%global _empty_manifest_terminate_build 0
Name:		python-segmentation-models-pytorch
Version:	0.3.2
Release:	1
Summary:	Image segmentation models with pre-trained backbones. PyTorch.
License:	MIT
URL:		https://github.com/qubvel/segmentation_models.pytorch
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/97/68/119271a9693f516cfb1659023fed92a9048904af163243dd7a24a47d5115/segmentation_models_pytorch-0.3.2.tar.gz
BuildArch:	noarch
Requires:	python3-torchvision
Requires:	python3-pretrainedmodels
Requires:	python3-efficientnet-pytorch
Requires:	python3-timm
Requires:	python3-tqdm
Requires:	python3-pillow
Requires:	python3-pytest
Requires:	python3-mock
Requires:	python3-pre-commit
Requires:	python3-black
Requires:	python3-flake8
Requires:	python3-flake8-docstrings
%description
  
**Python library with Neural Networks for Image  
Segmentation based on [PyTorch](https://pytorch.org/).**  
[](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) 
[](https://github.com/qubvel/segmentation_models.pytorch/actions/workflows/tests.yml) 
[](https://smp.readthedocs.io/en/latest/) 
[](https://pypi.org/project/segmentation-models-pytorch/) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
The main features of this library are:
 - High level API (just two lines to create a neural network)
 - 9 models architectures for binary and multi class segmentation (including legendary Unet)
 - 124 available encoders (and 500+ encoders from [timm](https://github.com/rwightman/pytorch-image-models))
 - All encoders have pre-trained weights for faster and better convergence
 - Popular metrics and losses for training routines
### [📚 Project Documentation 📚](http://smp.readthedocs.io/)
Visit [Read The Docs Project Page](https://smp.readthedocs.io/) or read following README to know more about Segmentation Models Pytorch (SMP for short) library
### 📋 Table of content
 1. [Quick start](#start)
 2. [Examples](#examples)
 3. [Models](#models)
    1. [Architectures](#architectures)
    2. [Encoders](#encoders)
    3. [Timm Encoders](#timm)
 4. [Models API](#api)
    1. [Input channels](#input-channels)
    2. [Auxiliary classification output](#auxiliary-classification-output)
    3. [Depth](#depth)
 5. [Installation](#installation)
 6. [Competitions won with the library](#competitions-won-with-the-library)
 7. [Contributing](#contributing)
 8. [Citing](#citing)
 9. [License](#license)
### ⏳ Quick start 
#### 1. Create your first Segmentation model with SMP
Segmentation model is just a PyTorch nn.Module, which can be created as easy as:
```python
import segmentation_models_pytorch as smp
model = smp.Unet(
    encoder_name="resnet34",        # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
    encoder_weights="imagenet",     # use `imagenet` pre-trained weights for encoder initialization
    in_channels=1,                  # model input channels (1 for gray-scale images, 3 for RGB, etc.)
    classes=3,                      # model output channels (number of classes in your dataset)
)
```
 - see [table](#architectures) with available model architectures
 - see [table](#encoders) with available encoders and their corresponding weights
#### 2. Configure data preprocessing
All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give you better results (higher metric score and faster convergence). It is **not necessary** in case you train the whole model, not only decoder.
```python
from segmentation_models_pytorch.encoders import get_preprocessing_fn
preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet')
```
Congratulations! You are done! Now you can train your model with your favorite framework!
### 💡 Examples 
 - Training model for pets binary segmentation with Pytorch-Lightning [notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) and [](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb)
 - Training model for cars segmentation on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb).
 - Training SMP model with [Catalyst](https://github.com/catalyst-team/catalyst) (high-level framework for PyTorch), [TTAch](https://github.com/qubvel/ttach) (TTA library for PyTorch) and [Albumentations](https://github.com/albu/albumentations) (fast image augmentation library) - [here](https://github.com/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) [](https://colab.research.google.com/github/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb)
 - Training SMP model with [Pytorch-Lightning](https://pytorch-lightning.readthedocs.io) framework - [here](https://github.com/ternaus/cloths_segmentation) (clothes binary segmentation by [@ternaus](https://github.com/ternaus)).
### 📦 Models 
#### Architectures 
 - Unet [[paper](https://arxiv.org/abs/1505.04597)] [[docs](https://smp.readthedocs.io/en/latest/models.html#unet)]
 - Unet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id2)]
 - MAnet [[paper](https://ieeexplore.ieee.org/abstract/document/9201310)] [[docs](https://smp.readthedocs.io/en/latest/models.html#manet)]
 - Linknet [[paper](https://arxiv.org/abs/1707.03718)] [[docs](https://smp.readthedocs.io/en/latest/models.html#linknet)]
 - FPN [[paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#fpn)]
 - PSPNet [[paper](https://arxiv.org/abs/1612.01105)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pspnet)]
 - PAN [[paper](https://arxiv.org/abs/1805.10180)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pan)]
 - DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)] [[docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3)]
 - DeepLabV3+ [[paper](https://arxiv.org/abs/1802.02611)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id9)]
#### Encoders 
The following is a list of supported encoders in the SMP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (`encoder_name` and `encoder_weights` parameters).
ResNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnet18                        |imagenet / ssl / swsl           |11M                             |
|resnet34                        |imagenet                        |21M                             |
|resnet50                        |imagenet / ssl / swsl           |23M                             |
|resnet101                       |imagenet                        |42M                             |
|resnet152                       |imagenet                        |58M                             |
 
ResNeXt
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnext50_32x4d                 |imagenet / ssl / swsl           |22M                             |
|resnext101_32x4d                |ssl / swsl                      |42M                             |
|resnext101_32x8d                |imagenet / instagram / ssl / swsl|86M                         |
|resnext101_32x16d               |instagram / ssl / swsl          |191M                            |
|resnext101_32x32d               |instagram                       |466M                            |
|resnext101_32x48d               |instagram                       |826M                            |
 
ResNeSt
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-resnest14d                 |imagenet                        |8M                              |
|timm-resnest26d                 |imagenet                        |15M                             |
|timm-resnest50d                 |imagenet                        |25M                             |
|timm-resnest101e                |imagenet                        |46M                             |
|timm-resnest200e                |imagenet                        |68M                             |
|timm-resnest269e                |imagenet                        |108M                            |
|timm-resnest50d_4s2x40d         |imagenet                        |28M                             |
|timm-resnest50d_1s4x24d         |imagenet                        |23M                             |
 
