167) [![PyPI version](https://img.shields.io/pypi/v/alphashape.svg)](https://pypi.python.org/pypi/alphashape/) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/alphashape.svg)](https://pypi.python.org/pypi/alphashape/) [![PyPI downloads](https://img.shields.io/pypi/dm/alphashape)](https://pypi.python.org/pypi/alphashape/) [![Anaconda version](https://anaconda.org/conda-forge/alphashape/badges/version.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda downloads](https://anaconda.org/conda-forge/alphashape/badges/downloads.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda platforms](https://anaconda.org/conda-forge/alphashape/badges/platforms.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda lastupdated](https://anaconda.org/conda-forge/alphashape/badges/latest_release_date.svg)](https://anaconda.org/conda-forge/alphashape) Toolbox for generating n-dimensional alpha shapes. Alpha shapes are often used to generalize bounding polygons containing sets of points. The alpha parameter is defined as the value `a`, such that an edge of a disk of radius 1/`a` can be drawn between any two edge members of a set of points and still contain all the points. The convex hull, a shape resembling what you would see if you wrapped a rubber band around pegs at all the data points, is an alpha shape where the alpha parameter is equal to zero. In this toolbox we will be generating alpha complexes, which are closely related to alpha shapes, but which consist of straight lines between the edge points instead of arcs of circles. https://en.wikipedia.org/wiki/Alpha_shape https://en.wikipedia.org/wiki/Convex_hull Creating alpha shapes around sets of points usually requires a visually interactive step where the alpha parameter for a concave hull is determined by iterating over or bisecting values to approach a best fit. The alpha shape toolbox provides workflows to shorten the development loop on this manual process, or to bypass it completely by solving for an alpha shape with particular characteristics. A python API is provided to aid in the scripted generation of alpha shapes. A console application is also provided as an example usage of the alpha shape toolbox, and to facilitate generation of alpha shapes from the command line. * Free software: MIT license * Documentation: https://alphashape.readthedocs.io. ## Features ### Import Dependencies ```python import os import sys import pandas as pd import numpy as np from descartes import PolygonPatch import matplotlib.pyplot as plt sys.path.insert(0, os.path.dirname(os.getcwd())) import alphashape ``` ### 2 Dimensional Example #### Define a set of points ```python points_2d = [(0., 0.), (0., 1.), (1., 1.), (1., 0.), (0.5, 0.25), (0.5, 0.75), (0.25, 0.5), (0.75, 0.5)] ``` #### Visualize Test Coordinates ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_5_0.png) #### Generate an Alpha Shape ($\alpha=0.0$) (Convex Hull) Every convex hull is an alpha shape, but not every alpha shape is a convex hull. When the `alphashape` function is called with an alpha parameter of 0, a convex hull will always be returned. ##### Create the alpha shape You can visualize the shape within Jupyter notebooks using the built-in shapely renderer as shown below. ```python alpha_shape = alphashape.alphashape(points_2d, 0.) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_9_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_10_0.png) #### Generate an Alpha Shape ($\alpha=2.0$) (Concave Hull) As we increase the alpha parameter value, the bounding shape will begin to fit the sample data with a more tightly fitting bounding box. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d, 2.0) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_1.