%global _empty_manifest_terminate_build 0 Name: python-PyBIS Version: 1.35.4 Release: 1 Summary: openBIS connection and interaction, optimized for using with Jupyter License: Apache Software License Version 2.0 URL: https://sissource.ethz.ch/sispub/openbis/tree/master/pybis Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1d/1e/803337a956e30690d9bcdc5c081d9b45616c19bb29e3851eb58d3c93336d/PyBIS-1.35.4.tar.gz BuildArch: noarch %description # Welcome to pyBIS! pyBIS is a Python module for interacting with openBIS. pyBIS is designed to be most useful in a [Jupyter Notebook](https://jupyter.org) or IPython environment, especially if you are developing Python scripts for automatisation. Jupyter Notebooks offer some sort of IDE for openBIS, supporting TAB completition and immediate data checks, making the life of a researcher hopefully easier. ## Dependencies and Requirements - pyBIS relies the openBIS API v3 - openBIS version 16.05.2 or newer is required - 19.06.5 or later is recommended - pyBIS uses Python 3.6 or newer and the Pandas module ## Installation ``` pip install --upgrade pybis ``` That command will download install pyBIS and all its dependencies. If pyBIS is already installed, it will be upgraded to the latest version. If you haven't done yet, install Jupyter and/or Jupyter Lab (the next Generation of Jupyter): ``` pip install jupyter pip install jupyterlab ``` # General Usage ### TAB completition and other hints in Jupyter / IPython - in a Jupyter Notebook or IPython environment, pybis helps you to enter the commands - After every dot `.` you might hit the `TAB` key in order to look at the available commands. - if you are unsure what parameters to add to a , add a question mark right after the method and hit `SHIFT+ENTER` - Jupyter will then look up the signature of the method and show some helpful docstring ### Checking input - When working with properties of entities, they might use a **controlled vocabulary** or are of a specific **property type**. - Add an underscore `_` character right after the property and hit `SHIFT+ENTER` to show the valid values - When a property only acceps a controlled vocabulary, you will be shown the valid terms in a nicely formatted table - if you try to assign an **invalid value** to a property, you'll receive an error immediately ### Glossary - **spaces:** used for authorisation eg. to separate two working groups. If you have permissions in a space, you can see everything which in that space, but not necessarily in another space (unless you have the permission). - **projects:** a space consists of many projects. - **experiments / collections:** a projects contain many experiments. Experiments can have _properties_ - **samples / objects:** an experiment contains many samples. Samples can have _properties_ - **dataSet:** a dataSet which contains the actual _data files_, either pyhiscal (stored in openBIS dataStore) or linked - **attributes:** every entity above contains a number of attributes. They are the same accross all instances of openBIS and independent of their type. - **properties:** Additional specific key-value pairs, available for these entities: - experiments - samples - dataSets every single instance of an entity must be of a specific **entity type** (see below). The type defines the set of properties. - **experiment type / collection type:** a type for experiments which specifies its properties - **sample type / object type:** a type for samples / objects which specifies its properties - **dataSet type:** a type for dataSets which specifies its properties - **property type:** a single property, as defined in the entity types above. It can be of a classic data type (e.g. INTEGER, VARCHAR, BOOLEAN) or its values can be controlled (CONTROLLEDVOCABULARY). - **plugin:** a script written in [Jython](https://www.jython.org) which allows to check property values in a even more detailed fashion # connect to OpenBIS ## login In an **interactive session** e.g. inside a Jupyter notebook, you can use `getpass` to enter your password safely: ```python from pybis import Openbis o = Openbis('https://example.com') o = Openbis('example.com') # https:// is assumed import getpass password = getpass.getpass() o.login('username', password, save_token=True) # save the session token in ~/.pybis/example.com.token ``` In a **script** you would rather use two **environment variables** to provide username and password: ```python from pybis import Openbis o = Openbis(os.environ['OPENBIS_HOST']) o.login(os.environ['OPENBIS_USERNAME'], os.environ['OPENBIS_PASSWORD']) ``` As an even better alternative, you should use personal access tokens (PAT) to avoid username/password altogether. See below. ### Verify certificate By default, your SSL-Certification is being verified. If you have a test-instance with a self-signed certificate, you'll need to turn off this verification explicitly: ```python from pybis import Openbis o = Openbis('https://test-openbis-instance.com', verify_certificates=False) ``` ### Check session token, logout() Check whether your session, i.e. the **session token** is still valid and log out: ```python print(f"Session is active: {o.is_session_active()} and token is {o.token}") o.logout() print(f"Session is active: {o.is_session_active()"} ``` ### Personal access token (PAT) As an (new) alternative to login every time you run a script, you can create tokens which - once issued, do **not need username or password** - are **much longer valid** than session tokens (default is one year) - **survive restarts** of an openBIS instance To create a token, you first need a valid session – either through classic login or by assigning an existing valid session token: ```python from pybis import Openbis o = Openbis('https://test-openbis-instance.com') o.login("username", "password") # or o.set_token("your_username-220808165456793xA3D0357C5DE66A5BAD647E502355FE2C") ``` Then you can create a new personal access token (PAT) and use it for all further pyBIS queries: ```python pat = o.get_or_create_personal_access_token(sessionName="Project A") o.set_token(pat, save_token=True) ``` You may also use permId directly: ```python pat = o.get_or_create_personal_access_token(sessionName="Project A") o.set_token(pat.permId, save_token=True) ``` **Note:** If there is an existing PAT with the same _sessionName_ which is still valid and the validity is within the warning period (defined by the server), then this existing PAT is returned instead. However, you can enforce creating a new PAT by passing the argument `force=True`. **Note:** Most operations are permitted using the PAT, _except_: - all operations on personal access tokens itself - i.e. create, list, delete operations on tokens For these operations, you need to use a session token instead. To get a list of all currently available tokens: ```python o.get_personal_access_tokens() o.get_personal_access_tokens(sessionName="APPLICATION_1") ``` To delete the first token shown in the list: ```python o.get_personal_access_tokens()[0].delete('some reason') ``` ### Caching With `pyBIS 1.17.0`, a lot of caching has been introduced to improve the speed of object lookups that do not change often. If you encounter any problems, you can turn it off like this: ```python o = Openbis('https://example.com', use_cache=False) # or later in the script o.use_cache = False o.clear_cache() o.clear_cache('sampleType') ``` ## Mount openBIS dataStore server ### Prerequisites: FUSE / SSHFS Mounting an openBIS dataStore server requires FUSE / SSHFS to be installed (requires root privileges). The mounting itself requires no root privileges. **Mac OS X** Follow the installation instructions on https://osxfuse.github.io **Unix Cent OS 7** ``` $ sudo yum install epel-release $ sudo yum --enablerepo=epel -y install fuse-sshfs $ user="$(whoami)" $ usermod -a -G fuse "$user" ``` After the installation, an `sshfs` command should be available. ### Mount dataStore server with pyBIS Because the mount/unmount procedure differs from platform to platform, pyBIS offers two simple methods: ``` o.mount() o.mount(username, password, hostname, mountpoint, volname) o.is_mounted() o.unmount() o.get_mountpoint() ``` Currently, mounting is supported for Linux and Mac OS X only. All attributes, if not provided, are re-used by a previous login() command. If no mountpoint is provided, the default mounpoint will be `~/hostname`. If this directory does not exist, it will be created. The directory must be empty before mounting. # Masterdata OpenBIS stores quite a lot of meta-data along with your dataSets. The collection of data that describes this meta-data (i.e. meta-meta-data) is called masterdata. It consists of: - sample types - dataSet types - material types - experiment types - property types - vocabularies - vocabulary terms - plugins (jython scripts that allow complex data checks) - tags - semantic annotations ## browse masterdata ``` sample_types = o.get_sample_types() # get a list of sample types sample_types.df # DataFrame object st = o.get_sample_types()[3] # get 4th element of that list st = o.get_sample_type('YEAST') st.code st.generatedCodePrefix st.attrs.all() # get all attributes as a dict st.get_validationPlugin() # returns a plugin object st.get_property_assignments() # show the list of properties # for that sample type o.get_material_types() o.get_dataset_types() o.get_experiment_types() o.get_collection_types() o.get_property_types() pt = o.get_property_type('BARCODE_COMPLEXITY_CHECKER') pt.attrs.all() o.get_plugins() pl = o.get_plugin('Diff_time') pl.script # the Jython script that processes this property o.get_vocabularies() o.get_vocabulary('BACTERIAL_ANTIBIOTIC_RESISTANCE') o.get_terms(vocabulary='STORAGE') o.get_tags() ``` ## create property types **Samples** (objects), **experiments** (collections) and **dataSets** contain type-specific **properties**. When you create a new sample, experiment or datasSet of a given type, the set of properties is well defined. Also, the values of these properties are being type-checked. The first step in creating a new entity type is to create a so called **property type**: ``` pt_text = o.new_property_type( code = 'MY_NEW_PROPERTY_TYPE', label = 'yet another property type', description = 'my first property', dataType = 'VARCHAR', ) pt_text.save() pt_int = o.new_property_type( code = 'MY_NUMBER', label = 'property contains a number', dataType = 'INTEGER', ) pt_int.save() pt_voc = o.new_property_type( code = 'MY_CONTROLLED_VOCABULARY', label = 'label me', description = 'give me a description', dataType = 'CONTROLLEDVOCABULARY', vocabulary = 'STORAGE', ) pt_voc.save() pt_richtext = o.new_property_type( code = 'MY_RICHTEXT_PROPERTY', label = 'richtext data', description = 'property contains rich text', dataType = 'MULTILINE_VARCHAR', metaData = {'custom_widget' : 'Word Processor'} ) pt_richtext.save() pt_spread = o.new_property_type( code = 'MY_TABULAR_DATA', label = 'data in a table', description = 'property contains a spreadsheet', dataType = 'XML', metaData = {'custom_widget': 'Spreadsheet'} ) pt_spread.save() ``` The `dataType` attribute can contain any of these values: - `INTEGER` - `VARCHAR` - `MULTILINE_VARCHAR` - `REAL` - `TIMESTAMP` - `BOOLEAN` - `HYPERLINK` - `XML` - `CONTROLLEDVOCABULARY` - `MATERIAL` When choosing `CONTROLLEDVOCABULARY`, you must specify a `vocabulary` attribute (see example). Likewise, when choosing `MATERIAL`, a `materialType` attribute must be provided. To create a **richtext property**, use `MULTILINE_VARCHAR` as `dataType` and set `metaData` to `{'custom_widget' : 'Word Processor'}` as shown in the example above. To create a **tabular, spreadsheet-like property**, use `XML` as `dataType` and set `metaData` to `{'custom_widget' : 'Spreadhseet'}`as shown in the example above. **Note**: PropertyTypes that start with a \$ are by definition `managedInternally` and therefore this attribute must be set to True. ## create sample types / object types The second step (after creating a property type, see above) is to create the **sample type**. The new name for **sample** is **object**. You can use both methods interchangeably: - `new_sample_type()` == `new_object_type()` ``` sample_type = o.new_sample_type( code = 'my_own_sample_type', # mandatory generatedCodePrefix = 'S', # mandatory description = '', autoGeneratedCode = True, subcodeUnique = False, listable = True, showContainer = False, showParents = True, showParentMetadata = False, validationPlugin = 'Has_Parents' # see plugins below ) sample_type.save() ``` When `autoGeneratedCode` attribute is set to `True`, then you don't need to provide a value for `code` when you create a new sample. You can get the next autoGeneratedCode like this: ``` sample_type.get_next_sequence() # eg. 67 sample_type.get_next_code() # e.g. FLY77 ``` From pyBIS 1.31.0 onwards, you can provide a `code` even for samples where its sample type has `autoGeneratedCode=True` to offer the same functionality as ELN-LIMS. In earlier versions of pyBIS, providing a code in this situation caused an error. ## assign and revoke properties to sample type / object type The third step, after saving the sample type, is to **assign or revoke properties** to the newly created sample type. This assignment procedure applies to all entity types (dataset type, experiment type). ``` sample_type.assign_property( prop = 'diff_time', # mandatory section = '', ordinal = 5, mandatory = True, initialValueForExistingEntities = 'initial value' showInEditView = True, showRawValueInForms = True ) sample_type.revoke_property('diff_time') sample_type.get_property_assignments() ``` ## create