Res2Ne(X)t
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-res2net50_26w_4s           |imagenet                        |23M                             |
|timm-res2net101_26w_4s          |imagenet                        |43M                             |
|timm-res2net50_26w_6s           |imagenet                        |35M                             |
|timm-res2net50_26w_8s           |imagenet                        |46M                             |
|timm-res2net50_48w_2s           |imagenet                        |23M                             |
|timm-res2net50_14w_8s           |imagenet                        |23M                             |
|timm-res2next50                 |imagenet                        |22M                             |
 
RegNet(x/y)
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-regnetx_002                |imagenet                        |2M                              |
|timm-regnetx_004                |imagenet                        |4M                              |
|timm-regnetx_006                |imagenet                        |5M                              |
|timm-regnetx_008                |imagenet                        |6M                              |
|timm-regnetx_016                |imagenet                        |8M                              |
|timm-regnetx_032                |imagenet                        |14M                             |
|timm-regnetx_040                |imagenet                        |20M                             |
|timm-regnetx_064                |imagenet                        |24M                             |
|timm-regnetx_080                |imagenet                        |37M                             |
|timm-regnetx_120                |imagenet                        |43M                             |
|timm-regnetx_160                |imagenet                        |52M                             |
|timm-regnetx_320                |imagenet                        |105M                            |
|timm-regnety_002                |imagenet                        |2M                              |
|timm-regnety_004                |imagenet                        |3M                              |
|timm-regnety_006                |imagenet                        |5M                              |
|timm-regnety_008                |imagenet                        |5M                              |
|timm-regnety_016                |imagenet                        |10M                             |
|timm-regnety_032                |imagenet                        |17M                             |
|timm-regnety_040                |imagenet                        |19M                             |
|timm-regnety_064                |imagenet                        |29M                             |
|timm-regnety_080                |imagenet                        |37M                             |
|timm-regnety_120                |imagenet                        |49M                             |
|timm-regnety_160                |imagenet                        |80M                             |
|timm-regnety_320                |imagenet                        |141M                            |
 
GERNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-gernet_s                   |imagenet                        |6M                              |
|timm-gernet_m                   |imagenet                        |18M                             |
|timm-gernet_l                   |imagenet                        |28M                             |
 
SE-Net
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|senet154                        |imagenet                        |113M                            |
|se_resnet50                     |imagenet                        |26M                             |
|se_resnet101                    |imagenet                        |47M                             |
|se_resnet152                    |imagenet                        |64M                             |
|se_resnext50_32x4d              |imagenet                        |25M                             |
|se_resnext101_32x4d             |imagenet                        |46M                             |
 
SK-ResNe(X)t
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-skresnet18                 |imagenet                        |11M                             |
|timm-skresnet34                 |imagenet                        |21M                             |
|timm-skresnext50_32x4d          |imagenet                        |25M                             |
 
DenseNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|densenet121                     |imagenet                        |6M                              |
|densenet169                     |imagenet                        |12M                             |
|densenet201                     |imagenet                        |18M                             |
|densenet161                     |imagenet                        |26M                             |
 
Inception
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|inceptionresnetv2               |imagenet /  imagenet+background |54M                             |
|inceptionv4                     |imagenet /  imagenet+background |41M                             |
|xception                        |imagenet                        |22M                             |
 
EfficientNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|efficientnet-b0                 |imagenet                        |4M                              |
|efficientnet-b1                 |imagenet                        |6M                              |
|efficientnet-b2                 |imagenet                        |7M                              |
|efficientnet-b3                 |imagenet                        |10M                             |
|efficientnet-b4                 |imagenet                        |17M                             |
|efficientnet-b5                 |imagenet                        |28M                             |
|efficientnet-b6                 |imagenet                        |40M                             |
|efficientnet-b7                 |imagenet                        |63M                             |
|timm-efficientnet-b0            |imagenet / advprop / noisy-student|4M                              |
|timm-efficientnet-b1            |imagenet / advprop / noisy-student|6M                              |
|timm-efficientnet-b2            |imagenet / advprop / noisy-student|7M                              |
|timm-efficientnet-b3            |imagenet / advprop / noisy-student|10M                             |
|timm-efficientnet-b4            |imagenet / advprop / noisy-student|17M                             |
|timm-efficientnet-b5            |imagenet / advprop / noisy-student|28M                             |
|timm-efficientnet-b6            |imagenet / advprop / noisy-student|40M                             |
|timm-efficientnet-b7            |imagenet / advprop / noisy-student|63M                             |
|timm-efficientnet-b8            |imagenet / advprop             |84M                             |
|timm-efficientnet-l2            |noisy-student                   |474M                            |
|timm-efficientnet-lite0         |imagenet                        |4M                              |
|timm-efficientnet-lite1         |imagenet                        |5M                              |
|timm-efficientnet-lite2         |imagenet                        |6M                              |
|timm-efficientnet-lite3         |imagenet                        |8M                             |
|timm-efficientnet-lite4         |imagenet                        |13M                             |
 
MobileNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mobilenet_v2                    |imagenet                        |2M                              |
|timm-mobilenetv3_large_075      |imagenet                        |1.78M                       |
|timm-mobilenetv3_large_100      |imagenet                        |2.97M                       |
|timm-mobilenetv3_large_minimal_100|imagenet                        |1.41M                       |
|timm-mobilenetv3_small_075      |imagenet                        |0.57M                        |
|timm-mobilenetv3_small_100      |imagenet                        |0.93M                       |
|timm-mobilenetv3_small_minimal_100|imagenet                        |0.43M                       |
 
DPN
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|dpn68                           |imagenet                        |11M                             |
|dpn68b                          |imagenet+5k                     |11M                             |
|dpn92                           |imagenet+5k                     |34M                             |
|dpn98                           |imagenet                        |58M                             |
|dpn107                          |imagenet+5k                     |84M                             |
|dpn131                          |imagenet                        |76M                             |
 
VGG
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|vgg11                           |imagenet                        |9M                              |
|vgg11_bn                        |imagenet                        |9M                              |
|vgg13                           |imagenet                        |9M                              |
|vgg13_bn                        |imagenet                        |9M                              |
|vgg16                           |imagenet                        |14M                             |
|vgg16_bn                        |imagenet                        |14M                             |
|vgg19                           |imagenet                        |20M                             |
|vgg19_bn                        |imagenet                        |20M                             |
 
