%global _empty_manifest_terminate_build 0 Name: python-lightning-bolts Version: 0.6.0.post1 Release: 1 Summary: Lightning Bolts is a community contribution for ML researchers. License: Apache-2.0 URL: https://github.com/Lightning-AI/lightning-bolts Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f0/23/0e5e5b5cfc2202f56b48353dc52dc91d3c4b85b09cb6439d996481491d45/lightning-bolts-0.6.0.post1.tar.gz BuildArch: noarch Requires: python3-pytorch-lightning Requires: python3-lightning-utilities Requires: python3-torchvision Requires: python3-torchvision Requires: python3-scikit-learn Requires: python3-Pillow Requires: python3-opencv-python-headless Requires: python3-gym[atari] Requires: python3-atari-py Requires: python3-box2d-py Requires: python3-opencv-python Requires: python3-matplotlib Requires: python3-wandb Requires: python3-scipy Requires: python3-codecov Requires: python3-pytest Requires: python3-pytest-cov Requires: python3-check-manifest Requires: python3-pre-commit Requires: python3-mypy Requires: python3-atari-py Requires: python3-scikit-learn Requires: python3-sparseml Requires: python3-ale-py Requires: python3-jsonargparse[signatures] Requires: python3-torchvision Requires: python3-scikit-learn Requires: python3-Pillow Requires: python3-opencv-python-headless Requires: python3-gym[atari] Requires: python3-atari-py Requires: python3-box2d-py Requires: python3-opencv-python Requires: python3-matplotlib Requires: python3-wandb Requires: python3-scipy Requires: python3-matplotlib Requires: python3-wandb Requires: python3-scipy Requires: python3-torchvision Requires: python3-scikit-learn Requires: python3-Pillow Requires: python3-opencv-python-headless Requires: python3-gym[atari] Requires: python3-atari-py Requires: python3-box2d-py Requires: python3-opencv-python Requires: python3-codecov Requires: python3-pytest Requires: python3-pytest-cov Requires: python3-check-manifest Requires: python3-pre-commit Requires: python3-mypy Requires: python3-atari-py Requires: python3-scikit-learn Requires: python3-sparseml Requires: python3-ale-py Requires: python3-jsonargparse[signatures] %description
**Deep Learning components for extending PyTorch Lightning** ______________________________________________________________________

InstallationLatest DocsStable DocsAboutCommunityWebsiteGrid AILicense

[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts) [![PyPI Status](https://pepy.tech/badge/lightning-bolts)](https://pepy.tech/project/lightning-bolts) [![Build Status](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_apis/build/status/Lightning-AI.lightning-bolts?branchName=master)](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_build?definitionId=31&_a=summary&repositoryFilter=13&branchFilter=4923%2C4923) [![codecov](https://codecov.io/gh/Lightning-AI/lightning-bolts/release/0.6.0.post1/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-AI/lightning-bolts) [![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/) [![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)
______________________________________________________________________ ## Getting Started Pip / Conda ```bash pip install lightning-bolts ```
Other installations Install bleeding-edge (no guarantees) ```bash pip install git+https://github.com/PytorchLightning/lightning-bolts.git@master --upgrade ``` To install all optional dependencies ```bash pip install lightning-bolts["extra"] ```
## What is Bolts Bolts provides a variety of components to extend PyTorch Lightning such as callbacks & datasets, for applied research and production. ## News - Sept 22: [Leverage Sparsity for Faster Inference with Lightning Flash and SparseML](https://devblog.pytorchlightning.ai/leverage-sparsity-for-faster-inference-with-lightning-flash-and-sparseml-cdda1165622b) - Aug 26: [Fine-tune Transformers Faster with Lightning Flash and Torch ORT](https://devblog.pytorchlightning.ai/fine-tune-transformers-faster-with-lightning-flash-and-torch-ort-ec2d53789dc3) #### Example 1: Accelerate Lightning Training with the Torch ORT Callback Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details. ```python from pytorch_lightning import LightningModule, Trainer import torchvision.models as models from pl_bolts.callbacks import ORTCallback class VisionModel(LightningModule): def __init__(self): super().__init__() self.model = models.vgg19_bn(pretrained=True) ... model = VisionModel() trainer = Trainer(gpus=1, callbacks=ORTCallback()) trainer.fit(model) ``` #### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time. ```python from pytorch_lightning import LightningModule, Trainer import torchvision.models as models from pl_bolts.callbacks import SparseMLCallback class VisionModel(LightningModule): def __init__(self): super().__init__() self.model = models.vgg19_bn(pretrained=True) ... model = VisionModel() trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml")) trainer.fit(model) ``` ## Are specific research implementations supported? We'd like to encourage users to contribute general components that will help a broad range of problems, however components that help specifics domains will also be welcomed! For example a callback to help train SSL models would be a great contribution, however the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash). Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL based tasks. ## Contribute! Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community! Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor! ______________________________________________________________________ ## License Please observe the Apache 2.0 license that is listed in this repository. In addition the Lightning framework is Patent Pending. %package -n python3-lightning-bolts Summary: Lightning Bolts is a community contribution for ML researchers. Provides: python-lightning-bolts BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-lightning-bolts
**Deep Learning components for extending PyTorch Lightning** ______________________________________________________________________