a dataset type The second step (after creating a **property type**, see above) is to create the **dataset type**. The third step is to **assign or revoke the properties** to the newly created dataset type. ``` dataset_type = o.new_dataset_type( code = 'my_dataset_type', # mandatory description = None, mainDataSetPattern = None, mainDataSetPath = None, disallowDeletion = False, validationPlugin = None, ) dataset_type.save() dataset_type.assign_property('property_name') dataset_type.revoke_property('property_name') dataset_type.get_property_assignments() ``` ## create an experiment type / collection type The second step (after creating a **property type**, see above) is to create the **experiment type**. The new name for **experiment** is **collection**. You can use both methods interchangeably: - `new_experiment_type()` == `new_collection_type()` ``` experiment_type = o.new_experiment_type( code, description = None, validationPlugin = None, ) experiment_type.save() experiment_type.assign_property('property_name') experiment_type.revoke_property('property_name') experiment_type.get_property_assignments() ``` ## create material types Materials and material types are deprecated in newer versions of openBIS. ``` material_type = o.new_material_type( code, description=None, validationPlugin=None, ) material_type.save() material_type.assign_property('property_name') material_type.revoke_property('property_name') material_type.get_property_assignments() ``` ## create plugins Plugins are Jython scripts that can accomplish more complex data-checks than ordinary types and vocabularies can achieve. They are assigned to entity types (dataset type, sample type etc). [Documentation and examples can be found here](https://wiki-bsse.ethz.ch/display/openBISDoc/Properties+Handled+By+Scripts) ``` pl = o.new_plugin( name ='my_new_entry_validation_plugin', pluginType ='ENTITY_VALIDATION', # or 'DYNAMIC_PROPERTY' or 'MANAGED_PROPERTY', entityKind = None, # or 'SAMPLE', 'MATERIAL', 'EXPERIMENT', 'DATA_SET' script = 'def calculate(): pass' # a JYTHON script ) pl.save() ``` ## Users, Groups and RoleAssignments Users can only login into the openBIS system when: - they are present in the authentication system (e.g. LDAP) - the username/password is correct - the user's mail address needs is present - the user is already added to the openBIS user list (see below) - the user is assigned a role which allows a login, either directly assigned or indirectly assigned via a group membership ``` o.get_groups() group = o.new_group(code='group_name', description='...') group = o.get_group('group_name') group.save() group.assign_role(role='ADMIN', space='DEFAULT') group.get_roles() group.revoke_role(role='ADMIN', space='DEFAULT') group.add_members(['admin']) group.get_members() group.del_members(['admin']) group.delete() o.get_persons() person = o.new_person(userId='username') person.space = 'USER_SPACE' person.save() # person.delete() is currently not possible. person.assign_role(role='ADMIN', space='MY_SPACE') person.assign_role(role='OBSERVER') person.get_roles() person.revoke_role(role='ADMIN', space='MY_SPACE') person.revoke_role(role='OBSERVER') o.get_role_assignments() o.get_role_assignments(space='MY_SPACE') o.get_role_assignments(group='MY_GROUP') ra = o.get_role_assignment(techId) ra.delete() ``` ## Spaces Spaces are fundamental way in openBIS to divide access between groups. Within a space, data can be easily shared. Between spaces, people need to be given specific access rights (see section above). The structure in openBIS is as follows: - space - project - experiment / collection - sample / object - dataset ``` space = o.new_space(code='space_name', description='') space.save() o.get_spaces( start_with = 0, # start_with and count count = 10, # enable paging ) space = o.get_space('MY_SPACE') # get individual attributes space.code space.description space.registrator space.registrationDate space.modifier space.modificationDate # set individual attribute # most of the attributes above are set automatically and cannot be modified. space.description = '...' # get all attributes as a dictionary space.attrs.all() space.delete('reason for deletion') ``` ## Projects Projects live within spaces and usually contain experiments (aka collections): - space - project - experiment / collection - sample / object - dataset ``` project = o.new_project( space = space, code = 'project_name', description = 'some project description' ) project = space.new_project( code = 'project_code', description = 'project description' ) project.save() o.get_projects( space = 'MY_SPACE', # show only projects in MY_SPACE start_with = 0, # start_with and count count = 10, # enable paging ) o.get_projects(space='MY_SPACE') space.get_projects() project.get_experiments() project.get_attachments() # deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. p.add_attachment( # deprecated, see above fileName='testfile', description= 'another file', title= 'one more attachment' ) project.download_attachments() # deprecated, see above # get individual attributes project.code project.description # set individual attribute project.description = '...' # get all attributes as a dictionary project.attrs.all() project.freeze = True project.freezeForExperiments = True project.freezeForSamples = True ``` ## Experiments / Collections Experiments live within projects: - space - project - experiment / collection - sample / object - dataset The new name for **experiment** is **collection**. You can use boths names interchangeably: - `get_experiment()` = `get_collection()` - `new_experiment()` = `new_collection()` - `get_experiments()` = `get_collections()` ### create a new experiment ``` exp = o.new_experiment code='MY_NEW_EXPERIMENT', type='DEFAULT_EXPERIMENT', space='MY_SPACE', project='YEASTS' ) exp.save() ``` ### search for experiments ``` experiments = o.get_experiments( project = 'YEASTS', space = 'MY_SPACE', type = 'DEFAULT_EXPERIMENT', tags = '*', finished_flag = False, props = ['name', 'finished_flag'] ) experiments = project.get_experiments() experiment = experiments[0] # get first experiment of result list experiment = experiment for experiment in experiments: # iterate over search results print(experiment.props.all()) dataframe = experiments.df # get Pandas DataFrame of result list exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT') ``` ### Experiment attributes ``` exp.attrs.all() # returns all attributes as a dict exp.attrs.tags = ['some', 'tags'] exp.tags = ['some', 'tags'] # same thing exp.save() exp.code exp.description exp.registrator ... exp.project = 'my_project' exp.space = 'my_space' exp.freeze = True exp.freezeForDataSets = True exp.freezeForSamples = True exp.save() # needed to save/update the changed attributes and properties ``` ### Experiment properties **Getting properties** ``` experiment.props == ds.p # you can use either .props or .p to access the properties experiment.p # in Jupyter: show all properties in a nice table experiment.p() # get all properties as a dict experiment.props.all() # get all properties as a dict experiment.p('prop1','prop2') # get some properties as a dict experiment.p.get('$name') # get the value of a property experiment.p['property'] # get the value of a property ``` **Setting properties** ``` experiment.experiment = 'first_exp' # assign sample to an experiment experiment.project = 'my_project' # assign sample to a project experiment.p. + TAB # in Jupyter/IPython: show list of available properties experiment.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary experiment.p['my_property']= "value" # set the value of a property experiment.p.set('my_property, 'value') # set the value of a property experiment.p.my_property = "some value" # set the value of a property experiment.p.set({'my_property':'value'}) # set the values of some properties experiment.set_props({ key: value }) # set the values of some properties experiment.save() # needed to save/update the changed attributes and properties ``` ## Samples / Objects Samples usually live within experiments/collections: - space - project - experiment / collection - sample / object - dataset The new name for **sample** is **object**. You can use boths names interchangeably: - `get_sample()` = `get_object()` - `new_sample()` = `new_object()` - `get_samples()` = `get_objects()` etc. ``` sample = o.new_sample( type = 'YEAST', space = 'MY_SPACE', experiment = '/MY_SPACE/MY_PROJECT/EXPERIMENT_1', parents = [parent_sample, '/MY_SPACE/YEA66'], # you can use either permId, identifier children = [child_sample], # or sample object props = {"name": "some name", "description": "something interesting"} ) sample = space.new_sample( type='YEAST' ) sample.save() sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE') sample = o.get_sample('20170518112808649-52') samples= o.get_samples(type='UNKNOWN') # search for samples, see below # get individual attributes sample.space sample.code sample.permId sample.identifier sample.type # once the sample type is defined, you cannot modify it # set attribute sample.space = 'MY_OTHER_SPACE' sample.experiment # a sample can belong to one experiment only sample.experiment = '/MY_SPACE/MY_PROJECT/MY_EXPERIMENT' sample.project sample.project = '/MY_SPACE/MY_PROJECT' # only works if project samples are enabled sample.tags sample.tags = ['guten_tag', 'zahl_tag' ] sample.attrs.all() # returns all attributes as a dict sample.props.all() # returns all properties as a dict sample.get_attachments() # deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. sample.download_attachments() # deprecated, see above sample.add_attachment('testfile.xls') # deprecated, see above sample.delete('deleted for some reason') ``` ## create/update/delete many samples in a transaction Creating a single sample takes some time. If you need to create many samples, you might want to create them in one transaction. This will transfer all your sample data at once. The Upside of this is the **gain in speed**. The downside: this is a **all-or-nothing** operation, which means, either all samples will be registered or none (if any error occurs). **create many samples in one transaction** ``` trans = o.new_transaction() for i in range (0, 100): sample = o.new_sample(...) trans.add(sample) trans.commit() ``` **update many samples in one transaction** ``` trans = o.new_transaction() for sample in o.get_samples(count=100): sample.prop.some_property = 'different value' trans.add(sample) trans.commit() ``` **delete many samples in one transaction** ``` trans = o.new_transaction() for sample in o.get_samples(count=100): sample.mark_to_be_deleted() trans.add(sample) trans.reason('go what has to go') trans.commit() ``` **Note:** You can use the `mark_to_be_deleted()`, `unmark_to_be_deleted()` and `is_marked_to_be_deleted()` methods to set and read the internal flag. ### parents, children, components and container ``` sample.get_parents() sample.set_parents(['/MY_SPACE/PARENT_SAMPLE_NAME') sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME') sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME') sample.get_children() sample.set_children('/MY_SPACE/CHILD_SAMPLE_NAME') sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME') sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME') # A Sample may belong to another Sample, which acts as a container. # As opposed to DataSets, a Sample may only belong to one container. sample.container # returns a sample object sample.container = '/MY_SPACE/CONTAINER_SAMPLE_NAME' # watch out, this will change the identifier of the sample to: # /MY_SPACE/CONTAINER_SAMPLE_NAME:SAMPLE_NAME sample.container = '' # this will remove the container. # A Sample may contain other Samples, in order to act like a container (see above) # caveat: containers are NOT compatible with ELN-LIMS # The Sample-objects inside that Sample are called «components» or «contained Samples» # You may also use the xxx_contained() functions, which are just aliases. sample.get_components() sample.set_components('/MY_SPACE/COMPONENT_NAME') sample.add_components('/MY_SPACE/COMPONENT_NAME') sample.del_components('/MY_SPACE/COMPONENT_NAME') ``` ### sample tags ``` sample.get_tags() sample.set_tags('tag1') sample.add_tags(['tag2','tag3']) sample.del_tags('tag1') ``` ### Sample attributes and properties **Getting properties** ``` sample.attrs.all() # returns all attributes as a dict sample.attribute_name # return the attribute value sample.props == ds.p # you can use either .props or .p to access the properties sample.p # in Jupyter: show all properties in a nice table sample.p() # get all properties as a dict sample.props.all() # get all properties as a dict sample.p('prop1','prop2') # get some properties as a dict sample.p.get('$name') # get the value of a property sample.p['property'] # get the value of a property ``` **Setting properties** ``` sample.experiment = 'first_exp' # assign sample to an experiment sample.project = 'my_project' # assign sample to a project sample.p. + TAB # in Jupyter/IPython: show list of available properties sample.