Mix Vision Transformer
Backbone from SegFormer pretrained on Imagenet! Can be used with other decoders from package, you can combine Mix Vision Transformer with Unet, FPN and others!
Limitations:  
   - encoder is **not** supported by Linknet, Unet++
   - encoder is supported by FPN only for encoder **depth = 5**
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mit_b0                          |imagenet                        |3M                              |
|mit_b1                          |imagenet                        |13M                             |
|mit_b2                          |imagenet                        |24M                             |
|mit_b3                          |imagenet                        |44M                             |
|mit_b4                          |imagenet                        |60M                             |
|mit_b5                          |imagenet                        |81M                             |
 
MobileOne
Apple's "sub-one-ms" Backbone pretrained on Imagenet! Can be used with all decoders.
Note: In the official github repo the s0 variant has additional num_conv_branches, leading to more params than s1.
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mobileone_s0                    |imagenet                        |4.6M                              |
|mobileone_s1                    |imagenet                        |4.0M                              |
|mobileone_s2                    |imagenet                        |6.5M                              |
|mobileone_s3                    |imagenet                        |8.8M                              |
|mobileone_s4                    |imagenet                        |13.6M                             |
 
\* `ssl`, `swsl` - semi-supervised and weakly-supervised learning on ImageNet ([repo](https://github.com/facebookresearch/semi-supervised-ImageNet1K-models)).
#### Timm Encoders 
[docs](https://smp.readthedocs.io/en/latest/encoders_timm.html)
Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported
 - not all transformer models have ``features_only`` functionality implemented that is required for encoder
 - some models have inappropriate strides
Total number of supported encoders: 549
 - [table with available encoders](https://smp.readthedocs.io/en/latest/encoders_timm.html)
### 🔁 Models API 
 - `model.encoder` - pretrained backbone to extract features of different spatial resolution
 - `model.decoder` - depends on models architecture (`Unet`/`Linknet`/`PSPNet`/`FPN`)
 - `model.segmentation_head` - last block to produce required number of mask channels (include also optional upsampling and activation)
 - `model.classification_head` - optional block which create classification head on top of encoder
 - `model.forward(x)` - sequentially pass `x` through model\`s encoder, decoder and segmentation head (and classification head if specified)
##### Input channels
Input channels parameter allows you to create models, which process tensors with arbitrary number of channels.
If you use pretrained weights from imagenet - weights of first convolution will be reused. For
1-channel case it would be a sum of weights of first convolution layer, otherwise channels would be 
populated with weights like `new_weight[:, i] = pretrained_weight[:, i % 3]` and than scaled with `new_weight * 3 / new_in_channels`.
```python
model = smp.FPN('resnet34', in_channels=1)
mask = model(torch.ones([1, 1, 64, 64]))
```
##### Auxiliary classification output  
All models support `aux_params` parameters, which is default set to `None`. 
If `aux_params = None` then classification auxiliary output is not created, else
model produce not only `mask`, but also `label` output with shape `NC`.
Classification head consists of GlobalPooling->Dropout(optional)->Linear->Activation(optional) layers, which can be 
configured by `aux_params` as follows:
```python
aux_params=dict(
    pooling='avg',             # one of 'avg', 'max'
    dropout=0.5,               # dropout ratio, default is None
    activation='sigmoid',      # activation function, default is None
    classes=4,                 # define number of output labels
)
model = smp.Unet('resnet34', classes=4, aux_params=aux_params)
mask, label = model(x)
```
##### Depth
Depth parameter specify a number of downsampling operations in encoder, so you can make
your model lighter if specify smaller `depth`.
```python
model = smp.Unet('resnet34', encoder_depth=4)
```
### 🛠 Installation 
PyPI version:
```bash
$ pip install segmentation-models-pytorch
````
Latest version from source:
```bash
$ pip install git+https://github.com/qubvel/segmentation_models.pytorch
````
### 🏆 Competitions won with the library
`Segmentation Models` package is widely used in the image segmentation competitions.
[Here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/HALLOFFAME.md) you can find competitions, names of the winners and links to their solutions.
### 🤝 Contributing
##### Install linting and formatting pre-commit hooks
```bash
pip install pre-commit black==22.3.0 flake8==4.0.1
pre-commit install
```
##### Run tests
```bash
pytest -p no:cacheprovider
```
##### Run tests in docker
```bash
$ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev pytest -p no:cacheprovider
```
##### Generate table with encoders (in case you add a new encoder)
```bash
$ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev python misc/generate_table.py
```
### 📝 Citing
```
@misc{Iakubovskii:2019,
  Author = {Pavel Iakubovskii},
  Title = {Segmentation Models Pytorch},
  Year = {2019},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/qubvel/segmentation_models.pytorch}}
}
```
### 🛡️ License 
Project is distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE)
%package -n python3-segmentation-models-pytorch
Summary:	Image segmentation models with pre-trained backbones. PyTorch.
Provides:	python-segmentation-models-pytorch
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-segmentation-models-pytorch
  