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_15_0.png) #### Generate an Alpha Shape ($\alpha=3.5$) If you go too high on the alpha parameter, you will start to lose points from the original data set. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d, 3.5) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_19_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_20_0.png) #### Generate an Alpha Shape (Alpha=5.0) If you go too far, you will lose everything. ```python alpha_shape = alphashape.alphashape(points_2d, 5.0) print(alpha_shape) ``` GEOMETRYCOLLECTION EMPTY ## Using a varying Alpha Parameter The alpha parameter can be defined locally within a region of points by supplying a callback that will return what alpha parameter to use. This can be utilized to create tighter fitting alpha shapes where point densitities are different in different regions of a data set. In the following example, the alpha parameter is changed based off of the value of the x-coordinate of the points. ```python alpha_shape = alphashape.alphashape( points_2d, lambda ind, r: 1.0 + any(np.array(points_2d)[ind][:,0] == 0.0)) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_25_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_27_1.png) #### Generate an Alpha Shape by Solving for an Optimal Alpha Value The alpha parameter can be solved for if it is not provided as an argument, but with large datasets this can take a long time to calculate. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_1.png) ##### Plotting the alpha shape over the input data ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_27_0.png) ### 3 Dimensional Example #### Define a set of points ```python points_3d = [ (0., 0., 0.), (0., 0., 1.), (0., 1., 0.), (1., 0., 0.), (1., 1., 0.), (1., 0., 1.), (0., 1., 1.), (1., 1., 1.), (.25, .5, .5), (.5, .25, .5), (.5, .5, .25), (.75, .5, .5), (.5, .75, .5), (.5, .5, .75) ] ``` #### Visualize Test Coordinates ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter(df_3d['x'], df_3d['y'], df_3d['z']) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_37_0.png) #### Alphashape with Static Alpha Parameter You can visualize the shape within Jupyter notebooks using the built-in trimesh renderer by calling the `.show()` method as shown below. ```python alpha_shape = alphashape.alphashape(points_3d, 1.1) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-1.1.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_40_0.png) #### Alphashape with Dymanic Alpha Parameter ```python alpha_shape = alphashape.alphashape(points_3d, lambda ind, r: 1.0 + any( np.array(points_3d)[ind][:,0] == 0.0)) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-vary.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_43_0.png) #### Alphashape found by solving for the Alpha Parameter ```python alpha_shape = alphashape.alphashape(points_3d) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-solve.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_46_0.png) ### 4 Dimensional Example #### Define a set of points ```python points_4d = [ (0., 0., 0., 0.), (0., 0., 0., 1.), (0., 0., 1., 0.), (0., 1., 0., 0.), (0., 1., 1., 0.), (0., 1., 0., 1.), (0., 0., 1., 1.), (0., 1., 1., 1.), (1., 0., 0., 0.), (1., 0., 0., 1.), (1., 0., 1., 0.), (1., 1., 0., 0.), (1., 1., 1., 0.), (1., 1., 0., 1.), (1., 0., 1., 1.), (1., 1., 1., 1.), (.25, .5, .5, .5), (.5, .25, .5, .5), (.5, .5, .25, .5), (.5, .5, .5, .25), (.75, .5, .5, .5), (.5, .75, .5, .5), (.5, .5, .75, .5), (.5, .5, .5, .75) ] df_4d = pd.DataFrame(points_4d, columns=['x', 'y', 'z', 'r']) ``` #### Visualize Test Coordinates ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter(df_4d['x'], df_4d['y'], df_4d['z'], c=df_4d['r']) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_51_0.png) #### The Edges of a 4 Dimensional Alpha Shape are Tetrahedrons Defined by the Following Coordinates (No Visualizations) ```python alphashape.alphashape(points_4d, 1.0) ``` ```python {(16, 1, 2, 0), (16, 1, 3, 0), (16, 2, 3, 0), (16, 4, 2, 3), (16, 4, 7, 2), (16, 4, 7, 3), (16, 5, 1, 3), (16, 5, 7, 1), (16, 5, 7, 3), (16, 6, 1, 2), (16, 6, 7, 1), (16, 6, 7, 2), (17, 1, 2, 0), (17, 1, 8, 0), (17, 2, 8, 0), (17, 6, 1, 2), (17, 6, 14, 1), (17, 6, 14, 2), (17, 9, 1, 8), (17, 9, 14, 1), (17, 9, 14, 8), (17, 10, 2, 8), (17, 10, 14, 2), (17, 10, 14, 8), (18, 1, 3, 0), (18, 1, 8, 0), (18, 3, 8, 0), (18, 5, 1, 3), (18, 5, 13, 1), (18, 5, 13, 3), (18, 9, 1, 8), (18, 9, 13, 1), (18, 9, 13, 8), (18, 11, 3, 8), (18, 11, 13, 3), (18, 11, 13, 8), (19, 2, 3, 0), (19, 2, 8, 0), (19, 3, 8, 0), (19, 4, 2, 3), (19, 4, 12, 2), (19, 4, 12, 3), (19, 10, 2, 8), (19, 10, 12, 2), (19, 10, 12, 8), (19, 11, 3, 8), (19, 11, 12, 3), (19, 11, 12, 8), (20, 9, 13, 8), (20, 9, 14, 8), (20, 9, 14, 13), (20, 10, 12, 8), (20, 10, 14, 8), (20, 10, 14, 12), (20, 11, 12, 8), (20, 11, 13, 8), (20, 11, 13, 12), (20, 13, 12, 15), (20, 14, 12, 15), (20, 14, 13, 15), (21, 4, 7, 3), (21, 4, 7, 12), (21, 4, 12, 3), (21, 5, 7, 3), (21, 5, 7, 13), (21, 5, 13, 3), (21, 7, 12, 15), (21, 7, 13, 15), (21, 11, 12, 3), (21, 11, 13, 3), (21, 11, 13, 12), (21, 13, 12, 15), (22, 4, 7, 2), (22, 4, 7, 12), (22, 4, 12, 2), (22, 6, 7, 2), (22, 6, 7, 14), (22, 6, 14, 2), (22, 7, 12, 15), (22, 7, 14, 15), (22, 10, 12, 2), (22, 10, 14, 2), (22, 10, 14, 12), (22, 14, 12, 15), (23, 5, 7, 1), (23, 5, 7, 13), (23, 5, 13, 1), (23, 6, 7, 1), (23, 6, 7, 14), (23, 6, 14, 1), (23, 7, 13, 15), (23, 7, 14, 15), (23, 9, 13, 1), (23, 9, 14, 1), (23, 9, 14, 13), (23, 14, 13, 15)} ``` ## Alpha Shapes with GeoPandas ##### Sample Data The data used in this notebook can be obtained from the Alaska Department of Transportation and Public Facilities website at the link below. It consists of a point collection for each of the public airports in Alaska. [http://www.dot.alaska.gov/stwdplng/mapping/shapefiles.shtml](http://www.dot.alaska.gov/stwdplng/mapping/shapefiles.shtml) ##### Load the Shapefile ```python import os import geopandas data = os.path.join(os.getcwd(), 'data', 'Public_Airports_March2018.shp') gdf = geopandas.read_file(data) ``` ```python %matplotlib inline gdf.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_4_1.png) ```python gdf.crs ``` {'init': 'epsg:4269'} ##### Generate Alpha Shape The alpha shape will be generated in the coordinate frame the geodataframe is in. In this example, we will project into an Albers Equal Area projection, construct our alpha shape in that coordinate system, and then convert back to the source projection. ##### Project to Albers Equal Area Spatial Reference ```python import cartopy.crs as ccrs gdf_proj = gdf.to_crs(ccrs.AlbersEqualArea().proj4_init) gdf_proj.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_8_1.png) ##### Determine the Alpha Shape ```python import alphashape alpha_shape = alphashape.alphashape(gdf_proj) alpha_shape.