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary sample.p['my_property']= "value" # set the value of a property sample.p.set('my_property, 'value') # set the value of a property sample.p.my_property = "some value" # set the value of a property sample.p.set({'my_property':'value'}) # set the values of some properties sample.set_props({ key: value }) # set the values of some properties sample.save() # needed to save/update the attributes and properties ``` ### search for samples / objects The result of a search is always list, even when no items are found. The `.df` attribute returns the Pandas dataFrame of the results. ``` samples = o.get_samples( space ='MY_SPACE', type ='YEAST', tags =['*'], # only sample with existing tags start_with = 0, # start_with and count count = 10, # enable paging where = { "$SOME.WEIRD-PROP": "hello" # only receive samples where properties match } registrationDate = "2020-01-01", # date format: YYYY-MM-DD modificationDate = "<2020-12-31", # use > or < to search for specified date and later / earlier attrs=[ # show these attributes in the dataFrame 'sample.code', 'registrator.email', 'type.generatedCodePrefix' ], parent_property = 'value', # search in a parent's property child_property = 'value', # search in a child's property container_property = 'value' # search in a container's property parent = '/MY_SPACE/PARENT_SAMPLE', # sample has this as its parent parent = '*', # sample has at least one parent child = '/MY_SPACE/CHILD_SAMPLE', child = '*', # sample has at least one child container = 'MY_SPACE/CONTAINER', container = '*' # sample lives in a container props=['$NAME', 'MATING_TYPE'] # show these properties in the result ) sample = samples[9] # get the 10th sample # of the search results sample = samples['/SPACE/AABC'] # same, fetched by identifier for sample in samples: # iterate over the print(sample.code) # search results samples.df # returns a Pandas DataFrame object samples = o.get_samples(props="*") # retrieve all properties of all samples ``` ### freezing samples ``` sample.freeze = True sample.freezeForComponents = True sample.freezeForChildren = True sample.freezeForParents = True sample.freezeForDataSets = True ``` ## Datasets Datasets are by all means the most important openBIS entity. The actual files are stored as datasets; all other openBIS entities mainly are necessary to annotate and to structure the data: - space - project - experiment / collection - sample / object - dataset ### working with existing dataSets **search for datasets** This example does the following - search for all datasets of type `SCANS`, retrieve the first 10 entries - print out all properties - print the list of all files in this dataset - download the dataset ``` datasets = sample.get_datasets(type='SCANS', start_with=0, count=10) for dataset in datasets: print(dataset.props()) print(dataset.file_list) dataset.download() dataset = datasets[0] ``` **More dataset functions:** ``` ds = o.get_dataset('20160719143426517-259') ds.get_parents() ds.get_children() ds.sample ds.experiment ds.physicalData ds.status # AVAILABLE LOCKED ARCHIVED # ARCHIVE_PENDING UNARCHIVE_PENDING # BACKUP_PENDING ds.archive() # archives a dataset, i.e. moves it to a slower but cheaper diskspace (tape). # archived datasets cannot be downloaded, they need to be unarchived first. # This is an asynchronous process, # check ds.status regularly until the dataset becomes 'ARCHIVED' ds.unarchive() # this starts an asynchronous process which gets the dataset from the tape. # Check ds.status regularly until it becomes 'AVAILABLE' ds.attrs.all() # returns all attributes as a dict ds.props.all() # returns all properties as a dict ds.add_attachment() # Deprecated. Attachments usually contain meta-data ds.get_attachments() # about the dataSet, not the data itself. ds.download_attachments() # Deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. ``` ### download dataSets ``` o.download_prefix # used for download() and symlink() method. # Is set to data/hostname by default, but can be changed. ds.get_files(start_folder="/") # get file list as Pandas dataFrame ds.file_list # get file list as array ds.file_links # file list as a dict containing direct https links ds.download() # simply download all files to data/hostname/permId/ ds.download( destination = 'my_data', # download files to folder my_data/ create_default_folders = False, # ignore the /original/DEFAULT folders made by openBIS wait_until_finished = False, # download in background, continue immediately workers = 10 # 10 downloads parallel (default) ) ds.download_path # returns the relative path (destination) of the files after a ds.download() ds.is_physical() # TRUE if dataset is physically ``` ### link dataSets Instead of downloading a dataSet, you can create a symbolic link to a dataSet in the openBIS dataStore. To do that, the openBIS dataStore needs to be mounted first (see mount method above). **Note:** Symbolic links and the mount() feature currently do not work with Windows. ``` o.download_prefix # used for download() and symlink() method. # Is set to data/hostname by default, but can be changed. ds.symlink() # creates a symlink for this dataset: data/hostname/permId # tries to mount openBIS instance # in case it is not mounted yet ds.symlink( target_dir = 'data/dataset_1/', # default target_dir is: data/hostname/permId replace_if_symlink_exists=True ) ds.is_symlink() ``` ### dataSet attributes and properties **Getting properties** ``` ds.attrs.all() # returns all attributes as a dict ds.attribute_name # return the attribute value ds.props == ds.p # you can use either .props or .p to access the properties ds.p # in Jupyter: show all properties in a nice table ds.p() # get all properties as a dict ds.props.all() # get all properties as a dict ds.p('prop1','prop2') # get some properties as a dict ds.p.get('$name') # get the value of a property ds.p['property'] # get the value of a property ``` **Setting properties** ``` ds.experiment = 'first_exp' # assign dataset to an experiment ds.sample = 'my_sample' # assign dataset to a sample ds.p. + TAB # in Jupyter/IPython: show list of available properties ds.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary ds.p['my_property']= "value" # set the value of a property ds.p.set('my_property, 'value') # set the value of a property ds.p.my_property = "some value" # set the value of a property ds.p.set({'my_property':'value'}) # set the values of some properties ds.set_props({ key: value }) # set the values of some properties ``` ### search for dataSets - The result of a search is always list, even when no items are found - The `.df` attribute returns the Pandas dataFrame of the results ``` datasets = o.get_datasets( type ='MY_DATASET_TYPE', **{ "SOME.WEIRD:PROP": "value"}, # property name contains a dot or a # colon: cannot be passed as an argument start_with = 0, # start_with and count count = 10, # enable paging registrationDate = "2020-01-01", # date format: YYYY-MM-DD modificationDate = "<2020-12-31", # use > or < to search for specified date and later / earlier parent_property = 'value', # search in a parent's property child_property = 'value', # search in a child's property container_property = 'value' # search in a container's property parent = '/MY_SPACE/PARENT_DS', # has this dataset as its parent parent = '*', # has at least one parent dataset child = '/MY_SPACE/CHILD_DS', child = '*', # has at least one child dataset container = 'MY_SPACE/CONTAINER_DS', container = '*', # belongs to a container dataset attrs=[ # show these attributes in the dataFrame 'sample.code', 'registrator.email', 'type.generatedCodePrefix' ], props=['$NAME', 'MATING_TYPE'] # show these properties in the result ) datasets = o.get_datasets(props="*") # retrieve all properties of all dataSets dataset = datasets[0] # get the first dataset in the search result for dataset in datasets: # iterate over the datasets ... df = datasets.df # returns a Pandas dataFrame object of the search results ``` In some cases, you might want to retrieve precisely certain datasets. This can be achieved by methods chaining (but be aware, it might not be very performant): ``` datasets = o.get_experiments(project='YEASTS')\ .get_samples(type='FLY')\ .get_datasets( type='ANALYZED_DATA', props=['MY_PROPERTY'], MY_PROPERTY='some analyzed data' ) ``` - another example: ``` datasets = o.get_experiment('/MY_NEW_SPACE/MY_PROJECT/MY_EXPERIMENT4')\ .get_samples(type='UNKNOWN')\ .get_parents()\ .get_datasets(type='RAW_DATA') ``` ### freeze dataSets - once a dataSet has been frozen, it cannot be changed by anyone anymore - so be careful! ``` ds.freeze = True ds.freezeForChildren = True ds.freezeForParents = True ds.freezeForComponents = True ds.freezeForContainers = True ds.save() ``` ### create a new dataSet ``` ds_new = o.new_dataset( type = 'ANALYZED_DATA', experiment = '/SPACE/PROJECT/EXP1', sample = '/SPACE/SAMP1', files = ['my_analyzed_data.dat'], props = {'name': 'some good name', 'description': '...' } ) ds_new.save() ``` ### create dataSet with zipfile DataSet containing one zipfile which will be unzipped in openBIS: ```python ds_new = o.new_dataset( type = 'RAW_DATA', sample = '/SPACE/SAMP1', zipfile = 'my_zipped_folder.zip', ) ds_new.save() ``` ### create dataSet with mixed content - mixed content means: folders and files are provided - a relative specified folder (and all its content) will end up in the root, while keeping its structure - `../measurements/` --> `/measurements/` - `some/folder/somewhere/` --> `/somewhere/` - relative files will also end up in the root - `my_file.txt` --> `/my_file.txt` - `../somwhere/else/my_other_file.txt` --> `/my_other_file.txt` - `some/folder/file.txt` --> `/file.txt` - useful if DataSet contains files and folders - the content of the folder will be zipped (on-the-fly) and uploaded to openBIS - openBIS will keep the folder structure intact - relative path will be shortened to its basename. For example: | local | openBIS | | -------------------------- | ---------- | | `../../myData/` | `myData/` | | `some/experiment/results/` | `results/` | ``` ds_new = o.new_dataset( type = 'RAW_DATA', sample = '/SPACE/SAMP1', files = ['../measurements/', 'my_analyis.ipynb', 'results/'] ) ds_new.save() ``` ### create dataSet container A DataSet of kind=CONTAINER contains other DataSets, but no files: ``` ds_new = o.new_dataset( type = 'ANALYZED_DATA', experiment = '/SPACE/PROJECT/EXP1', sample = '/SPACE/SAMP1', kind = 'CONTAINER', props = {'name': 'some good name', 'description': '...' } ) ds_new.save() ``` ### get, set, add and remove parent datasets ``` dataset.get_parents() dataset.set_parents(['20170115220259155-412']) dataset.add_parents(['20170115220259155-412']) dataset.del_parents(['20170115220259155-412']) ``` #### get, set, add and remove child datasets ``` dataset.get_children() dataset.set_children(['20170115220259155-412']) dataset.add_children(['20170115220259155-412']) dataset.del_children(['20170115220259155-412']) ``` ### dataSet containers - A DataSet may belong to other DataSets, which must be of kind=CONTAINER - As opposed to Samples, DataSets may belong (contained) to more than one DataSet-container - caveat: containers are NOT compatible with ELN-LIMS ``` dataset.get_containers() dataset.set_containers(['20170115220259155-412']) dataset.add_containers(['20170115220259155-412']) dataset.del_containers(['20170115220259155-412']) ``` - a DataSet of kind=CONTAINER may contain other DataSets, to act like a folder (see above) - the DataSet-objects inside that DataSet are called components or contained DataSets - you may also use the xxx_contained() functions, which are just aliases. - caveat: components are NOT compatible with ELN-LIMS ``` dataset.get_components() dataset.set_components(['20170115220259155-412']) dataset.add_components(['20170115220259155-412']) dataset.del_components(['20170115220259155-412']) ``` ## Semantic Annotations create semantic annotation for sample type 'UNKNOWN': ``` sa = o.new_semantic_annotation( entityType = 'UNKNOWN', predicateOntologyId = 'po_id', predicateOntologyVersion = 'po_version', predicateAccessionId = 'pa_id', descriptorOntologyId = 'do_id', descriptorOntologyVersion = 'do_version', descriptorAccessionId = 'da_id' ) sa.save() ``` Create semantic annotation for property type (predicate and descriptor values omitted for brevity) ``` sa = o.new_semantic_annotation(propertyType = 'DESCRIPTION', ...) sa.save() ``` **Create** semantic annotation for sample property assignment (predicate and descriptor values omitted for brevity) ``` sa = o.new_semantic_annotation( entityType = 'UNKNOWN', propertyType = 'DESCRIPTION', ... ) sa.save() ``` **Create** a semantic annotation directly from a sample type. Will also create sample property assignment annotations when propertyType is given: ``` st = o.get_sample_type("ORDER") st.new_semantic_annotation(...) ``` **Get all** semantic annotations ``` o.get_semantic_annotations() ``` **Get** semantic annotation by perm id ``` sa = o.get_semantic_annotation("20171015135637955-30") ``` **Update** semantic annotation ``` sa.predicateOntologyId = 'new_po_id' sa.descriptorOntologyId = 'new_do_id' sa.save() ``` **Delete** semantic annotation ``` sa.delete('reason') ``` ## Tags ``` new_tag = o.new_tag( code = 'my_tag', description = 'some descriptive text' ) new_tag.description = 'some new description' new_tag.save() o.get_tags() o.get_tag('/username/TAG_Name') o.get_tag('TAG_Name') tag.get_experiments() tag.get_samples() tag.get_owner() # returns a person object tag.delete('why?') ``` ## Vocabulary and VocabularyTerms An entity such as Sample (Object), Experiment (Collection), Material or DataSet can be of a specific _entity type_: - Sample Type (Object Type) - Experiment Type (Collection Type) - DataSet Type - Material Type Every type defines which **Properties** may be defined. Properties act like **Attributes**, but they are type-specific. Properties can contain all sorts of information, such as free text, XML, Hyperlink, Boolean and also **Controlled Vocabulary**. Such a Controlled Vocabulary consists of many **VocabularyTerms**. These terms are used to only allow certain values entered in a Property field. So for example, you want to add a property called **Animal** to a Sample and you want to control which terms are entered in this Property field. For this you need to do a couple of steps: 1. create a new vocabulary _AnimalVocabulary_ 2. add terms to that vocabulary: _Cat, Dog, Mouse_ 3. create a new PropertyType (e.g. _Animal_) of DataType _CONTROLLEDVOCABULARY_ and assign the _AnimalVocabulary_ to it 4. create a new SampleType (e.g. _Pet_) and _assign_ the created PropertyType to that Sample type. 5. If you now create a new Sample of type _Pet_ you will be able to add a property _Animal_ to it which only accepts the terms _Cat, Dog_ or _Mouse_. **create new Vocabulary with three VocabularyTerms** ``` voc = o.new_vocabulary( code = 'BBB', description = 'description of vocabulary aaa', urlTemplate = 'https://ethz.ch', terms = [ { "code": 'term_code1', "label": "term_label1", "description": "term_description1"}, { "code": 'term_code2', "label": "term_label2", "description": "term_description2"}, { "code": 'term_code3', "label": "term_label3", "description": "term_description3"} ] ) voc.save() voc.vocabulary = 'description of vocabulary BBB' voc.chosenFromList = True voc.save() # update ``` **create additional VocabularyTerms** ``` term = o.new_term( code='TERM_CODE_XXX', vocabularyCode='BBB', label='here comes a label', description='here might appear a meaningful description' ) term.save() ``` **update VocabularyTerms** To change the ordinal of a term, it has to be moved either to the top with the `.move_to_top()` method or after another term using the `.move_after_term('TERM_BEFORE')` method. ``` voc = o.get_vocabulary('STORAGE') term = voc.get_terms()['RT'] term.label = "Room Temperature" term.official = True term.move_to_top() term.move_after_term('-40') term.save() term.delete() ``` ## Change ELN Settings via pyBIS ### Main Menu The ELN settings are stored as a **JSON string** in the `$eln_settings` property of the `GENERAL_ELN_SETTINGS` sample. You can show the **Main Menu settings** like this: ```python import json settings_sample = o.get_sample("/ELN_SETTINGS/GENERAL_ELN_SETTINGS") settings = json.loads(settings_sample.props["$eln_settings"]) print(settings["mainMenu"]) {'showLabNotebook': True, 'showInventory': True, 'showStock': True, 'showObjectBrowser': True, 'showExports': True, 'showStorageManager': True, 'showAdvancedSearch': True, 'showUnarchivingHelper': True, 'showTrashcan': False, 'showVocabularyViewer': True, 'showUserManager': True, 'showUserProfile': True, 'showZenodoExportBuilder': False, 'showBarcodes': False, 'showDatasets': True} ``` To modify the **Main Menu settings**, you have to change the settings dictionary, convert it back to json and save the sample: ```python settings['mainMenu']['showTrashcan'] = False settings_sample.props['$eln_settings'] = json.dumps(settings) settings_sample.save() ``` ### Storages The **ELN storages settings** can be found in the samples of project `/ELN_SETTINGS/STORAGES` ```python o.get_samples(project='/ELN_SETTINGS/STORAGES') ``` To change the settings, just change the sample's properties and save the sample: ```python sto = o.get_sample('/ELN_SETTINGS/STORAGES/BENCH') sto.props() {'$name': 'Bench', '$storage.row_num': '1', '$storage.column_num': '1', '$storage.box_num': '9999', '$storage.storage_space_warning': '80', '$storage.box_space_warning': '80', '$storage.storage_validation_level': 'BOX_POSITION', '$xmlcomments': None, '$annotations_state': None} sto.props['$storage.box_space_warning']= '80' sto.save() ``` ### Templates The **ELN templates settings** can be found in the samples of project `/ELN_SETTINGS/TEMPLATES` ```python o.get_samples(project='/ELN_SETTINGS/TEMPLATES') ``` To change the settings, use the same technique as shown above with the storages settings. ### Custom Widgets To change the **Custom Widgets settings**, get the `property_type` and set the `metaData` attribute: ```python pt = o.get_property_type('YEAST.SOURCE') pt.metaData = {'custom_widget': 'Spreadsheet'} pt.save() ``` Currently, the value of the `custom_widget` key can be set to either - `Spreadsheet` (for tabular, Excel-like data) - `Word Processor` (for rich text data) %package -n python3-PyBIS Summary: openBIS connection and interaction, optimized for using with Jupyter Provides: python-PyBIS BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-PyBIS # Welcome to pyBIS! pyBIS is a Python module for interacting with openBIS. pyBIS is designed to be most useful in a [Jupyter Notebook](https://jupyter.org) or IPython environment, especially if you are developing Python scripts for automatisation. Jupyter Notebooks offer some sort of IDE for openBIS, supporting TAB completition and immediate data checks, making the life of a researcher hopefully easier. ## Dependencies and Requirements - pyBIS relies the openBIS API v3 - openBIS version 16.05.2 or newer is required - 19.06.5 or later is recommended - pyBIS uses Python 3.6 or newer and the Pandas module ## Installation ``` pip install --upgrade pybis ``` That command will download install pyBIS and all its dependencies. If pyBIS is already installed, it will be upgraded to the latest version. If you haven't done yet, install Jupyter and/or Jupyter Lab (the next Generation of Jupyter): ``` pip install jupyter pip install jupyterlab ``` # General Usage ### TAB completition and other hints in Jupyter / IPython - in a Jupyter Notebook or IPython environment, pybis helps you to enter the commands - After every dot `.` you might hit the `TAB` key in order to look at the available commands. - if you are unsure what parameters to add to a , add a question mark right after the method and hit `SHIFT+ENTER` - Jupyter will then look up the signature of the method and show some helpful docstring ### Checking input - When working with properties of entities, they might use a **controlled vocabulary** or are of a specific **property type**. - Add an underscore `_` character right after the property and hit `SHIFT+ENTER` to show the valid values - When a property only acceps a controlled vocabulary, you will be shown the valid terms in a nicely formatted table - if you try to assign an **invalid value** to a property, you'll receive an error immediately ### Glossary - **spaces:** used for authorisation eg. to separate two working groups. If you have permissions in a space, you can see everything which in that space, but not necessarily in another space (unless you have the permission). - **projects:** a space consists of many projects. - **experiments / collections:** a projects contain many experiments. Experiments can have _properties_ - **samples / objects:** an experiment contains many samples. Samples can have _properties_ - **dataSet:** a dataSet which contains the actual _data files_, either pyhiscal (stored in openBIS dataStore) or linked - **attributes:** every entity above contains a number of attributes. They are the same accross all instances of openBIS and independent of their type. - **properties:** Additional specific key-value pairs, available for these entities: - experiments - samples - dataSets every single instance of an entity must be of a specific **entity type** (see below). The type defines the set of properties. - **experiment type / collection type:** a type for experiments which specifies its properties - **sample type / object type:** a type for samples / objects which specifies its properties - **dataSet type:** a type for dataSets which specifies its properties - **property type:** a single property, as defined in the entity types above. It can be of a classic data type (e.g. INTEGER, VARCHAR, BOOLEAN) or its values can be controlled (CONTROLLEDVOCABULARY). - **plugin:** a script written in [Jython](https://www.jython.org) which allows to check property values in a even more detailed fashion # connect to OpenBIS ## login In an **interactive session** e.g. inside a Jupyter notebook, you can use `getpass` to enter your password safely: ```python from pybis import Openbis o = Openbis('https://example.com') o = Openbis('example.com') # https:// is assumed import getpass password = getpass.getpass() o.login('username', password, save_token=True) # save the session token in ~/.pybis/example.com.token ``` In a **script** you would rather use two **environment variables** to provide username and password: ```python from pybis import Openbis o = Openbis(os.environ['OPENBIS_HOST']) o.login(os.environ['OPENBIS_USERNAME'], os.environ['OPENBIS_PASSWORD']) ``` As an even better alternative, you should use personal access tokens (PAT) to avoid username/password altogether. See below. ### Verify certificate By default, your SSL-Certification is being verified. If you have a test-instance with a self-signed certificate, you'll need to turn off this verification explicitly: ```python from pybis import Openbis o = Openbis('https://test-openbis-instance.com', verify_certificates=False) ``` ### Check session token, logout() Check whether your session, i.e. the **session token** is still valid and log out: ```python print(f"Session is active: {o.is_session_active()} and token is {o.token}") o.logout() print(f"Session is active: {o.is_session_active()"} ``` ### Personal access token (PAT) As an (new) alternative to login every time you run a script, you can create tokens which - once issued, do **not need username or password** - are **much longer valid** than session tokens (default is one year) - **survive restarts** of an openBIS instance To create a token, you first need a valid session – either through classic login or by assigning an existing valid session token: ```python from pybis import Openbis o = Openbis('https://test-openbis-instance.com') o.login("username", "password") # or o.set_token("your_username-220808165456793xA3D0357C5DE66A5BAD647E502355FE2C") ``` Then you can create a new personal access token (PAT) and use it for all further pyBIS queries: ```python pat = o.get_or_create_personal_access_token(sessionName="Project A") o.set_token(pat, save_token=True) ``` You may also use permId directly: ```python pat = o.get_or_create_personal_access_token(sessionName="Project A") o.set_token(pat.permId, save_token=True) ``` **Note:** If there is an existing PAT with the same _sessionName_ which is still valid and the validity is within the warning period (defined by the server), then this existing PAT is returned instead. However, you can enforce creating a new PAT by passing the argument `force=True`. **Note:** Most operations are permitted using the PAT, _except_: - all operations on personal access tokens itself - i.e. create, list, delete operations on tokens For these operations, you need to use a session token instead. To get a list of all currently available tokens: ```python o.get_personal_access_tokens() o.get_personal_access_tokens(sessionName="APPLICATION_1") ``` To delete the first token shown in the list: ```python o.get_personal_access_tokens()[0].delete('some reason') ``` ### Caching With `pyBIS 1.17.0`, a lot of caching has been introduced to improve the speed of object lookups that do not change often. If you encounter any problems, you can turn it off like this: ```python o = Openbis('https://example.com', use_cache=False) # or later in the script o.use_cache = False o.clear_cache() o.clear_cache('sampleType') ``` ## Mount openBIS dataStore server ### Prerequisites: FUSE / SSHFS Mounting an openBIS dataStore server requires FUSE / SSHFS to be installed (requires root privileges). The mounting itself requires no root privileges. **Mac OS X** Follow the installation instructions on https://osxfuse.github.io **Unix Cent OS 7** ``` $ sudo yum install epel-release $ sudo yum --enablerepo=epel -y install fuse-sshfs $ user="$(whoami)" $ usermod -a -G fuse "$user" ``` After the installation, an `sshfs` command should be available. ### Mount dataStore server with pyBIS Because the mount/unmount procedure differs from platform to platform, pyBIS offers two simple methods: ``` o.mount() o.mount(username, password, hostname, mountpoint, volname) o.is_mounted() o.unmount() o.get_mountpoint() ``` Currently, mounting is supported for Linux and Mac OS X only. All attributes, if not provided, are re-used by a previous login() command. If no mountpoint is provided, the default mounpoint will be `~/hostname`. If this directory does not exist, it will be created. The directory must be empty before mounting. # Masterdata OpenBIS stores quite a lot of meta-data along with your dataSets. The collection of data that describes this meta-data (i.e. meta-meta-data) is called masterdata. It consists of: - sample types - dataSet types - material types - experiment types - property types - vocabularies - vocabulary terms - plugins (jython scripts that allow complex data checks) - tags - semantic annotations ## browse masterdata ``` sample_types = o.get_sample_types() # get a list of sample types sample_types.df # DataFrame object st = o.get_sample_types()[3] # get 4th element of that list st = o.get_sample_type('YEAST') st.code st.generatedCodePrefix st.attrs.all() # get all attributes as a dict st.get_validationPlugin() # returns a plugin object st.get_property_assignments() # show the list of properties # for that sample type o.get_material_types() o.get_dataset_types() o.get_experiment_types() o.get_collection_types() o.get_property_types() pt = o.get_property_type('BARCODE_COMPLEXITY_CHECKER') pt.attrs.all() o.get_plugins() pl = o.get_plugin('Diff_time') pl.script # the Jython script that processes