**Python library with Neural Networks for Image  
Segmentation based on [PyTorch](https://pytorch.org/).**  
[](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) 
[](https://github.com/qubvel/segmentation_models.pytorch/actions/workflows/tests.yml) 
[](https://smp.readthedocs.io/en/latest/) 
[](https://pypi.org/project/segmentation-models-pytorch/) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
The main features of this library are:
 - High level API (just two lines to create a neural network)
 - 9 models architectures for binary and multi class segmentation (including legendary Unet)
 - 124 available encoders (and 500+ encoders from [timm](https://github.com/rwightman/pytorch-image-models))
 - All encoders have pre-trained weights for faster and better convergence
 - Popular metrics and losses for training routines
### [📚 Project Documentation 📚](http://smp.readthedocs.io/)
Visit [Read The Docs Project Page](https://smp.readthedocs.io/) or read following README to know more about Segmentation Models Pytorch (SMP for short) library
### 📋 Table of content
 1. [Quick start](#start)
 2. [Examples](#examples)
 3. [Models](#models)
    1. [Architectures](#architectures)
    2. [Encoders](#encoders)
    3. [Timm Encoders](#timm)
 4. [Models API](#api)
    1. [Input channels](#input-channels)
    2. [Auxiliary classification output](#auxiliary-classification-output)
    3. [Depth](#depth)
 5. [Installation](#installation)
 6. [Competitions won with the library](#competitions-won-with-the-library)
 7. [Contributing](#contributing)
 8. [Citing](#citing)
 9. [License](#license)
### ⏳ Quick start 
#### 1. Create your first Segmentation model with SMP
Segmentation model is just a PyTorch nn.Module, which can be created as easy as:
```python
import segmentation_models_pytorch as smp
model = smp.Unet(
    encoder_name="resnet34",        # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
    encoder_weights="imagenet",     # use `imagenet` pre-trained weights for encoder initialization
    in_channels=1,                  # model input channels (1 for gray-scale images, 3 for RGB, etc.)
    classes=3,                      # model output channels (number of classes in your dataset)
)
```
 - see [table](#architectures) with available model architectures
 - see [table](#encoders) with available encoders and their corresponding weights
#### 2. Configure data preprocessing
All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give you better results (higher metric score and faster convergence). It is **not necessary** in case you train the whole model, not only decoder.
```python
from segmentation_models_pytorch.encoders import get_preprocessing_fn
preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet')
```
Congratulations! You are done! Now you can train your model with your favorite framework!
### 💡 Examples 
 - Training model for pets binary segmentation with Pytorch-Lightning [notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) and [](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb)
 - Training model for cars segmentation on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb).
 - Training SMP model with [Catalyst](https://github.com/catalyst-team/catalyst) (high-level framework for PyTorch), [TTAch](https://github.com/qubvel/ttach) (TTA library for PyTorch) and [Albumentations](https://github.com/albu/albumentations) (fast image augmentation library) - [here](https://github.com/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) [](https://colab.research.google.com/github/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb)
 - Training SMP model with [Pytorch-Lightning](https://pytorch-lightning.readthedocs.io) framework - [here](https://github.com/ternaus/cloths_segmentation) (clothes binary segmentation by [@ternaus](https://github.com/ternaus)).
### 📦 Models 
#### Architectures 
 - Unet [[paper](https://arxiv.org/abs/1505.04597)] [[docs](https://smp.readthedocs.io/en/latest/models.html#unet)]
 - Unet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id2)]
 - MAnet [[paper](https://ieeexplore.ieee.org/abstract/document/9201310)] [[docs](https://smp.readthedocs.io/en/latest/models.html#manet)]
 - Linknet [[paper](https://arxiv.org/abs/1707.03718)] [[docs](https://smp.readthedocs.io/en/latest/models.html#linknet)]
 - FPN [[paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#fpn)]
 - PSPNet [[paper](https://arxiv.org/abs/1612.01105)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pspnet)]
 - PAN [[paper](https://arxiv.org/abs/1805.10180)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pan)]
 - DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)] [[docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3)]
 - DeepLabV3+ [[paper](https://arxiv.org/abs/1802.02611)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id9)]
#### Encoders 
The following is a list of supported encoders in the SMP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (`encoder_name` and `encoder_weights` parameters).
ResNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnet18                        |imagenet / ssl / swsl           |11M                             |
|resnet34                        |imagenet                        |21M                             |
|resnet50                        |imagenet / ssl / swsl           |23M                             |
|resnet101                       |imagenet                        |42M                             |
|resnet152                       |imagenet                        |58M                             |
 
ResNeXt
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnext50_32x4d                 |imagenet / ssl / swsl           |22M                             |
|resnext101_32x4d                |ssl / swsl                      |42M                             |
|resnext101_32x8d                |imagenet / instagram / ssl / swsl|86M                         |
|resnext101_32x16d               |instagram / ssl / swsl          |191M                            |
|resnext101_32x32d               |instagram                       |466M                            |
|resnext101_32x48d               |instagram                       |826M                            |
 
ResNeSt
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-resnest14d                 |imagenet                        |8M                              |
|timm-resnest26d                 |imagenet                        |15M                             |
|timm-resnest50d                 |imagenet                        |25M                             |
|timm-resnest101e                |imagenet                        |46M                             |
|timm-resnest200e                |imagenet                        |68M                             |
|timm-resnest269e                |imagenet                        |108M                            |
|timm-resnest50d_4s2x40d         |imagenet                        |28M                             |
|timm-resnest50d_1s4x24d         |imagenet                        |23M                             |
 
Res2Ne(X)t
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-res2net50_26w_4s           |imagenet                        |23M                             |
|timm-res2net101_26w_4s          |imagenet                        |43M                             |
|timm-res2net50_26w_6s           |imagenet                        |35M                             |
|timm-res2net50_26w_8s           |imagenet                        |46M                             |
|timm-res2net50_48w_2s           |imagenet                        |23M                             |
|timm-res2net50_14w_8s           |imagenet                        |23M                             |
|timm-res2next50                 |imagenet                        |22M                             |
 
RegNet(x/y)
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-regnetx_002                |imagenet                        |2M                              |
|timm-regnetx_004                |imagenet                        |4M                              |
|timm-regnetx_006                |imagenet                        |5M                              |
|timm-regnetx_008                |imagenet                        |6M                              |
|timm-regnetx_016                |imagenet                        |8M                              |
|timm-regnetx_032                |imagenet                        |14M                             |
|timm-regnetx_040                |imagenet                        |20M                             |
|timm-regnetx_064                |imagenet                        |24M                             |
|timm-regnetx_080                |imagenet                        |37M                             |
|timm-regnetx_120                |imagenet                        |43M                             |
|timm-regnetx_160                |imagenet                        |52M                             |
|timm-regnetx_320                |imagenet                        |105M                            |
|timm-regnety_002                |imagenet                        |2M                              |
|timm-regnety_004                |imagenet                        |3M                              |
|timm-regnety_006                |imagenet                        |5M                              |
|timm-regnety_008                |imagenet                        |5M                              |
|timm-regnety_016                |imagenet                        |10M                             |
|timm-regnety_032                |imagenet                        |17M                             |
|timm-regnety_040                |imagenet                        |19M                             |
|timm-regnety_064                |imagenet                        |29M                             |
|timm-regnety_080                |imagenet                        |37M                             |
|timm-regnety_120                |imagenet                        |49M                             |
|timm-regnety_160                |imagenet                        |80M                             |
|timm-regnety_320                |imagenet                        |141M                            |
 
GERNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-gernet_s                   |imagenet                        |6M                              |
|timm-gernet_m                   |imagenet                        |18M                             |
|timm-gernet_l                   |imagenet                        |28M                             |
 
SE-Net
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|senet154                        |imagenet                        |113M                            |
|se_resnet50                     |imagenet                        |26M                             |
|se_resnet101                    |imagenet                        |47M                             |
|se_resnet152                    |imagenet                        |64M                             |
|se_resnext50_32x4d              |imagenet                        |25M                             |
|se_resnext101_32x4d             |imagenet                        |46M                             |
 