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_10_1.png) ##### Plotting the Alpha Shape over the Data Points ##### Plate Carree Projection ```python import matplotlib.pyplot as plt ax = plt.axes(projection=ccrs.PlateCarree()) ax.scatter([p.x for p in gdf_proj['geometry']], [p.y for p in gdf_proj['geometry']], transform=ccrs.AlbersEqualArea()) ax.add_geometries( alpha_shape['geometry'], crs=ccrs.AlbersEqualArea(), alpha=.2) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_12_0.png) ##### Robinson Projection ```python import matplotlib.pyplot as plt ax = plt.axes(projection=ccrs.Robinson()) ax.scatter([p.x for p in gdf_proj['geometry']], [p.y for p in gdf_proj['geometry']], transform=ccrs.AlbersEqualArea()) ax.add_geometries( alpha_shape['geometry'], crs=ccrs.AlbersEqualArea(), alpha=.2) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_0.png) ## St. Sulpice Point Cloud Data The following data can be obtained from the Lib E57 example data set found at the link below. To reduce the amount of data included in the `alphashape` toolbox repository, only a subset of point data was converted to a shapefile format and all data except point locations were dropped. [http://www.libe57.org/data.html](http://www.libe57.org/data.html) ![St Sulpice](https://raw.github.com/bellockk/alphashape/master/media/Paris-TrimbleRealWorks.png "St Sulpice Point Cloud") ```python import os import geopandas data = os.path.join(os.getcwd(), 'data', 'Trimble_StSulpice-Cloud-50mm.shp') gdf = geopandas.read_file(data) ``` ```python from alphashape import alphashape alphashape([point.coords[0] for point in gdf['geometry'][0]], 0.7).show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-stsulpice.png) ### Credits This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template. # History ## 1.3.1 (2021-04-16) * Small bug fixes * Documentation cleanup ## 1.3.0 (2021-04-02) * Support for generating alphashapes for 3 or more dimensional input data. * GeoJSON support in command line interface. ## 1.2.1 (2021-03-13) * Adding in support for Python 3.6 and 3.9 ## 1.2.0 (2021-02-25) * Updated dependencies for geopandas notebook examples. * Updated source information for Alaska Airports example data set. * Dropping support for Python 3.6. ## 1.1.0 (2020-08-19) * Updated dependency version numbers. * Including optional bounds for alpha paramter solver. ## 1.0.1 (2019-05-06) * Added gallery plot for optimized alpha function. * Documentation cleanup. ## 1.0.0 (2019-05-06) * [#1 Update features in README.md](https://github.com/bellockk/alphashape/issues/1) * [#2 Create Application Utilizing the alphashape Toolbox](https://github.com/bellockk/alphashape/issues/2) ## 0.1.10 (2019-05-05) * Correcting formatting on PyPi long description. ## 0.1.9 (2019-05-05) * [#7 Include GeoPandas Integration](https://github.com/bellockk/alphashape/issues/7) ## 0.1.8 (2019-05-05) * [#8 Include capability to optimize alpha parameter](https://github.com/bellockk/alphashape/issues/8) ## 0.1.7 (2019-04-26) * Complete code coverage of existing capabilities. ## 0.1.6 (2019-04-24) * [#6 Include Jupyter Notebook in Examples](https://github.com/bellockk/alphashape/issues/6) ## 0.1.5 (2019-04-24) * [#5 Create an Example Gallery in the Documentation](https://github.com/bellockk/alphashape/issues/5) ## 0.1.4 (2019-04-24) * Bug fixes. ## 0.1.3 (2019-04-24) * Bug fixes. ## 0.1.2 (2019-04-24) * Bug fixes. ## 0.1.1 (2019-04-24) * Bug fixes. ## 0.1.0 (2019-04-23) * First release on PyPI. %package help Summary: Development documents and examples for alphashape Provides: python3-alphashape-doc %description help # Alpha Shape Toolbox [![Travis](https://api.travis-ci.org/bellockk/alphashape.svg?branch=master)](https://travis-ci.org/bellockk/alphashape/) [![Documentation Status](https://readthedocs.org/projects/alphashape/badge/?version=latest)](http://alphashape.readthedocs.io/?badge=latest) [![CodeCov](https://codecov.io/gh/bellockk/alphashape/branch/master/graph/badge.svg)](https://codecov.io/gh/bellockk/alphashape) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/bellockk/alphashape/master) [![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://lbesson.mit-license.org/) [![DOI](https://zenodo.org/badge/183085167.svg)](https://zenodo.org/badge/latestdoi/183085167) [![PyPI version](https://img.shields.io/pypi/v/alphashape.svg)](https://pypi.python.org/pypi/alphashape/) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/alphashape.svg)](https://pypi.python.org/pypi/alphashape/) [![PyPI downloads](https://img.shields.io/pypi/dm/alphashape)](https://pypi.python.org/pypi/alphashape/) [![Anaconda version](https://anaconda.org/conda-forge/alphashape/badges/version.