this property o.get_vocabularies() o.get_vocabulary('BACTERIAL_ANTIBIOTIC_RESISTANCE') o.get_terms(vocabulary='STORAGE') o.get_tags() ``` ## create property types **Samples** (objects), **experiments** (collections) and **dataSets** contain type-specific **properties**. When you create a new sample, experiment or datasSet of a given type, the set of properties is well defined. Also, the values of these properties are being type-checked. The first step in creating a new entity type is to create a so called **property type**: ``` pt_text = o.new_property_type( code = 'MY_NEW_PROPERTY_TYPE', label = 'yet another property type', description = 'my first property', dataType = 'VARCHAR', ) pt_text.save() pt_int = o.new_property_type( code = 'MY_NUMBER', label = 'property contains a number', dataType = 'INTEGER', ) pt_int.save() pt_voc = o.new_property_type( code = 'MY_CONTROLLED_VOCABULARY', label = 'label me', description = 'give me a description', dataType = 'CONTROLLEDVOCABULARY', vocabulary = 'STORAGE', ) pt_voc.save() pt_richtext = o.new_property_type( code = 'MY_RICHTEXT_PROPERTY', label = 'richtext data', description = 'property contains rich text', dataType = 'MULTILINE_VARCHAR', metaData = {'custom_widget' : 'Word Processor'} ) pt_richtext.save() pt_spread = o.new_property_type( code = 'MY_TABULAR_DATA', label = 'data in a table', description = 'property contains a spreadsheet', dataType = 'XML', metaData = {'custom_widget': 'Spreadsheet'} ) pt_spread.save() ``` The `dataType` attribute can contain any of these values: - `INTEGER` - `VARCHAR` - `MULTILINE_VARCHAR` - `REAL` - `TIMESTAMP` - `BOOLEAN` - `HYPERLINK` - `XML` - `CONTROLLEDVOCABULARY` - `MATERIAL` When choosing `CONTROLLEDVOCABULARY`, you must specify a `vocabulary` attribute (see example). Likewise, when choosing `MATERIAL`, a `materialType` attribute must be provided. To create a **richtext property**, use `MULTILINE_VARCHAR` as `dataType` and set `metaData` to `{'custom_widget' : 'Word Processor'}` as shown in the example above. To create a **tabular, spreadsheet-like property**, use `XML` as `dataType` and set `metaData` to `{'custom_widget' : 'Spreadhseet'}`as shown in the example above. **Note**: PropertyTypes that start with a \$ are by definition `managedInternally` and therefore this attribute must be set to True. ## create sample types / object types The second step (after creating a property type, see above) is to create the **sample type**. The new name for **sample** is **object**. You can use both methods interchangeably: - `new_sample_type()` == `new_object_type()` ``` sample_type = o.new_sample_type( code = 'my_own_sample_type', # mandatory generatedCodePrefix = 'S', # mandatory description = '', autoGeneratedCode = True, subcodeUnique = False, listable = True, showContainer = False, showParents = True, showParentMetadata = False, validationPlugin = 'Has_Parents' # see plugins below ) sample_type.save() ``` When `autoGeneratedCode` attribute is set to `True`, then you don't need to provide a value for `code` when you create a new sample. You can get the next autoGeneratedCode like this: ``` sample_type.get_next_sequence() # eg. 67 sample_type.get_next_code() # e.g. FLY77 ``` From pyBIS 1.31.0 onwards, you can provide a `code` even for samples where its sample type has `autoGeneratedCode=True` to offer the same functionality as ELN-LIMS. In earlier versions of pyBIS, providing a code in this situation caused an error. ## assign and revoke properties to sample type / object type The third step, after saving the sample type, is to **assign or revoke properties** to the newly created sample type. This assignment procedure applies to all entity types (dataset type, experiment type). ``` sample_type.assign_property( prop = 'diff_time', # mandatory section = '', ordinal = 5, mandatory = True, initialValueForExistingEntities = 'initial value' showInEditView = True, showRawValueInForms = True ) sample_type.revoke_property('diff_time') sample_type.get_property_assignments() ``` ## create a dataset type The second step (after creating a **property type**, see above) is to create the **dataset type**. The third step is to **assign or revoke the properties** to the newly created dataset type. ``` dataset_type = o.new_dataset_type( code = 'my_dataset_type', # mandatory description = None, mainDataSetPattern = None, mainDataSetPath = None, disallowDeletion = False, validationPlugin = None, ) dataset_type.save() dataset_type.assign_property('property_name') dataset_type.revoke_property('property_name') dataset_type.get_property_assignments() ``` ## create an experiment type / collection type The second step (after creating a **property type**, see above) is to create the **experiment type**. The new name for **experiment** is **collection**. You can use both methods interchangeably: - `new_experiment_type()` == `new_collection_type()` ``` experiment_type = o.new_experiment_type( code, description = None, validationPlugin = None, ) experiment_type.save() experiment_type.assign_property('property_name') experiment_type.revoke_property('property_name') experiment_type.get_property_assignments() ``` ## create material types Materials and material types are deprecated in newer versions of openBIS. ``` material_type = o.new_material_type( code, description=None, validationPlugin=None, ) material_type.save() material_type.assign_property('property_name') material_type.revoke_property('property_name') material_type.get_property_assignments() ``` ## create plugins Plugins are Jython scripts that can accomplish more complex data-checks than ordinary types and vocabularies can achieve. They are assigned to entity types (dataset type, sample type etc). [Documentation and examples can be found here](https://wiki-bsse.ethz.ch/display/openBISDoc/Properties+Handled+By+Scripts) ``` pl = o.new_plugin( name ='my_new_entry_validation_plugin', pluginType ='ENTITY_VALIDATION', # or 'DYNAMIC_PROPERTY' or 'MANAGED_PROPERTY', entityKind = None, # or 'SAMPLE', 'MATERIAL', 'EXPERIMENT', 'DATA_SET' script = 'def calculate(): pass' # a JYTHON script ) pl.save() ``` ## Users, Groups and RoleAssignments Users can only login into the openBIS system when: - they are present in the authentication system (e.g. LDAP) - the username/password is correct - the user's mail address needs is present - the user is already added to the openBIS user list (see below) - the user is assigned a role which allows a login, either directly assigned or indirectly assigned via a group membership ``` o.get_groups() group = o.new_group(code='group_name', description='...') group = o.get_group('group_name') group.save() group.assign_role(role='ADMIN', space='DEFAULT') group.get_roles() group.revoke_role(role='ADMIN', space='DEFAULT') group.add_members(['admin']) group.get_members() group.del_members(['admin']) group.delete() o.get_persons() person = o.new_person(userId='username') person.space = 'USER_SPACE' person.save() # person.delete() is currently not possible. person.assign_role(role='ADMIN', space='MY_SPACE') person.assign_role(role='OBSERVER') person.get_roles() person.revoke_role(role='ADMIN', space='MY_SPACE') person.revoke_role(role='OBSERVER') o.get_role_assignments() o.get_role_assignments(space='MY_SPACE') o.get_role_assignments(group='MY_GROUP') ra = o.get_role_assignment(techId) ra.delete() ``` ## Spaces Spaces are fundamental way in openBIS to divide access between groups. Within a space, data can be easily shared. Between spaces, people need to be given specific access rights (see section above). The structure in openBIS is as follows: - space - project - experiment / collection - sample / object - dataset ``` space = o.new_space(code='space_name', description='') space.save() o.get_spaces( start_with = 0, # start_with and count count = 10, # enable paging ) space = o.get_space('MY_SPACE') # get individual attributes space.code space.description space.registrator space.registrationDate space.modifier space.modificationDate # set individual attribute # most of the attributes above are set automatically and cannot be modified. space.description = '...' # get all attributes as a dictionary space.attrs.all() space.delete('reason for deletion') ``` ## Projects Projects live within spaces and usually contain experiments (aka collections): - space - project - experiment / collection - sample / object - dataset ``` project = o.new_project( space = space, code = 'project_name', description = 'some project description' ) project = space.new_project( code = 'project_code', description = 'project description' ) project.save() o.get_projects( space = 'MY_SPACE', # show only projects in MY_SPACE start_with = 0, # start_with and count count = 10, # enable paging ) o.get_projects(space='MY_SPACE') space.get_projects() project.get_experiments() project.get_attachments() # deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. p.add_attachment( # deprecated, see above fileName='testfile', description= 'another file', title= 'one more attachment' ) project.download_attachments() # deprecated, see above # get individual attributes project.code project.description # set individual attribute project.description = '...' # get all attributes as a dictionary project.attrs.all() project.freeze = True project.freezeForExperiments = True project.freezeForSamples = True ``` ## Experiments / Collections Experiments live within projects: - space - project - experiment / collection - sample / object - dataset The new name for **experiment** is **collection**. You can use boths names interchangeably: - `get_experiment()` = `get_collection()` - `new_experiment()` = `new_collection()` - `get_experiments()` = `get_collections()` ### create a new experiment ``` exp = o.new_experiment code='MY_NEW_EXPERIMENT', type='DEFAULT_EXPERIMENT', space='MY_SPACE', project='YEASTS' ) exp.save() ``` ### search for experiments ``` experiments = o.get_experiments( project = 'YEASTS', space = 'MY_SPACE', type = 'DEFAULT_EXPERIMENT', tags = '*', finished_flag = False, props = ['name', 'finished_flag'] ) experiments = project.get_experiments() experiment = experiments[0] # get first experiment of result list experiment = experiment for experiment in experiments: # iterate over search results print(experiment.props.all()) dataframe = experiments.df # get Pandas DataFrame of result list exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT') ``` ### Experiment attributes ``` exp.attrs.all() # returns all attributes as a dict exp.attrs.tags = ['some', 'tags'] exp.tags = ['some', 'tags'] # same thing exp.save() exp.code exp.description exp.registrator ... exp.project = 'my_project' exp.space = 'my_space' exp.freeze = True exp.freezeForDataSets = True exp.freezeForSamples = True exp.save() # needed to save/update the changed attributes and properties ``` ### Experiment properties **Getting properties** ``` experiment.props == ds.p # you can use either .props or .p to access the properties experiment.p # in Jupyter: show all properties in a nice table experiment.p() # get all properties as a dict experiment.props.all() # get all properties as a dict experiment.p('prop1','prop2') # get some properties as a dict experiment.p.get('$name') # get the value of a property experiment.p['property'] # get the value of a property ``` **Setting properties** ``` experiment.experiment = 'first_exp' # assign sample to an experiment experiment.project = 'my_project' # assign sample to a project experiment.p. + TAB # in Jupyter/IPython: show list of available properties experiment.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary experiment.p['my_property']= "value" # set the value of a property experiment.p.set('my_property, 'value') # set the value of a property experiment.p.my_property = "some value" # set the value of a property experiment.p.set({'my_property':'value'}) # set the values of some properties experiment.set_props({ key: value }) # set the values of some properties experiment.save() # needed to save/update the changed attributes and properties ``` ## Samples / Objects Samples usually live within experiments/collections: - space - project - experiment / collection - sample / object - dataset The new name for **sample** is **object**. You can use boths names interchangeably: - `get_sample()` = `get_object()` - `new_sample()` = `new_object()` - `get_samples()` = `get_objects()` etc. ``` sample = o.new_sample( type = 'YEAST', space = 'MY_SPACE', experiment = '/MY_SPACE/MY_PROJECT/EXPERIMENT_1', parents = [parent_sample, '/MY_SPACE/YEA66'], # you can use either permId, identifier children = [child_sample], # or sample object props = {"name": "some name", "description": "something interesting"} ) sample = space.new_sample( type='YEAST' ) sample.save() sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE') sample = o.get_sample('20170518112808649-52') samples= o.get_samples(type='UNKNOWN') # search for samples, see below # get individual attributes sample.space sample.code sample.permId sample.identifier sample.type # once the sample type is defined, you cannot modify it # set attribute sample.space = 'MY_OTHER_SPACE' sample.experiment # a sample can belong to one experiment only sample.experiment = '/MY_SPACE/MY_PROJECT/MY_EXPERIMENT' sample.project sample.project = '/MY_SPACE/MY_PROJECT' # only works if project samples are enabled sample.tags sample.tags = ['guten_tag', 'zahl_tag' ] sample.attrs.all() # returns all attributes as a dict sample.props.all() # returns all properties as a dict sample.get_attachments() # deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. sample.download_attachments() # deprecated, see