SK-ResNe(X)t
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-skresnet18                 |imagenet                        |11M                             |
|timm-skresnet34                 |imagenet                        |21M                             |
|timm-skresnext50_32x4d          |imagenet                        |25M                             |
 
DenseNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|densenet121                     |imagenet                        |6M                              |
|densenet169                     |imagenet                        |12M                             |
|densenet201                     |imagenet                        |18M                             |
|densenet161                     |imagenet                        |26M                             |
 
Inception
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|inceptionresnetv2               |imagenet /  imagenet+background |54M                             |
|inceptionv4                     |imagenet /  imagenet+background |41M                             |
|xception                        |imagenet                        |22M                             |
 
EfficientNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|efficientnet-b0                 |imagenet                        |4M                              |
|efficientnet-b1                 |imagenet                        |6M                              |
|efficientnet-b2                 |imagenet                        |7M                              |
|efficientnet-b3                 |imagenet                        |10M                             |
|efficientnet-b4                 |imagenet                        |17M                             |
|efficientnet-b5                 |imagenet                        |28M                             |
|efficientnet-b6                 |imagenet                        |40M                             |
|efficientnet-b7                 |imagenet                        |63M                             |
|timm-efficientnet-b0            |imagenet / advprop / noisy-student|4M                              |
|timm-efficientnet-b1            |imagenet / advprop / noisy-student|6M                              |
|timm-efficientnet-b2            |imagenet / advprop / noisy-student|7M                              |
|timm-efficientnet-b3            |imagenet / advprop / noisy-student|10M                             |
|timm-efficientnet-b4            |imagenet / advprop / noisy-student|17M                             |
|timm-efficientnet-b5            |imagenet / advprop / noisy-student|28M                             |
|timm-efficientnet-b6            |imagenet / advprop / noisy-student|40M                             |
|timm-efficientnet-b7            |imagenet / advprop / noisy-student|63M                             |
|timm-efficientnet-b8            |imagenet / advprop             |84M                             |
|timm-efficientnet-l2            |noisy-student                   |474M                            |
|timm-efficientnet-lite0         |imagenet                        |4M                              |
|timm-efficientnet-lite1         |imagenet                        |5M                              |
|timm-efficientnet-lite2         |imagenet                        |6M                              |
|timm-efficientnet-lite3         |imagenet                        |8M                             |
|timm-efficientnet-lite4         |imagenet                        |13M                             |
 
MobileNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mobilenet_v2                    |imagenet                        |2M                              |
|timm-mobilenetv3_large_075      |imagenet                        |1.78M                       |
|timm-mobilenetv3_large_100      |imagenet                        |2.97M                       |
|timm-mobilenetv3_large_minimal_100|imagenet                        |1.41M                       |
|timm-mobilenetv3_small_075      |imagenet                        |0.57M                        |
|timm-mobilenetv3_small_100      |imagenet                        |0.93M                       |
|timm-mobilenetv3_small_minimal_100|imagenet                        |0.43M                       |
 
DPN
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|dpn68                           |imagenet                        |11M                             |
|dpn68b                          |imagenet+5k                     |11M                             |
|dpn92                           |imagenet+5k                     |34M                             |
|dpn98                           |imagenet                        |58M                             |
|dpn107                          |imagenet+5k                     |84M                             |
|dpn131                          |imagenet                        |76M                             |
 
VGG
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|vgg11                           |imagenet                        |9M                              |
|vgg11_bn                        |imagenet                        |9M                              |
|vgg13                           |imagenet                        |9M                              |
|vgg13_bn                        |imagenet                        |9M                              |
|vgg16                           |imagenet                        |14M                             |
|vgg16_bn                        |imagenet                        |14M                             |
|vgg19                           |imagenet                        |20M                             |
|vgg19_bn                        |imagenet                        |20M                             |
 
Mix Vision Transformer
Backbone from SegFormer pretrained on Imagenet! Can be used with other decoders from package, you can combine Mix Vision Transformer with Unet, FPN and others!
Limitations:  
   - encoder is **not** supported by Linknet, Unet++
   - encoder is supported by FPN only for encoder **depth = 5**
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mit_b0                          |imagenet                        |3M                              |
|mit_b1                          |imagenet                        |13M                             |
|mit_b2                          |imagenet                        |24M                             |
|mit_b3                          |imagenet                        |44M                             |
|mit_b4                          |imagenet                        |60M                             |
|mit_b5                          |imagenet                        |81M                             |
 
MobileOne
Apple's "sub-one-ms" Backbone pretrained on Imagenet! Can be used with all decoders.
Note: In the official github repo the s0 variant has additional num_conv_branches, leading to more params than s1.
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mobileone_s0                    |imagenet                        |4.6M                              |
|mobileone_s1                    |imagenet                        |4.0M                              |
|mobileone_s2                    |imagenet                        |6.5M                              |
|mobileone_s3                    |imagenet                        |8.8M                              |
|mobileone_s4                    |imagenet                        |13.6M                             |
 
