%global _empty_manifest_terminate_build 0 Name: python-top2vec Version: 1.0.29 Release: 1 Summary: Top2Vec learns jointly embedded topic, document and word vectors. License: BSD URL: https://github.com/ddangelov/Top2Vec Source0: https://mirrors.nju.edu.cn/pypi/web/packages/55/92/8ab9d43de0437c6ec1bf8dcd2f0da484b4c78ed18c4dd189c52e5a26e0a1/top2vec-1.0.29.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-pandas Requires: python3-scikit-learn Requires: python3-gensim Requires: python3-umap-learn Requires: python3-hdbscan Requires: python3-wordcloud Requires: python3-hnswlib Requires: python3-tensorflow Requires: python3-tensorflow-hub Requires: python3-tensorflow-text Requires: python3-torch Requires: python3-sentence-transformers %description Top2Vec is an algorithm for **topic modeling** and **semantic search**. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors. Once you train the Top2Vec model you can: * Get number of detected topics. * Get topics. * Get topic sizes. * Get hierarchichal topics. * Search topics by keywords. * Search documents by topic. * Search documents by keywords. * Find similar words. * Find similar documents. * Expose model with [RESTful-Top2Vec](https://github.com/ddangelov/RESTful-Top2Vec) See the [paper](http://arxiv.org/abs/2008.09470) for more details on how it works. %package -n python3-top2vec Summary: Top2Vec learns jointly embedded topic, document and word vectors. Provides: python-top2vec BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-top2vec Top2Vec is an algorithm for **topic modeling** and **semantic search**. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors. Once you train the Top2Vec model you can: * Get number of detected topics. * Get topics. * Get topic sizes. * Get hierarchichal topics. * Search topics by keywords. * Search documents by topic. * Search documents by keywords. * Find similar words. * Find similar documents. * Expose model with [RESTful-Top2Vec](https://github.com/ddangelov/RESTful-Top2Vec) See the [paper](http://arxiv.org/abs/2008.09470) for more details on how it works. %package help Summary: Development documents and examples for top2vec Provides: python3-top2vec-doc %description help Top2Vec is an algorithm for **topic modeling** and **semantic search**. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors. Once you train the Top2Vec model you can: * Get number of detected topics. * Get topics. * Get topic sizes. * Get hierarchichal topics. * Search topics by keywords. * Search documents by topic. * Search documents by keywords. * Find similar words. * Find similar documents. * Expose model with [RESTful-Top2Vec](https://github.com/ddangelov/RESTful-Top2Vec) See the [paper](http://arxiv.org/abs/2008.09470) for more details on how it works. %prep %autosetup -n top2vec-1.0.29 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-top2vec -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 25 2023 Python_Bot - 1.0.29-1 - Package Spec generated