above sample.add_attachment('testfile.xls') # deprecated, see above sample.delete('deleted for some reason') ``` ## create/update/delete many samples in a transaction Creating a single sample takes some time. If you need to create many samples, you might want to create them in one transaction. This will transfer all your sample data at once. The Upside of this is the **gain in speed**. The downside: this is a **all-or-nothing** operation, which means, either all samples will be registered or none (if any error occurs). **create many samples in one transaction** ``` trans = o.new_transaction() for i in range (0, 100): sample = o.new_sample(...) trans.add(sample) trans.commit() ``` **update many samples in one transaction** ``` trans = o.new_transaction() for sample in o.get_samples(count=100): sample.prop.some_property = 'different value' trans.add(sample) trans.commit() ``` **delete many samples in one transaction** ``` trans = o.new_transaction() for sample in o.get_samples(count=100): sample.mark_to_be_deleted() trans.add(sample) trans.reason('go what has to go') trans.commit() ``` **Note:** You can use the `mark_to_be_deleted()`, `unmark_to_be_deleted()` and `is_marked_to_be_deleted()` methods to set and read the internal flag. ### parents, children, components and container ``` sample.get_parents() sample.set_parents(['/MY_SPACE/PARENT_SAMPLE_NAME') sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME') sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME') sample.get_children() sample.set_children('/MY_SPACE/CHILD_SAMPLE_NAME') sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME') sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME') # A Sample may belong to another Sample, which acts as a container. # As opposed to DataSets, a Sample may only belong to one container. sample.container # returns a sample object sample.container = '/MY_SPACE/CONTAINER_SAMPLE_NAME' # watch out, this will change the identifier of the sample to: # /MY_SPACE/CONTAINER_SAMPLE_NAME:SAMPLE_NAME sample.container = '' # this will remove the container. # A Sample may contain other Samples, in order to act like a container (see above) # caveat: containers are NOT compatible with ELN-LIMS # The Sample-objects inside that Sample are called «components» or «contained Samples» # You may also use the xxx_contained() functions, which are just aliases. sample.get_components() sample.set_components('/MY_SPACE/COMPONENT_NAME') sample.add_components('/MY_SPACE/COMPONENT_NAME') sample.del_components('/MY_SPACE/COMPONENT_NAME') ``` ### sample tags ``` sample.get_tags() sample.set_tags('tag1') sample.add_tags(['tag2','tag3']) sample.del_tags('tag1') ``` ### Sample attributes and properties **Getting properties** ``` sample.attrs.all() # returns all attributes as a dict sample.attribute_name # return the attribute value sample.props == ds.p # you can use either .props or .p to access the properties sample.p # in Jupyter: show all properties in a nice table sample.p() # get all properties as a dict sample.props.all() # get all properties as a dict sample.p('prop1','prop2') # get some properties as a dict sample.p.get('$name') # get the value of a property sample.p['property'] # get the value of a property ``` **Setting properties** ``` sample.experiment = 'first_exp' # assign sample to an experiment sample.project = 'my_project' # assign sample to a project sample.p. + TAB # in Jupyter/IPython: show list of available properties sample.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary sample.p['my_property']= "value" # set the value of a property sample.p.set('my_property, 'value') # set the value of a property sample.p.my_property = "some value" # set the value of a property sample.p.set({'my_property':'value'}) # set the values of some properties sample.set_props({ key: value }) # set the values of some properties sample.save() # needed to save/update the attributes and properties ``` ### search for samples / objects The result of a search is always list, even when no items are found. The `.df` attribute returns the Pandas dataFrame of the results. ``` samples = o.get_samples( space ='MY_SPACE', type ='YEAST', tags =['*'], # only sample with existing tags start_with = 0, # start_with and count count = 10, # enable paging where = { "$SOME.WEIRD-PROP": "hello" # only receive samples where properties match } registrationDate = "2020-01-01", # date format: YYYY-MM-DD modificationDate = "<2020-12-31", # use > or < to search for specified date and later / earlier attrs=[ # show these attributes in the dataFrame 'sample.code', 'registrator.email', 'type.generatedCodePrefix' ], parent_property = 'value', # search in a parent's property child_property = 'value', # search in a child's property container_property = 'value' # search in a container's property parent = '/MY_SPACE/PARENT_SAMPLE', # sample has this as its parent parent = '*', # sample has at least one parent child = '/MY_SPACE/CHILD_SAMPLE', child = '*', # sample has at least one child container = 'MY_SPACE/CONTAINER', container = '*' # sample lives in a container props=['$NAME', 'MATING_TYPE'] # show these properties in the result ) sample = samples[9] # get the 10th sample # of the search results sample = samples['/SPACE/AABC'] # same, fetched by identifier for sample in samples: # iterate over the print(sample.code) # search results samples.df # returns a Pandas DataFrame object samples = o.get_samples(props="*") # retrieve all properties of all samples ``` ### freezing samples ``` sample.freeze = True sample.freezeForComponents = True sample.freezeForChildren = True sample.freezeForParents = True sample.freezeForDataSets = True ``` ## Datasets Datasets are by all means the most important openBIS entity. The actual files are stored as datasets; all other openBIS entities mainly are necessary to annotate and to structure the data: - space - project - experiment / collection - sample / object - dataset ### working with existing dataSets **search for datasets** This example does the following - search for all datasets of type `SCANS`, retrieve the first 10 entries - print out all properties - print the list of all files in this dataset - download the dataset ``` datasets = sample.get_datasets(type='SCANS', start_with=0, count=10) for dataset in datasets: print(dataset.props()) print(dataset.file_list) dataset.download() dataset = datasets[0] ``` **More dataset functions:** ``` ds = o.get_dataset('20160719143426517-259') ds.get_parents() ds.get_children() ds.sample ds.experiment ds.physicalData ds.status # AVAILABLE LOCKED ARCHIVED # ARCHIVE_PENDING UNARCHIVE_PENDING # BACKUP_PENDING ds.archive() # archives a dataset, i.e. moves it to a slower but cheaper diskspace (tape). # archived datasets cannot be downloaded, they need to be unarchived first. # This is an asynchronous process, # check ds.status regularly until the dataset becomes 'ARCHIVED' ds.unarchive() # this starts an asynchronous process which gets the dataset from the tape. # Check ds.status regularly until it becomes 'AVAILABLE' ds.attrs.all() # returns all attributes as a dict ds.props.all() # returns all properties as a dict ds.add_attachment() # Deprecated. Attachments usually contain meta-data ds.get_attachments() # about the dataSet, not the data itself. ds.download_attachments() # Deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. ``` ### download dataSets ``` o.download_prefix # used for download() and symlink() method. # Is set to data/hostname by default, but can be changed. ds.get_files(start_folder="/") # get file list as Pandas dataFrame ds.file_list # get file list as array ds.file_links # file list as a dict containing direct https links ds.download() # simply download all files to data/hostname/permId/ ds.download( destination = 'my_data', # download files to folder my_data/ create_default_folders = False, # ignore the /original/DEFAULT folders made by openBIS wait_until_finished = False, # download in background, continue immediately workers = 10 # 10 downloads parallel (default) ) ds.download_path # returns the relative path (destination) of the files after a ds.download() ds.is_physical() # TRUE if dataset is physically ``` ### link dataSets Instead of downloading a dataSet, you can create a symbolic link to a dataSet in the openBIS dataStore. To do that, the openBIS dataStore needs to be mounted first (see mount method above). **Note:** Symbolic links and the mount() feature currently do not work with Windows. ``` o.download_prefix # used for download() and symlink() method. # Is set to data/hostname by default, but can be changed. ds.symlink() # creates a symlink for this dataset: data/hostname/permId # tries to mount openBIS instance # in case it is not mounted yet ds.symlink( target_dir = 'data/dataset_1/', # default target_dir is: data/hostname/permId replace_if_symlink_exists=True ) ds.is_symlink() ``` ### dataSet attributes and properties **Getting properties** ``` ds.attrs.all() # returns all attributes as a dict ds.attribute_name # return the attribute value ds.props == ds.p # you can use either .props or .p to access the properties ds.p # in Jupyter: show all properties in a nice table ds.p() # get all properties as a dict ds.props.all() # get all properties as a dict ds.p('prop1','prop2') # get some properties as a dict ds.p.get('$name') # get the value of a property ds.p['property'] # get the value of a property ``` **Setting properties** ``` ds.experiment = 'first_exp' # assign dataset to an experiment ds.sample = 'my_sample' # assign dataset to a sample ds.p. + TAB # in Jupyter/IPython: show list of available properties ds.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary ds.p['my_property']= "value" # set the value of a property ds.p.set('my_property, 'value') # set the value of a property ds.p.my_property = "some value" # set the value of a property ds.p.set({'my_property':'value'}) # set the values of some properties ds.set_props({ key: value }) # set the values of some properties ``` ### search for dataSets - The result of a search is always list, even when no items are found - The `.df` attribute returns the Pandas dataFrame of the results ``` datasets = o.get_datasets( type ='MY_DATASET_TYPE', **{ "SOME.WEIRD:PROP": "value"}, # property name contains a dot or a # colon: cannot be passed as an argument start_with = 0, # start_with and count count = 10, # enable paging registrationDate = "2020-01-01", # date format: YYYY-MM-DD modificationDate = "<2020-12-31", # use > or < to search for specified date and later / earlier parent_property = 'value', # search in a parent's property child_property = 'value', # search in a child's property container_property = 'value' # search in a container's property parent = '/MY_SPACE/PARENT_DS', # has this dataset as its parent parent = '*', # has at least one parent dataset child = '/MY_SPACE/CHILD_DS', child = '*', # has at least one child dataset container = 'MY_SPACE/CONTAINER_DS', container = '*', # belongs to a container dataset attrs=[ # show these attributes in the dataFrame 'sample.code', 'registrator.email', 'type.generatedCodePrefix' ], props=['$NAME', 'MATING_TYPE'] # show these properties in the result ) datasets = o.get_datasets(props="*") # retrieve all properties of all dataSets dataset = datasets[0] # get the first dataset in the search result for dataset in datasets: # iterate over the datasets ... df = datasets.df # returns a Pandas dataFrame object of the search results ``` In some cases, you might want to retrieve precisely certain datasets. This can be achieved by methods chaining (but be aware, it might not be very performant): ``` datasets = o.get_experiments(project='YEASTS')\ .get_samples(type='FLY')\ .get_datasets( type='ANALYZED_DATA', props=['MY_PROPERTY'], MY_PROPERTY='some analyzed data' ) ``` - another example: ``` datasets = o.get_experiment('/MY_NEW_SPACE/MY_PROJECT/MY_EXPERIMENT4')\ .get_samples(type='UNKNOWN')\ .get_parents()\ .get_datasets(type='RAW_DATA') ``` ### freeze dataSets - once a dataSet has been frozen, it cannot be changed by anyone anymore - so be careful! ``` ds.freeze = True ds.freezeForChildren = True ds.freezeForParents = True ds.freezeForComponents = True ds.freezeForContainers = True ds.save() ``` ### create a new dataSet ``` ds_new = o.new_dataset( type = 'ANALYZED_DATA', experiment = '/SPACE/PROJECT/EXP1', sample = '/SPACE/SAMP1', files = ['my_analyzed_data.dat'], props = {'name': 'some good name', 'description': '...' } ) ds_new.save() ``` ### create dataSet with zipfile DataSet containing one zipfile which will be unzipped in openBIS: ```python ds_new = o.new_dataset( type = 'RAW_DATA', sample = '/SPACE/SAMP1', zipfile = 'my_zipped_folder.zip', ) ds_new.save() ``` ### create dataSet with mixed content - mixed content means: folders and files are provided - a relative specified folder (and all its content) will end up in the root, while keeping its structure - `../measurements/` --> `/measurements/` - `some/folder/somewhere/` --> `/somewhere/` - relative files will also end up in the root - `my_file.txt` --> `/my_file.txt` - `../somwhere/else/my_other_file.txt` --> `/my_other_file.txt` - `some/folder/file.txt` --> `/file.txt` - useful if DataSet contains files and folders - the content of the folder will be zipped (on-the-fly) and uploaded to openBIS - openBIS will keep the folder structure intact - relative path will be shortened to its basename. For example: | local | openBIS | | -------------------------- | ---------- | | `../../myData/` | `myData/` | | `some/experiment/results/` | `results/` | ``` ds_new = o.new_dataset( type = 'RAW_DATA', sample = '/SPACE/SAMP1', files = ['../measurements/', 'my_analyis.ipynb', 'results/'] ) ds_new.save() ``` ### create dataSet container A DataSet of kind=CONTAINER contains other DataSets, but no files: ``` ds_new = o.new_dataset( type = 'ANALYZED_DATA', experiment = '/SPACE/PROJECT/EXP1', sample = '/SPACE/SAMP1', kind = 'CONTAINER', props = {'name': 'some good name', 'description': '...' } ) ds_new.save() ``` ### get, set, add and remove parent datasets ``` dataset.get_parents() dataset.set_parents(['20170115220259155-412']) dataset.add_parents(['20170115220259155-412']) dataset.del_parents(['20170115220259155-412']) ``` #### get, set, add and remove child datasets ``` dataset.get_children() dataset.set_children(['20170115220259155-412']) dataset.add_children(['20170115220259155-412']) dataset.del_children(['20170115220259155-412']) ``` ### dataSet containers - A DataSet may belong to other DataSets, which must be of kind=CONTAINER - As opposed to Samples, DataSets may belong (contained) to more than one DataSet-container - caveat: containers are NOT compatible with ELN-LIMS ``` dataset.get_containers() dataset.set_containers(['20170115220259155-412']) dataset.add_containers(['20170115220259155-412']) dataset.del_containers(['20170115220259155-412']) ``` - a DataSet of kind=CONTAINER may contain other DataSets, to act like a folder (see above) - the DataSet-objects inside that DataSet are called components or contained DataSets - you may also use the xxx_contained() functions, which are just aliases. - caveat: components are NOT compatible with ELN-LIMS ``` dataset.get_components() dataset.set_components(['20170115220259155-412']) dataset.add_components(['20170115220259155-412']) dataset.del_components(['20170115220259155-412']) ``` ## Semantic Annotations create semantic annotation for sample type 'UNKNOWN': ``` sa = o.new_semantic_annotation( entityType = 'UNKNOWN', predicateOntologyId = 'po_id', predicateOntologyVersion = 'po_version', predicateAccessionId = 'pa_id', descriptorOntologyId = 'do_id', descriptorOntologyVersion = 'do_version', descriptorAccessionId = 'da_id' ) sa.save() ``` Create semantic annotation for property type (predicate and descriptor values omitted for brevity) ``` sa = o.new_semantic_annotation(propertyType = 'DESCRIPTION', ...) sa.save() ``` **Create** semantic annotation for sample property assignment (predicate and descriptor values omitted for brevity) ``` sa = o.new_semantic_annotation( entityType = 'UNKNOWN', propertyType = 'DESCRIPTION', ... ) sa.save() ``` **Create** a semantic annotation directly from a sample type. Will also create sample property assignment annotations when propertyType is given: ``` st = o.get_sample_type("ORDER") st.new_semantic_annotation(...) ``` **Get all** semantic annotations ``` o.get_semantic_annotations() ``` **Get** semantic annotation by perm id ``` sa = o.get_semantic_annotation("20171015135637955-30") ``` **Update** semantic annotation ``` sa.predicateOntologyId = 'new_po_id' sa.descriptorOntologyId = 'new_do_id' sa.save() ``` **Delete** semantic annotation ``` sa.delete('reason') ``` ## Tags ``` new_tag = o.new_tag( code = 'my_tag', description = 'some descriptive text' ) new_tag.description = 'some new description' new_tag.save() o.get_tags() o.get_tag('/username/TAG_Name') o.get_tag('TAG_Name') tag.get_experiments() tag.get_samples() tag.get_owner() # returns a person object tag.delete('why?') ``` ## Vocabulary and VocabularyTerms An entity such as Sample (Object), Experiment (Collection), Material or DataSet can be of a specific _entity type_: - Sample Type (Object Type) - Experiment Type (Collection Type) - DataSet Type - Material Type Every type defines which **Properties** may be defined. Properties act like **Attributes**, but they are type-specific. Properties can contain all sorts of information, such as free text, XML, Hyperlink, Boolean and also **Controlled Vocabulary**. Such a Controlled Vocabulary consists of many **VocabularyTerms**. These terms are used to only allow certain values entered in a Property field. So for example, you want to add a property called **Animal** to a Sample and you want to control which terms are entered in this Property field. For this you need to do a couple of steps: 1. create a new vocabulary _AnimalVocabulary_ 2. add terms to that vocabulary: _Cat, Dog, Mouse_ 3. create a new PropertyType (e.g. _Animal_) of DataType _CONTROLLEDVOCABULARY_ and assign the _AnimalVocabulary_ to it 4. create a new SampleType (e.g. _Pet_) and _assign_ the created PropertyType to that Sample type. 5. If you now create a new Sample of type _Pet_ you will be able to add a property _Animal_ to it which only accepts the terms _Cat, Dog_ or _Mouse_. **create new Vocabulary with three VocabularyTerms** ``` voc = o.new_vocabulary( code = 'BBB', description = 'description of vocabulary aaa', urlTemplate = 'https://ethz.ch', terms = [ { "code": 'term_code1', "label": "term_label1", "description": "term_description1"}, { "code": 'term_code2', "label": "term_label2", "description": "term_description2"}, { "code": 'term_code3', "label": "term_label3", "description": "term_description3"} ] ) voc.save() voc.vocabulary = 'description of vocabulary BBB' voc.chosenFromList = True voc.save() # update ``` **create additional VocabularyTerms** ``` term = o.new_term( code='TERM_CODE_XXX', vocabularyCode='BBB', label='here comes a label', description='here might appear a meaningful description' ) term.save() ``` **update VocabularyTerms** To change the ordinal of a term, it has to be moved either to the top with the `.move_to_top()` method or after another term using the `.move_after_term('TERM_BEFORE')` method. ``` voc = o.get_vocabulary('STORAGE') term = voc.get_terms()['RT'] term.label = "Room Temperature" term.official = True term.move_to_top() term.move_after_term('-40') term.save() term.delete() ``` ## Change ELN Settings via pyBIS ### Main Menu The ELN settings are stored as a **JSON string** in the `$eln_settings` property of the `GENERAL_ELN_SETTINGS` sample. You can show the **Main Menu settings** like this: ```python import json settings_sample = o.get_sample("/ELN_SETTINGS/GENERAL_ELN_SETTINGS") settings = json.loads(settings_sample.props["$eln_settings"]) print(settings["mainMenu"]) {'showLabNotebook': True, 'showInventory': True, 'showStock': True, 'showObjectBrowser': True, 'showExports': True, 'showStorageManager': True, 'showAdvancedSearch': True, 'showUnarchivingHelper': True, 'showTrashcan': False, 'showVocabularyViewer': True, 'showUserManager': True, 'showUserProfile': True, 'showZenodoExportBuilder': False, 'showBarcodes': False, 'showDatasets': True} ``` To modify the **Main Menu settings**, you have to change the settings dictionary, convert it back to json and save the sample: ```python settings['mainMenu']['showTrashcan'] = False settings_sample.props['$eln_settings'] = json.dumps(settings) settings_sample.save() ``` ### Storages The **ELN storages settings** can be found in the samples of project `/ELN_SETTINGS/STORAGES` ```python o.get_samples(project='/ELN_SETTINGS/STORAGES') ``` To change the settings, just change the sample's properties and save the sample: ```python sto = o.get_sample('/ELN_SETTINGS/STORAGES/BENCH') sto.props() {'$name': 'Bench', '$storage.row_num': '1', '$storage.column_num': '1', '$storage.box_num': '9999', '$storage.storage_space_warning': '80', '$storage.box_space_warning': '80', '$storage.storage_validation_level': 'BOX_POSITION', '$xmlcomments': None, '$annotations_state': None} sto.props['$storage.box_space_warning']= '80' sto.save() ``` ### Templates The **ELN templates settings** can be found in the samples of project `/ELN_SETTINGS/TEMPLATES` ```python o.get_samples(project='/ELN_SETTINGS/TEMPLATES') ``` To change the settings, use the same technique as shown above with the storages settings. ### Custom Widgets To change the **Custom Widgets settings**, get the `property_type` and set the `metaData` attribute: ```python pt = o.get_property_type('YEAST.SOURCE') pt.metaData = {'custom_widget': 'Spreadsheet'} pt.save() ``` Currently, the value of the `custom_widget` key can be set to either - `Spreadsheet` (for tabular, Excel-like data) - `Word Processor` (for rich text data) %package help Summary: Development documents and examples for PyBIS Provides: python3-PyBIS-doc %description help # Welcome to pyBIS! pyBIS is a Python module for interacting with openBIS. pyBIS is designed to be most useful in a [Jupyter Notebook](https://jupyter.org) or IPython environment, especially if you are developing Python scripts for automatisation. Jupyter Notebooks offer some sort of IDE for openBIS, supporting TAB completition and immediate data checks, making the life of a researcher hopefully easier. ## Dependencies and Requirements - pyBIS relies the openBIS API v3 - openBIS version 16.05.2 or newer is required - 19.06.5 or later is recommended - pyBIS uses Python 3.6 or newer and the Pandas module ## Installation ``` pip install --upgrade pybis ``` That command will download install pyBIS and all its dependencies. If pyBIS is already installed, it will be upgraded to the latest version. If you haven't done yet, install Jupyter and/or Jupyter Lab (the next Generation of Jupyter): ``` pip install jupyter pip install jupyterlab ``` # General Usage ### TAB completition and other hints in Jupyter / IPython - in a Jupyter Notebook or IPython environment, pybis helps you to enter the commands - After every dot `.` you might hit the `TAB` key in order to look at the available commands. - if you are unsure what parameters to add to a , add a question mark right after the method and hit `SHIFT+ENTER` - Jupyter will then look up the signature of the method and show some helpful docstring ### Checking input - When working with properties of entities, they might use a **controlled vocabulary** or are of a specific **property type**. - Add an underscore `_` character right after the property and hit `SHIFT+ENTER` to show the valid values - When a property only acceps a controlled vocabulary, you will be shown the valid terms in a nicely formatted table - if you try to assign an **invalid value** to a property, you'll receive an error immediately ### Glossary - **spaces:** used for authorisation eg. to separate two working groups. If you have permissions in a space, you can see everything which in that space, but not necessarily in another space (unless you have the permission). - **projects:** a space consists of many projects. - **experiments / collections:** a projects contain many experiments. Experiments can have _properties_ - **samples / objects:** an experiment contains many samples. Samples can have _properties_ - **dataSet:** a dataSet which contains the actual _data files_, either pyhiscal (stored in openBIS dataStore) or linked - **attributes:** every entity above contains a number of attributes. They are the same accross all instances of openBIS and independent of their type. - **properties:** Additional specific key-value pairs, available for these entities: - experiments - samples - dataSets every single instance of an entity must be of a specific **entity type** (see below). The type defines the set of properties. - **experiment type / collection type:** a type for experiments which specifies its properties - **sample type / object type:** a type for samples / objects which specifies its properties - **dataSet type:** a type for dataSets which specifies its properties - **property type:** a single property, as defined in the entity types above. It can be of a classic data type (e.g. INTEGER, VARCHAR, BOOLEAN) or its values can be controlled (CONTROLLEDVOCABULARY). - **plugin:** a script written in [Jython](https://www.jython.org) which allows to check property values in a even more detailed fashion # connect to OpenBIS ## login In an **interactive session** e.g. inside a Jupyter notebook, you can use `getpass` to enter your password safely: ```python from pybis import Openbis o = Openbis('https://example.com') o = Openbis('example.com') # https:// is assumed import getpass password = getpass.getpass() o.login('username', password, save_token=True) # save the session token in ~/.pybis/example.com.token ``` In a **script** you would rather use two **environment variables** to provide username and password: ```python from pybis import Openbis o = Openbis(os.environ['OPENBIS_HOST']) o.login(os.environ['OPENBIS_USERNAME'], os.environ['OPENBIS_PASSWORD']) ``` As an even better alternative, you should use personal access tokens (PAT) to avoid username/password altogether. See below. ### Verify certificate By default, your SSL-Certification is being verified. If you have a test-instance with a self-signed certificate, you'll need to turn off this verification explicitly: ```python from pybis import Openbis o = Openbis('https://test-openbis-instance.com', verify_certificates=False) ``` ### Check session token, logout() Check whether your session, i.e. the **session token** is still valid and log out: ```python print(f"Session is active: {o.is_session_active()} and token is {o.token}") o.logout() print(f"Session is active: {o.is_session_active()"} ``` ### Personal access token (PAT) As an (new) alternative to login every time you run a script, you can create tokens which - once issued, do **not need username or password** - are **much longer valid** than session tokens (default is one year) - **survive restarts** of an openBIS instance To create a token, you first need a valid session – either through classic login or by assigning