\* `ssl`, `swsl` - semi-supervised and weakly-supervised learning on ImageNet ([repo](https://github.com/facebookresearch/semi-supervised-ImageNet1K-models)).
#### Timm Encoders 
[docs](https://smp.readthedocs.io/en/latest/encoders_timm.html)
Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported
 - not all transformer models have ``features_only`` functionality implemented that is required for encoder
 - some models have inappropriate strides
Total number of supported encoders: 549
 - [table with available encoders](https://smp.readthedocs.io/en/latest/encoders_timm.html)
### 🔁 Models API 
 - `model.encoder` - pretrained backbone to extract features of different spatial resolution
 - `model.decoder` - depends on models architecture (`Unet`/`Linknet`/`PSPNet`/`FPN`)
 - `model.segmentation_head` - last block to produce required number of mask channels (include also optional upsampling and activation)
 - `model.classification_head` - optional block which create classification head on top of encoder
 - `model.forward(x)` - sequentially pass `x` through model\`s encoder, decoder and segmentation head (and classification head if specified)
##### Input channels
Input channels parameter allows you to create models, which process tensors with arbitrary number of channels.
If you use pretrained weights from imagenet - weights of first convolution will be reused. For
1-channel case it would be a sum of weights of first convolution layer, otherwise channels would be 
populated with weights like `new_weight[:, i] = pretrained_weight[:, i % 3]` and than scaled with `new_weight * 3 / new_in_channels`.
```python
model = smp.FPN('resnet34', in_channels=1)
mask = model(torch.ones([1, 1, 64, 64]))
```
##### Auxiliary classification output  
All models support `aux_params` parameters, which is default set to `None`. 
If `aux_params = None` then classification auxiliary output is not created, else
model produce not only `mask`, but also `label` output with shape `NC`.
Classification head consists of GlobalPooling->Dropout(optional)->Linear->Activation(optional) layers, which can be 
configured by `aux_params` as follows:
```python
aux_params=dict(
    pooling='avg',             # one of 'avg', 'max'
    dropout=0.5,               # dropout ratio, default is None
    activation='sigmoid',      # activation function, default is None
    classes=4,                 # define number of output labels
)
model = smp.Unet('resnet34', classes=4, aux_params=aux_params)
mask, label = model(x)
```
##### Depth
Depth parameter specify a number of downsampling operations in encoder, so you can make
your model lighter if specify smaller `depth`.
```python
model = smp.Unet('resnet34', encoder_depth=4)
```
### 🛠 Installation 
PyPI version:
```bash
$ pip install segmentation-models-pytorch
````
Latest version from source:
```bash
$ pip install git+https://github.com/qubvel/segmentation_models.pytorch
````
### 🏆 Competitions won with the library
`Segmentation Models` package is widely used in the image segmentation competitions.
[Here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/HALLOFFAME.md) you can find competitions, names of the winners and links to their solutions.
### 🤝 Contributing
##### Install linting and formatting pre-commit hooks
```bash
pip install pre-commit black==22.3.0 flake8==4.0.1
pre-commit install
```
##### Run tests
```bash
pytest -p no:cacheprovider
```
##### Run tests in docker
```bash
$ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev pytest -p no:cacheprovider
```
##### Generate table with encoders (in case you add a new encoder)
```bash
$ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev python misc/generate_table.py
```
### 📝 Citing
```
@misc{Iakubovskii:2019,
  Author = {Pavel Iakubovskii},
  Title = {Segmentation Models Pytorch},
  Year = {2019},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/qubvel/segmentation_models.pytorch}}
}
```
### 🛡️ License 
Project is distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE)
%package help
Summary:	Development documents and examples for segmentation-models-pytorch
Provides:	python3-segmentation-models-pytorch-doc
%description help
  
**Python library with Neural Networks for Image  
Segmentation based on [PyTorch](https://pytorch.org/).**  
[](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) 
[](https://github.com/qubvel/segmentation_models.pytorch/actions/workflows/tests.yml) 
[](https://smp.readthedocs.io/en/latest/) 
[](https://pypi.org/project/segmentation-models-pytorch/) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
[](https://pepy.tech/project/segmentation-models-pytorch) 
The main features of this library are:
 - High level API (just two lines to create a neural network)
 - 9 models architectures for binary and multi class segmentation (including legendary Unet)
 - 124 available encoders (and 500+ encoders from [timm](https://github.com/rwightman/pytorch-image-models))
 - All encoders have pre-trained weights for faster and better convergence
 - Popular metrics and losses for training routines
### [📚 Project Documentation 📚](http://smp.readthedocs.io/)
Visit [Read The Docs Project Page](https://smp.readthedocs.io/) or read following README to know more about Segmentation Models Pytorch (SMP for short) library
### 📋 Table of content
 1. [Quick start](#start)
 2. [Examples](#examples)
 3. [Models](#models)
    1. [Architectures](#architectures)
    2. [Encoders](#encoders)
    3. [Timm Encoders](#timm)
 4. [Models API](#api)
    1. [Input channels](#input-channels)
    2. [Auxiliary classification output](#auxiliary-classification-output)
    3. [Depth](#depth)
 5. [Installation](#installation)
 6. [Competitions won with the library](#competitions-won-with-the-library)
 7. [Contributing](#contributing)
 8. [Citing](#citing)
 9. [License](#license)
### ⏳ Quick start 
#### 1. Create your first Segmentation model with SMP
Segmentation model is just a PyTorch nn.Module, which can be created as easy as:
```python
import segmentation_models_pytorch as smp
model = smp.Unet(
    encoder_name="resnet34",        # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
    encoder_weights="imagenet",     # use `imagenet` pre-trained weights for encoder initialization
    in_channels=1,                  # model input channels (1 for gray-scale images, 3 for RGB, etc.)
    classes=3,                      # model output channels (number of classes in your dataset)
)
```
 - see [table](#architectures) with available model architectures
 - see [table](#encoders) with available encoders and their corresponding weights
#### 2. Configure data preprocessing
All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give you better results (higher metric score and faster convergence). It is **not necessary** in case you train the whole model, not only decoder.
```python
from segmentation_models_pytorch.encoders import get_preprocessing_fn
preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet')
```
Congratulations! You are done! Now you can train your model with your favorite framework!
### 💡 Examples 
 - Training model for pets binary segmentation with Pytorch-Lightning [notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) and [](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb)
 - Training model for cars segmentation on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb).
 - Training SMP model with [Catalyst](https://github.com/catalyst-team/catalyst) (high-level framework for PyTorch), [TTAch](https://github.com/qubvel/ttach) (TTA library for PyTorch) and [Albumentations](https://github.com/albu/albumentations) (fast image augmentation library) - [here](https://github.com/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) [](https://colab.research.google.com/github/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb)
 - Training SMP model with [Pytorch-Lightning](https://pytorch-lightning.readthedocs.io) framework - [here](https://github.com/ternaus/cloths_segmentation) (clothes binary segmentation by [@ternaus](https://github.com/ternaus)).
### 📦 Models 
#### Architectures 
 - Unet [[paper](https://arxiv.org/abs/1505.04597)] [[docs](https://smp.readthedocs.io/en/latest/models.html#unet)]
 - Unet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id2)]
 - MAnet [[paper](https://ieeexplore.ieee.org/abstract/document/9201310)] [[docs](https://smp.readthedocs.io/en/latest/models.html#manet)]
 - Linknet [[paper](https://arxiv.org/abs/1707.03718)] [[docs](https://smp.readthedocs.io/en/latest/models.html#linknet)]
 - FPN [[paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#fpn)]
 - PSPNet [[paper](https://arxiv.org/abs/1612.01105)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pspnet)]
 - PAN [[paper](https://arxiv.org/abs/1805.10180)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pan)]
 - DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)] [[docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3)]
 - DeepLabV3+ [[paper](https://arxiv.org/abs/1802.02611)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id9)]
#### Encoders 
The following is a list of supported encoders in the SMP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (`encoder_name` and `encoder_weights` parameters).
ResNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnet18                        |imagenet / ssl / swsl           |11M                             |
|resnet34                        |imagenet                        |21M                             |
|resnet50                        |imagenet / ssl / swsl           |23M                             |
|resnet101                       |imagenet                        |42M                             |
|resnet152                       |imagenet                        |58M                             |
 