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda downloads](https://anaconda.org/conda-forge/alphashape/badges/downloads.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda platforms](https://anaconda.org/conda-forge/alphashape/badges/platforms.svg)](https://anaconda.org/conda-forge/alphashape) [![Anaconda lastupdated](https://anaconda.org/conda-forge/alphashape/badges/latest_release_date.svg)](https://anaconda.org/conda-forge/alphashape) Toolbox for generating n-dimensional alpha shapes. Alpha shapes are often used to generalize bounding polygons containing sets of points. The alpha parameter is defined as the value `a`, such that an edge of a disk of radius 1/`a` can be drawn between any two edge members of a set of points and still contain all the points. The convex hull, a shape resembling what you would see if you wrapped a rubber band around pegs at all the data points, is an alpha shape where the alpha parameter is equal to zero. In this toolbox we will be generating alpha complexes, which are closely related to alpha shapes, but which consist of straight lines between the edge points instead of arcs of circles. https://en.wikipedia.org/wiki/Alpha_shape https://en.wikipedia.org/wiki/Convex_hull Creating alpha shapes around sets of points usually requires a visually interactive step where the alpha parameter for a concave hull is determined by iterating over or bisecting values to approach a best fit. The alpha shape toolbox provides workflows to shorten the development loop on this manual process, or to bypass it completely by solving for an alpha shape with particular characteristics. A python API is provided to aid in the scripted generation of alpha shapes. A console application is also provided as an example usage of the alpha shape toolbox, and to facilitate generation of alpha shapes from the command line. * Free software: MIT license * Documentation: https://alphashape.readthedocs.io. ## Features ### Import Dependencies ```python import os import sys import pandas as pd import numpy as np from descartes import PolygonPatch import matplotlib.pyplot as plt sys.path.insert(0, os.path.dirname(os.getcwd())) import alphashape ``` ### 2 Dimensional Example #### Define a set of points ```python points_2d = [(0., 0.), (0., 1.), (1., 1.), (1., 0.), (0.5, 0.25), (0.5, 0.75), (0.25, 0.5), (0.75, 0.5)] ``` #### Visualize Test Coordinates ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_5_0.png) #### Generate an Alpha Shape ($\alpha=0.0$) (Convex Hull) Every convex hull is an alpha shape, but not every alpha shape is a convex hull. When the `alphashape` function is called with an alpha parameter of 0, a convex hull will always be returned. ##### Create the alpha shape You can visualize the shape within Jupyter notebooks using the built-in shapely renderer as shown below. ```python alpha_shape = alphashape.alphashape(points_2d, 0.) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_9_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_10_0.png) #### Generate an Alpha Shape ($\alpha=2.0$) (Concave Hull) As we increase the alpha parameter value, the bounding shape will begin to fit the sample data with a more tightly fitting bounding box. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d, 2.0) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_1.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_15_0.png) #### Generate an Alpha Shape ($\alpha=3.5$) If you go too high on the alpha parameter, you will start to lose points from the original data set. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d, 3.5) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_19_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_20_0.png) #### Generate an Alpha Shape (Alpha=5.0) If you go too far, you will lose everything. ```python alpha_shape = alphashape.alphashape(points_2d, 5.0) print(alpha_shape) ``` GEOMETRYCOLLECTION EMPTY ## Using a varying Alpha Parameter The alpha parameter can be defined locally within a region of points by supplying a callback that will return what alpha parameter to use. This can be utilized to create tighter fitting alpha shapes where point densitities are different in different regions of a data set. In the following example, the alpha parameter is changed based off of the value of the x-coordinate of the points. ```python alpha_shape = alphashape.alphashape( points_2d, lambda ind, r: 1.0 + any(np.array(points_2d)[ind][:,0] == 0.0)) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_25_0.png) ##### Plotting the alpha shape over the input data with Matplotlib ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_27_1.png) #### Generate an Alpha Shape by Solving for an Optimal Alpha Value The alpha parameter can be solved for if it is not provided as an argument, but with large datasets this can take a long time to calculate. ##### Create the alpha shape ```python alpha_shape = alphashape.alphashape(points_2d) alpha_shape ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_1.png) ##### Plotting the alpha shape over the input data ```python fig, ax = plt.subplots() ax.scatter(*zip(*points_2d)) ax.add_patch(PolygonPatch(alpha_shape, alpha=0.2)) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_27_0.png) ### 3 Dimensional Example #### Define a set of points ```python points_3d = [ (0., 0., 0.), (0., 0., 1.), (0., 1., 0.), (1., 0., 0.), (1., 1., 0.), (1., 0., 1.), (0., 1., 1.), (1., 1., 1.), (.25, .5, .5), (.5, .25, .5), (.5, .5, .25), (.75, .5, .5), (.5, .75, .5), (.5, .5, .75) ] ``` #### Visualize Test Coordinates ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter(df_3d['x'], df_3d['y'], df_3d['z']) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_37_0.png) #### Alphashape with Static Alpha Parameter You can visualize the shape within Jupyter notebooks using the built-in trimesh renderer by calling the `.show()` method as shown below. ```python alpha_shape = alphashape.alphashape(points_3d, 1.1) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-1.1.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_40_0.png) #### Alphashape with Dymanic Alpha Parameter ```python alpha_shape = alphashape.alphashape(points_3d, lambda ind, r: 1.0 + any( np.array(points_3d)[ind][:,0] == 0.0)) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-vary.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_43_0.png) #### Alphashape found by solving for the Alpha Parameter ```python alpha_shape = alphashape.alphashape(points_3d) alpha_shape.