InstallationLatest DocsStable DocsAboutCommunityWebsiteGrid AILicense

[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts) [![PyPI Status](https://pepy.tech/badge/lightning-bolts)](https://pepy.tech/project/lightning-bolts) [![Build Status](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_apis/build/status/Lightning-AI.lightning-bolts?branchName=master)](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_build?definitionId=31&_a=summary&repositoryFilter=13&branchFilter=4923%2C4923) [![codecov](https://codecov.io/gh/Lightning-AI/lightning-bolts/release/0.6.0.post1/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-AI/lightning-bolts) [![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/) [![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)
______________________________________________________________________ ## Getting Started Pip / Conda ```bash pip install lightning-bolts ```
Other installations Install bleeding-edge (no guarantees) ```bash pip install git+https://github.com/PytorchLightning/lightning-bolts.git@master --upgrade ``` To install all optional dependencies ```bash pip install lightning-bolts["extra"] ```
## What is Bolts Bolts provides a variety of components to extend PyTorch Lightning such as callbacks & datasets, for applied research and production. ## News - Sept 22: [Leverage Sparsity for Faster Inference with Lightning Flash and SparseML](https://devblog.pytorchlightning.ai/leverage-sparsity-for-faster-inference-with-lightning-flash-and-sparseml-cdda1165622b) - Aug 26: [Fine-tune Transformers Faster with Lightning Flash and Torch ORT](https://devblog.pytorchlightning.ai/fine-tune-transformers-faster-with-lightning-flash-and-torch-ort-ec2d53789dc3) #### Example 1: Accelerate Lightning Training with the Torch ORT Callback Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details. ```python from pytorch_lightning import LightningModule, Trainer import torchvision.models as models from pl_bolts.callbacks import ORTCallback class VisionModel(LightningModule): def __init__(self): super().__init__() self.model = models.vgg19_bn(pretrained=True) ... model = VisionModel() trainer = Trainer(gpus=1, callbacks=ORTCallback()) trainer.fit(model) ``` #### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time. ```python from pytorch_lightning import LightningModule, Trainer import torchvision.models as models from pl_bolts.callbacks import SparseMLCallback class VisionModel(LightningModule): def __init__(self): super().__init__() self.model = models.vgg19_bn(pretrained=True) ... model = VisionModel() trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml")) trainer.fit(model) ``` ## Are specific research implementations supported? We'd like to encourage users to contribute general components that will help a broad range of problems, however components that help specifics domains will also be welcomed! For example a callback to help train SSL models would be a great contribution, however the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash). Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL based tasks. ## Contribute! Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community! Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor! ______________________________________________________________________ ## License Please observe the Apache 2.0 license that is listed in this repository. In addition the Lightning framework is Patent Pending. %package help Summary: Development documents and examples for lightning-bolts Provides: python3-lightning-bolts-doc %description help
**Deep Learning components for extending PyTorch Lightning** ______________________________________________________________________

InstallationLatest DocsStable DocsAboutCommunityWebsiteGrid AILicense

[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts) [![PyPI Status](https://pepy.tech/badge/lightning-bolts)](https://pepy.tech/project/lightning-bolts) [![Build Status](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_apis/build/status/Lightning-AI.lightning-bolts?branchName=master)](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_build?definitionId=31&_a=summary&repositoryFilter=13&branchFilter=4923%2C4923) [![codecov](https://codecov.io/gh/Lightning-AI/lightning-bolts/release/0.6.0.post1/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-AI/lightning-bolts) [![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/) [![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)
______________________________________________________________________ ## Getting Started Pip / Conda ```bash pip install lightning-bolts ```
Other installations Install bleeding-edge (no guarantees) ```bash pip install git+https://github.com/PytorchLightning/lightning-bolts.git@master --upgrade ``` To install all optional dependencies ```bash pip install lightning-bolts["extra"] ```
## What is Bolts Bolts provides a variety of components to extend PyTorch Lightning such as callbacks & datasets, for applied research and production. ## News - Sept 22: [Leverage Sparsity for Faster Inference with Lightning Flash and SparseML](https://devblog.pytorchlightning.ai/leverage-sparsity-for-faster-inference-with-lightning-flash-and-sparseml-cdda1165622b) - Aug 26: [Fine-tune Transformers Faster with Lightning Flash and Torch ORT](https://devblog.pytorchlightning.ai/fine-tune-transformers-faster-with-lightning-flash-and-torch-ort-ec2d53789dc3) #### Example 1: Accelerate Lightning Training with the Torch ORT Callback Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details. ```python from pytorch_lightning import LightningModule, Trainer import torchvision.models as models from pl_bolts.callbacks import ORTCallback class VisionModel(LightningModule): def __init__(self): super().__init__() self.model = models.vgg19_bn(pretrained=True) ... model = VisionModel() trainer = Trainer(gpus=1, callbacks=ORTCallback()) trainer.fit(model) ``` #### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time. ```python from pytorch_lightning import LightningModule, Trainer import torchvision.models as models from pl_bolts.callbacks import SparseMLCallback class VisionModel(LightningModule): def __init__(self): super().__init__() self.model = models.vgg19_bn(pretrained=True) ... model = VisionModel() trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml")) trainer.fit(model) ``` ## Are specific research implementations supported? We'd like to encourage users to contribute general components that will help a broad range of problems, however components that help specifics domains will also be welcomed! For example a callback to help train SSL models would be a great contribution, however the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash). Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL based tasks. ## Contribute! Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community! Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor! ______________________________________________________________________ ## License Please observe the Apache 2.0 license that is listed in this repository. In addition the Lightning framework is Patent Pending. %prep %autosetup -n lightning-bolts-0.6.0.post1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-lightning-bolts -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Sun Apr 23 2023 Python_Bot - 0.6.0.post1-1 - Package Spec generated