ResNeXt
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnext50_32x4d                 |imagenet / ssl / swsl           |22M                             |
|resnext101_32x4d                |ssl / swsl                      |42M                             |
|resnext101_32x8d                |imagenet / instagram / ssl / swsl|86M                         |
|resnext101_32x16d               |instagram / ssl / swsl          |191M                            |
|resnext101_32x32d               |instagram                       |466M                            |
|resnext101_32x48d               |instagram                       |826M                            |
 
ResNeSt
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-resnest14d                 |imagenet                        |8M                              |
|timm-resnest26d                 |imagenet                        |15M                             |
|timm-resnest50d                 |imagenet                        |25M                             |
|timm-resnest101e                |imagenet                        |46M                             |
|timm-resnest200e                |imagenet                        |68M                             |
|timm-resnest269e                |imagenet                        |108M                            |
|timm-resnest50d_4s2x40d         |imagenet                        |28M                             |
|timm-resnest50d_1s4x24d         |imagenet                        |23M                             |
 
Res2Ne(X)t
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-res2net50_26w_4s           |imagenet                        |23M                             |
|timm-res2net101_26w_4s          |imagenet                        |43M                             |
|timm-res2net50_26w_6s           |imagenet                        |35M                             |
|timm-res2net50_26w_8s           |imagenet                        |46M                             |
|timm-res2net50_48w_2s           |imagenet                        |23M                             |
|timm-res2net50_14w_8s           |imagenet                        |23M                             |
|timm-res2next50                 |imagenet                        |22M                             |
 
RegNet(x/y)
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-regnetx_002                |imagenet                        |2M                              |
|timm-regnetx_004                |imagenet                        |4M                              |
|timm-regnetx_006                |imagenet                        |5M                              |
|timm-regnetx_008                |imagenet                        |6M                              |
|timm-regnetx_016                |imagenet                        |8M                              |
|timm-regnetx_032                |imagenet                        |14M                             |
|timm-regnetx_040                |imagenet                        |20M                             |
|timm-regnetx_064                |imagenet                        |24M                             |
|timm-regnetx_080                |imagenet                        |37M                             |
|timm-regnetx_120                |imagenet                        |43M                             |
|timm-regnetx_160                |imagenet                        |52M                             |
|timm-regnetx_320                |imagenet                        |105M                            |
|timm-regnety_002                |imagenet                        |2M                              |
|timm-regnety_004                |imagenet                        |3M                              |
|timm-regnety_006                |imagenet                        |5M                              |
|timm-regnety_008                |imagenet                        |5M                              |
|timm-regnety_016                |imagenet                        |10M                             |
|timm-regnety_032                |imagenet                        |17M                             |
|timm-regnety_040                |imagenet                        |19M                             |
|timm-regnety_064                |imagenet                        |29M                             |
|timm-regnety_080                |imagenet                        |37M                             |
|timm-regnety_120                |imagenet                        |49M                             |
|timm-regnety_160                |imagenet                        |80M                             |
|timm-regnety_320                |imagenet                        |141M                            |
 
GERNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-gernet_s                   |imagenet                        |6M                              |
|timm-gernet_m                   |imagenet                        |18M                             |
|timm-gernet_l                   |imagenet                        |28M                             |
 
SE-Net
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|senet154                        |imagenet                        |113M                            |
|se_resnet50                     |imagenet                        |26M                             |
|se_resnet101                    |imagenet                        |47M                             |
|se_resnet152                    |imagenet                        |64M                             |
|se_resnext50_32x4d              |imagenet                        |25M                             |
|se_resnext101_32x4d             |imagenet                        |46M                             |
 
SK-ResNe(X)t
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-skresnet18                 |imagenet                        |11M                             |
|timm-skresnet34                 |imagenet                        |21M                             |
|timm-skresnext50_32x4d          |imagenet                        |25M                             |
 
DenseNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|densenet121                     |imagenet                        |6M                              |
|densenet169                     |imagenet                        |12M                             |
|densenet201                     |imagenet                        |18M                             |
|densenet161                     |imagenet                        |26M                             |
 
Inception
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|inceptionresnetv2               |imagenet /  imagenet+background |54M                             |
|inceptionv4                     |imagenet /  imagenet+background |41M                             |
|xception                        |imagenet                        |22M                             |
 
EfficientNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|efficientnet-b0                 |imagenet                        |4M                              |
|efficientnet-b1                 |imagenet                        |6M                              |
|efficientnet-b2                 |imagenet                        |7M                              |
|efficientnet-b3                 |imagenet                        |10M                             |
|efficientnet-b4                 |imagenet                        |17M                             |
|efficientnet-b5                 |imagenet                        |28M                             |
|efficientnet-b6                 |imagenet                        |40M                             |
|efficientnet-b7                 |imagenet                        |63M                             |
|timm-efficientnet-b0            |imagenet / advprop / noisy-student|4M                              |
|timm-efficientnet-b1            |imagenet / advprop / noisy-student|6M                              |
|timm-efficientnet-b2            |imagenet / advprop / noisy-student|7M                              |
|timm-efficientnet-b3            |imagenet / advprop / noisy-student|10M                             |
|timm-efficientnet-b4            |imagenet / advprop / noisy-student|17M                             |
|timm-efficientnet-b5            |imagenet / advprop / noisy-student|28M                             |
|timm-efficientnet-b6            |imagenet / advprop / noisy-student|40M                             |
|timm-efficientnet-b7            |imagenet / advprop / noisy-student|63M                             |
|timm-efficientnet-b8            |imagenet / advprop             |84M                             |
|timm-efficientnet-l2            |noisy-student                   |474M                            |
|timm-efficientnet-lite0         |imagenet                        |4M                              |
|timm-efficientnet-lite1         |imagenet                        |5M                              |
|timm-efficientnet-lite2         |imagenet                        |6M                              |
|timm-efficientnet-lite3         |imagenet                        |8M                             |
|timm-efficientnet-lite4         |imagenet                        |13M                             |
 