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-solve.png) ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_trisurf(*zip(*alpha_shape.vertices), triangles=alpha_shape.faces) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_46_0.png) ### 4 Dimensional Example #### Define a set of points ```python points_4d = [ (0., 0., 0., 0.), (0., 0., 0., 1.), (0., 0., 1., 0.), (0., 1., 0., 0.), (0., 1., 1., 0.), (0., 1., 0., 1.), (0., 0., 1., 1.), (0., 1., 1., 1.), (1., 0., 0., 0.), (1., 0., 0., 1.), (1., 0., 1., 0.), (1., 1., 0., 0.), (1., 1., 1., 0.), (1., 1., 0., 1.), (1., 0., 1., 1.), (1., 1., 1., 1.), (.25, .5, .5, .5), (.5, .25, .5, .5), (.5, .5, .25, .5), (.5, .5, .5, .25), (.75, .5, .5, .5), (.5, .75, .5, .5), (.5, .5, .75, .5), (.5, .5, .5, .75) ] df_4d = pd.DataFrame(points_4d, columns=['x', 'y', 'z', 'r']) ``` #### Visualize Test Coordinates ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter(df_4d['x'], df_4d['y'], df_4d['z'], c=df_4d['r']) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_51_0.png) #### The Edges of a 4 Dimensional Alpha Shape are Tetrahedrons Defined by the Following Coordinates (No Visualizations) ```python alphashape.alphashape(points_4d, 1.0) ``` ```python {(16, 1, 2, 0), (16, 1, 3, 0), (16, 2, 3, 0), (16, 4, 2, 3), (16, 4, 7, 2), (16, 4, 7, 3), (16, 5, 1, 3), (16, 5, 7, 1), (16, 5, 7, 3), (16, 6, 1, 2), (16, 6, 7, 1), (16, 6, 7, 2), (17, 1, 2, 0), (17, 1, 8, 0), (17, 2, 8, 0), (17, 6, 1, 2), (17, 6, 14, 1), (17, 6, 14, 2), (17, 9, 1, 8), (17, 9, 14, 1), (17, 9, 14, 8), (17, 10, 2, 8), (17, 10, 14, 2), (17, 10, 14, 8), (18, 1, 3, 0), (18, 1, 8, 0), (18, 3, 8, 0), (18, 5, 1, 3), (18, 5, 13, 1), (18, 5, 13, 3), (18, 9, 1, 8), (18, 9, 13, 1), (18, 9, 13, 8), (18, 11, 3, 8), (18, 11, 13, 3), (18, 11, 13, 8), (19, 2, 3, 0), (19, 2, 8, 0), (19, 3, 8, 0), (19, 4, 2, 3), (19, 4, 12, 2), (19, 4, 12, 3), (19, 10, 2, 8), (19, 10, 12, 2), (19, 10, 12, 8), (19, 11, 3, 8), (19, 11, 12, 3), (19, 11, 12, 8), (20, 9, 13, 8), (20, 9, 14, 8), (20, 9, 14, 13), (20, 10, 12, 8), (20, 10, 14, 8), (20, 10, 14, 12), (20, 11, 12, 8), (20, 11, 13, 8), (20, 11, 13, 12), (20, 13, 12, 15), (20, 14, 12, 15), (20, 14, 13, 15), (21, 4, 7, 3), (21, 4, 7, 12), (21, 4, 12, 3), (21, 5, 7, 3), (21, 5, 7, 13), (21, 5, 13, 3), (21, 7, 12, 15), (21, 7, 13, 15), (21, 11, 12, 3), (21, 11, 13, 3), (21, 11, 13, 12), (21, 13, 12, 15), (22, 4, 7, 2), (22, 4, 7, 12), (22, 4, 12, 2), (22, 6, 7, 2), (22, 6, 7, 14), (22, 6, 14, 2), (22, 7, 12, 15), (22, 7, 14, 15), (22, 10, 12, 2), (22, 10, 14, 2), (22, 10, 14, 12), (22, 14, 12, 15), (23, 5, 7, 1), (23, 5, 7, 13), (23, 5, 13, 1), (23, 6, 7, 1), (23, 6, 7, 14), (23, 6, 14, 1), (23, 7, 13, 15), (23, 7, 14, 15), (23, 9, 13, 1), (23, 9, 14, 1), (23, 9, 14, 13), (23, 14, 13, 15)} ``` ## Alpha Shapes with GeoPandas ##### Sample Data The data used in this notebook can be obtained from the Alaska Department of Transportation and Public Facilities website at the link below. It consists of a point collection for each of the public airports in Alaska. [http://www.dot.alaska.gov/stwdplng/mapping/shapefiles.shtml](http://www.dot.alaska.gov/stwdplng/mapping/shapefiles.shtml) ##### Load the Shapefile ```python import os import geopandas data = os.path.join(os.getcwd(), 'data', 'Public_Airports_March2018.shp') gdf = geopandas.read_file(data) ``` ```python %matplotlib inline gdf.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_4_1.png) ```python gdf.crs ``` {'init': 'epsg:4269'} ##### Generate Alpha Shape The alpha shape will be generated in the coordinate frame the geodataframe is in. In this example, we will project into an Albers Equal Area projection, construct our alpha shape in that coordinate system, and then convert back to the source projection. ##### Project to Albers Equal Area Spatial Reference ```python import cartopy.crs as ccrs gdf_proj = gdf.to_crs(ccrs.AlbersEqualArea().proj4_init) gdf_proj.