MobileNet
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mobilenet_v2                    |imagenet                        |2M                              |
|timm-mobilenetv3_large_075      |imagenet                        |1.78M                       |
|timm-mobilenetv3_large_100      |imagenet                        |2.97M                       |
|timm-mobilenetv3_large_minimal_100|imagenet                        |1.41M                       |
|timm-mobilenetv3_small_075      |imagenet                        |0.57M                        |
|timm-mobilenetv3_small_100      |imagenet                        |0.93M                       |
|timm-mobilenetv3_small_minimal_100|imagenet                        |0.43M                       |
 
DPN
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|dpn68                           |imagenet                        |11M                             |
|dpn68b                          |imagenet+5k                     |11M                             |
|dpn92                           |imagenet+5k                     |34M                             |
|dpn98                           |imagenet                        |58M                             |
|dpn107                          |imagenet+5k                     |84M                             |
|dpn131                          |imagenet                        |76M                             |
 
VGG
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|vgg11                           |imagenet                        |9M                              |
|vgg11_bn                        |imagenet                        |9M                              |
|vgg13                           |imagenet                        |9M                              |
|vgg13_bn                        |imagenet                        |9M                              |
|vgg16                           |imagenet                        |14M                             |
|vgg16_bn                        |imagenet                        |14M                             |
|vgg19                           |imagenet                        |20M                             |
|vgg19_bn                        |imagenet                        |20M                             |
 
Mix Vision Transformer
Backbone from SegFormer pretrained on Imagenet! Can be used with other decoders from package, you can combine Mix Vision Transformer with Unet, FPN and others!
Limitations:  
   - encoder is **not** supported by Linknet, Unet++
   - encoder is supported by FPN only for encoder **depth = 5**
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mit_b0                          |imagenet                        |3M                              |
|mit_b1                          |imagenet                        |13M                             |
|mit_b2                          |imagenet                        |24M                             |
|mit_b3                          |imagenet                        |44M                             |
|mit_b4                          |imagenet                        |60M                             |
|mit_b5                          |imagenet                        |81M                             |
 
MobileOne
Apple's "sub-one-ms" Backbone pretrained on Imagenet! Can be used with all decoders.
Note: In the official github repo the s0 variant has additional num_conv_branches, leading to more params than s1.
|Encoder                         |Weights                         |Params, M                       |
|--------------------------------|:------------------------------:|:------------------------------:|
|mobileone_s0                    |imagenet                        |4.6M                              |
|mobileone_s1                    |imagenet                        |4.0M                              |
|mobileone_s2                    |imagenet                        |6.5M                              |
|mobileone_s3                    |imagenet                        |8.8M                              |
|mobileone_s4                    |imagenet                        |13.6M                             |
 
\* `ssl`, `swsl` - semi-supervised and weakly-supervised learning on ImageNet ([repo](https://github.com/facebookresearch/semi-supervised-ImageNet1K-models)).
#### Timm Encoders 
[docs](https://smp.readthedocs.io/en/latest/encoders_timm.html)
Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported
 - not all transformer models have ``features_only`` functionality implemented that is required for encoder
 - some models have inappropriate strides
Total number of supported encoders: 549
 - [table with available encoders](https://smp.readthedocs.io/en/latest/encoders_timm.html)
### 🔁 Models API 
 - `model.encoder` - pretrained backbone to extract features of different spatial resolution
 - `model.decoder` - depends on models architecture (`Unet`/`Linknet`/`PSPNet`/`FPN`)
 - `model.segmentation_head` - last block to produce required number of mask channels (include also optional upsampling and activation)
 - `model.classification_head` - optional block which create classification head on top of encoder
 - `model.forward(x)` - sequentially pass `x` through model\`s encoder, decoder and segmentation head (and classification head if specified)
##### Input channels
Input channels parameter allows you to create models, which process tensors with arbitrary number of channels.
If you use pretrained weights from imagenet - weights of first convolution will be reused. For
1-channel case it would be a sum of weights of first convolution layer, otherwise channels would be 
populated with weights like `new_weight[:, i] = pretrained_weight[:, i % 3]` and than scaled with `new_weight * 3 / new_in_channels`.
```python
model = smp.FPN('resnet34', in_channels=1)
mask = model(torch.ones([1, 1, 64, 64]))
```
##### Auxiliary classification output  
All models support `aux_params` parameters, which is default set to `None`. 
If `aux_params = None` then classification auxiliary output is not created, else
model produce not only `mask`, but also `label` output with shape `NC`.
Classification head consists of GlobalPooling->Dropout(optional)->Linear->Activation(optional) layers, which can be 
configured by `aux_params` as follows:
```python
aux_params=dict(
    pooling='avg',             # one of 'avg', 'max'
    dropout=0.5,               # dropout ratio, default is None
    activation='sigmoid',      # activation function, default is None
    classes=4,                 # define number of output labels
)
model = smp.Unet('resnet34', classes=4, aux_params=aux_params)
mask, label = model(x)
```
##### Depth
Depth parameter specify a number of downsampling operations in encoder, so you can make
your model lighter if specify smaller `depth`.
```python
model = smp.Unet('resnet34', encoder_depth=4)
```
### 🛠 Installation 
PyPI version:
```bash
$ pip install segmentation-models-pytorch
````
Latest version from source:
```bash
$ pip install git+https://github.com/qubvel/segmentation_models.pytorch
````
### 🏆 Competitions won with the library
`Segmentation Models` package is widely used in the image segmentation competitions.
[Here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/HALLOFFAME.md) you can find competitions, names of the winners and links to their solutions.
### 🤝 Contributing
##### Install linting and formatting pre-commit hooks
```bash
pip install pre-commit black==22.3.0 flake8==4.0.1
pre-commit install
```
##### Run tests
```bash
pytest -p no:cacheprovider
```
##### Run tests in docker
```bash
$ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev pytest -p no:cacheprovider
```
##### Generate table with encoders (in case you add a new encoder)
```bash
$ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev python misc/generate_table.py
```
### 📝 Citing
```
@misc{Iakubovskii:2019,
  Author = {Pavel Iakubovskii},
  Title = {Segmentation Models Pytorch},
  Year = {2019},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/qubvel/segmentation_models.pytorch}}
}
```
### 🛡️ License 
Project is distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE)
%prep
%autosetup -n segmentation-models-pytorch-0.3.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-segmentation-models-pytorch -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot  - 0.3.2-1
- Package Spec generated