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_8_1.png) ##### Determine the Alpha Shape ```python import alphashape alpha_shape = alphashape.alphashape(gdf_proj) alpha_shape.plot() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_10_1.png) ##### Plotting the Alpha Shape over the Data Points ##### Plate Carree Projection ```python import matplotlib.pyplot as plt ax = plt.axes(projection=ccrs.PlateCarree()) ax.scatter([p.x for p in gdf_proj['geometry']], [p.y for p in gdf_proj['geometry']], transform=ccrs.AlbersEqualArea()) ax.add_geometries( alpha_shape['geometry'], crs=ccrs.AlbersEqualArea(), alpha=.2) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_12_0.png) ##### Robinson Projection ```python import matplotlib.pyplot as plt ax = plt.axes(projection=ccrs.Robinson()) ax.scatter([p.x for p in gdf_proj['geometry']], [p.y for p in gdf_proj['geometry']], transform=ccrs.AlbersEqualArea()) ax.add_geometries( alpha_shape['geometry'], crs=ccrs.AlbersEqualArea(), alpha=.2) plt.show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/output_14_0.png) ## St. Sulpice Point Cloud Data The following data can be obtained from the Lib E57 example data set found at the link below. To reduce the amount of data included in the `alphashape` toolbox repository, only a subset of point data was converted to a shapefile format and all data except point locations were dropped. [http://www.libe57.org/data.html](http://www.libe57.org/data.html) ![St Sulpice](https://raw.github.com/bellockk/alphashape/master/media/Paris-TrimbleRealWorks.png "St Sulpice Point Cloud") ```python import os import geopandas data = os.path.join(os.getcwd(), 'data', 'Trimble_StSulpice-Cloud-50mm.shp') gdf = geopandas.read_file(data) ``` ```python from alphashape import alphashape alphashape([point.coords[0] for point in gdf['geometry'][0]], 0.7).show() ``` ![png](https://raw.github.com/bellockk/alphashape/master/media/3d-stsulpice.png) ### Credits This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template. # History ## 1.3.1 (2021-04-16) * Small bug fixes * Documentation cleanup ## 1.3.0 (2021-04-02) * Support for generating alphashapes for 3 or more dimensional input data. * GeoJSON support in command line interface. ## 1.2.1 (2021-03-13) * Adding in support for Python 3.6 and 3.9 ## 1.2.0 (2021-02-25) * Updated dependencies for geopandas notebook examples. * Updated source information for Alaska Airports example data set. * Dropping support for Python 3.6. ## 1.1.0 (2020-08-19) * Updated dependency version numbers. * Including optional bounds for alpha paramter solver. ## 1.0.1 (2019-05-06) * Added gallery plot for optimized alpha function. * Documentation cleanup. ## 1.0.0 (2019-05-06) * [#1 Update features in README.md](https://github.com/bellockk/alphashape/issues/1) * [#2 Create Application Utilizing the alphashape Toolbox](https://github.com/bellockk/alphashape/issues/2) ## 0.1.10 (2019-05-05) * Correcting formatting on PyPi long description. ## 0.1.9 (2019-05-05) * [#7 Include GeoPandas Integration](https://github.com/bellockk/alphashape/issues/7) ## 0.1.8 (2019-05-05) * [#8 Include capability to optimize alpha parameter](https://github.com/bellockk/alphashape/issues/8) ## 0.1.7 (2019-04-26) * Complete code coverage of existing capabilities. ## 0.1.6 (2019-04-24) * [#6 Include Jupyter Notebook in Examples](https://github.com/bellockk/alphashape/issues/6) ## 0.1.5 (2019-04-24) * [#5 Create an Example Gallery in the Documentation](https://github.com/bellockk/alphashape/issues/5) ## 0.1.4 (2019-04-24) * Bug fixes. ## 0.1.3 (2019-04-24) * Bug fixes. ## 0.1.2 (2019-04-24) * Bug fixes. ## 0.1.1 (2019-04-24) * Bug fixes. ## 0.1.0 (2019-04-23) * First release on PyPI. %prep %autosetup -n alphashape-1.3.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-alphashape -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed Apr 12 2023 Python_Bot - 1.3.1-1 - Package Spec generated