an existing valid session token: ```python from pybis import Openbis o = Openbis('https://test-openbis-instance.com') o.login("username", "password") # or o.set_token("your_username-220808165456793xA3D0357C5DE66A5BAD647E502355FE2C") ``` Then you can create a new personal access token (PAT) and use it for all further pyBIS queries: ```python pat = o.get_or_create_personal_access_token(sessionName="Project A") o.set_token(pat, save_token=True) ``` You may also use permId directly: ```python pat = o.get_or_create_personal_access_token(sessionName="Project A") o.set_token(pat.permId, save_token=True) ``` **Note:** If there is an existing PAT with the same _sessionName_ which is still valid and the validity is within the warning period (defined by the server), then this existing PAT is returned instead. However, you can enforce creating a new PAT by passing the argument `force=True`. **Note:** Most operations are permitted using the PAT, _except_: - all operations on personal access tokens itself - i.e. create, list, delete operations on tokens For these operations, you need to use a session token instead. To get a list of all currently available tokens: ```python o.get_personal_access_tokens() o.get_personal_access_tokens(sessionName="APPLICATION_1") ``` To delete the first token shown in the list: ```python o.get_personal_access_tokens()[0].delete('some reason') ``` ### Caching With `pyBIS 1.17.0`, a lot of caching has been introduced to improve the speed of object lookups that do not change often. If you encounter any problems, you can turn it off like this: ```python o = Openbis('https://example.com', use_cache=False) # or later in the script o.use_cache = False o.clear_cache() o.clear_cache('sampleType') ``` ## Mount openBIS dataStore server ### Prerequisites: FUSE / SSHFS Mounting an openBIS dataStore server requires FUSE / SSHFS to be installed (requires root privileges). The mounting itself requires no root privileges. **Mac OS X** Follow the installation instructions on https://osxfuse.github.io **Unix Cent OS 7** ``` $ sudo yum install epel-release $ sudo yum --enablerepo=epel -y install fuse-sshfs $ user="$(whoami)" $ usermod -a -G fuse "$user" ``` After the installation, an `sshfs` command should be available. ### Mount dataStore server with pyBIS Because the mount/unmount procedure differs from platform to platform, pyBIS offers two simple methods: ``` o.mount() o.mount(username, password, hostname, mountpoint, volname) o.is_mounted() o.unmount() o.get_mountpoint() ``` Currently, mounting is supported for Linux and Mac OS X only. All attributes, if not provided, are re-used by a previous login() command. If no mountpoint is provided, the default mounpoint will be `~/hostname`. If this directory does not exist, it will be created. The directory must be empty before mounting. # Masterdata OpenBIS stores quite a lot of meta-data along with your dataSets. The collection of data that describes this meta-data (i.e. meta-meta-data) is called masterdata. It consists of: - sample types - dataSet types - material types - experiment types - property types - vocabularies - vocabulary terms - plugins (jython scripts that allow complex data checks) - tags - semantic annotations ## browse masterdata ``` sample_types = o.get_sample_types() # get a list of sample types sample_types.df # DataFrame object st = o.get_sample_types()[3] # get 4th element of that list st = o.get_sample_type('YEAST') st.code st.generatedCodePrefix st.attrs.all() # get all attributes as a dict st.get_validationPlugin() # returns a plugin object st.get_property_assignments() # show the list of properties # for that sample type o.get_material_types() o.get_dataset_types() o.get_experiment_types() o.get_collection_types() o.get_property_types() pt = o.get_property_type('BARCODE_COMPLEXITY_CHECKER') pt.attrs.all() o.get_plugins() pl = o.get_plugin('Diff_time') pl.script # the Jython script that processes this property o.get_vocabularies() o.get_vocabulary('BACTERIAL_ANTIBIOTIC_RESISTANCE') o.get_terms(vocabulary='STORAGE') o.get_tags() ``` ## create property types **Samples** (objects), **experiments** (collections) and **dataSets** contain type-specific **properties**. When you create a new sample, experiment or datasSet of a given type, the set of properties is well defined. Also, the values of these properties are being type-checked. The first step in creating a new entity type is to create a so called **property type**: ``` pt_text = o.new_property_type( code = 'MY_NEW_PROPERTY_TYPE', label = 'yet another property type', description = 'my first property', dataType = 'VARCHAR', ) pt_text.save() pt_int = o.new_property_type( code = 'MY_NUMBER', label = 'property contains a number', dataType = 'INTEGER', ) pt_int.save() pt_voc = o.new_property_type( code = 'MY_CONTROLLED_VOCABULARY', label = 'label me', description = 'give me a description', dataType = 'CONTROLLEDVOCABULARY', vocabulary = 'STORAGE', ) pt_voc.save() pt_richtext = o.new_property_type( code = 'MY_RICHTEXT_PROPERTY', label = 'richtext data', description = 'property contains rich text', dataType = 'MULTILINE_VARCHAR', metaData = {'custom_widget' : 'Word Processor'} ) pt_richtext.save() pt_spread = o.new_property_type( code = 'MY_TABULAR_DATA', label = 'data in a table', description = 'property contains a spreadsheet', dataType = 'XML', metaData = {'custom_widget': 'Spreadsheet'} ) pt_spread.save() ``` The `dataType` attribute can contain any of these values: - `INTEGER` - `VARCHAR` - `MULTILINE_VARCHAR` - `REAL` - `TIMESTAMP` - `BOOLEAN` - `HYPERLINK` - `XML` - `CONTROLLEDVOCABULARY` - `MATERIAL` When choosing `CONTROLLEDVOCABULARY`, you must specify a `vocabulary` attribute (see example). Likewise, when choosing `MATERIAL`, a `materialType` attribute must be provided. To create a **richtext property**, use `MULTILINE_VARCHAR` as `dataType` and set `metaData` to `{'custom_widget' : 'Word Processor'}` as shown in the example above. To create a **tabular, spreadsheet-like property**, use `XML` as `dataType` and set `metaData` to `{'custom_widget' : 'Spreadhseet'}`as shown in the example above. **Note**: PropertyTypes that start with a \$ are by definition `managedInternally` and therefore this attribute must be set to True. ## create sample types / object types The second step (after creating a property type, see above) is to create the **sample type**. The new name for **sample** is **object**. You can use both methods interchangeably: - `new_sample_type()` == `new_object_type()` ``` sample_type = o.new_sample_type( code = 'my_own_sample_type', # mandatory generatedCodePrefix = 'S', # mandatory description = '', autoGeneratedCode = True, subcodeUnique = False, listable = True, showContainer = False, showParents = True, showParentMetadata = False, validationPlugin = 'Has_Parents' # see plugins below ) sample_type.save() ``` When `autoGeneratedCode` attribute is set to `True`, then you don't need to provide a value for `code` when you create a new sample. You can get the next autoGeneratedCode like this: ``` sample_type.get_next_sequence() # eg. 67 sample_type.get_next_code() # e.g. FLY77 ``` From pyBIS 1.31.0 onwards, you can provide a `code` even for samples where its sample type has `autoGeneratedCode=True` to offer the same functionality as ELN-LIMS. In earlier versions of pyBIS, providing a code in this situation caused an error. ## assign and revoke properties to sample type / object type The third step, after saving the sample type, is to **assign or revoke properties** to the newly created sample type. This assignment procedure applies to all entity types (dataset type, experiment type). ``` sample_type.assign_property( prop = 'diff_time', # mandatory section = '', ordinal = 5, mandatory = True, initialValueForExistingEntities = 'initial value' showInEditView = True, showRawValueInForms = True ) sample_type.revoke_property('diff_time') sample_type.get_property_assignments() ``` ## create a dataset type The second step (after creating a **property type**, see above) is to create the **dataset type**. The third step is to **assign or revoke the properties** to the newly created dataset type. ``` dataset_type = o.new_dataset_type( code = 'my_dataset_type', # mandatory description = None, mainDataSetPattern = None, mainDataSetPath = None, disallowDeletion = False, validationPlugin = None, ) dataset_type.save() dataset_type.assign_property('property_name') dataset_type.revoke_property('property_name') dataset_type.get_property_assignments() ``` ## create an experiment type / collection type The second step (after creating a **property type**, see above) is to create the **experiment type**. The new name for **experiment** is **collection**. You can use both methods interchangeably: - `new_experiment_type()` == `new_collection_type()` ``` experiment_type = o.new_experiment_type( code, description = None, validationPlugin = None, ) experiment_type.save() experiment_type.assign_property('property_name') experiment_type.revoke_property('property_name') experiment_type.get_property_assignments() ``` ## create material types Materials and material types are deprecated in newer versions of openBIS. ``` material_type = o.new_material_type( code, description=None, validationPlugin=None, ) material_type.save() material_type.assign_property('property_name') material_type.revoke_property('property_name') material_type.get_property_assignments() ``` ## create plugins Plugins are Jython scripts that can accomplish more complex data-checks than ordinary types and vocabularies can achieve. They are assigned to entity types (dataset type, sample type etc). [Documentation and examples can be found here](https://wiki-bsse.ethz.ch/display/openBISDoc/Properties+Handled+By+Scripts) ``` pl = o.new_plugin( name ='my_new_entry_validation_plugin', pluginType ='ENTITY_VALIDATION', # or 'DYNAMIC_PROPERTY' or 'MANAGED_PROPERTY', entityKind = None, # or 'SAMPLE', 'MATERIAL', 'EXPERIMENT', 'DATA_SET' script = 'def calculate(): pass' # a JYTHON script ) pl.save() ``` ## Users, Groups and RoleAssignments Users can only login into the openBIS system when: - they are present in the authentication system (e.g. LDAP) - the username/password is correct - the user's mail address needs is present - the user is already added to the openBIS user list (see below) - the user is assigned a role which allows a login, either directly assigned or indirectly assigned via a group membership ``` o.get_groups() group = o.new_group(code='group_name', description='...') group = o.get_group('group_name') group.save() group.assign_role(role='ADMIN', space='DEFAULT') group.get_roles() group.revoke_role(role='ADMIN', space='DEFAULT') group.add_members(['admin']) group.get_members() group.del_members(['admin']) group.delete() o.get_persons() person = o.new_person(userId='username') person.space = 'USER_SPACE' person.save() # person.delete() is currently not possible. person.assign_role(role='ADMIN', space='MY_SPACE') person.assign_role(role='OBSERVER') person.get_roles() person.revoke_role(role='ADMIN', space='MY_SPACE') person.revoke_role(role='OBSERVER') o.get_role_assignments() o.get_role_assignments(space='MY_SPACE') o.get_role_assignments(group='MY_GROUP') ra = o.get_role_assignment(techId) ra.delete() ``` ## Spaces Spaces are fundamental way in openBIS to divide access between groups. Within a space, data can be easily shared. Between spaces, people need to be given specific access rights (see section above). The structure in openBIS is as follows: - space - project - experiment / collection - sample / object - dataset ``` space = o.new_space(code='space_name', description='') space.save() o.get_spaces( start_with = 0, # start_with and count count = 10, # enable paging ) space = o.get_space('MY_SPACE') # get individual attributes space.code space.description space.registrator space.registrationDate space.modifier space.modificationDate # set individual attribute # most of the attributes above are set automatically and cannot be modified. space.description = '...' # get all attributes as a dictionary space.attrs.all() space.delete('reason for deletion') ``` ## Projects Projects live within spaces and usually contain experiments (aka collections): - space - project - experiment / collection - sample / object - dataset ``` project = o.new_project( space = space, code = 'project_name', description = 'some project description' ) project = space.new_project( code = 'project_code', description = 'project description' ) project.save() o.get_projects( space = 'MY_SPACE', # show only projects in MY_SPACE start_with = 0, # start_with and count count = 10, # enable paging ) o.get_projects(space='MY_SPACE') space.get_projects() project.get_experiments() project.get_attachments() # deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. p.add_attachment( # deprecated, see above fileName='testfile', description= 'another file', title= 'one more attachment' ) project.download_attachments() # deprecated, see above # get individual attributes project.code project.description # set individual attribute project.description = '...' # get all attributes as a dictionary project.attrs.all() project.freeze = True project.freezeForExperiments = True project.freezeForSamples = True ``` ## Experiments / Collections Experiments live within projects: - space - project - experiment / collection - sample / object - dataset The new name for **experiment** is **collection**. You can use boths names interchangeably: - `get_experiment()` = `get_collection()` - `new_experiment()` = `new_collection()` - `get_experiments()` = `get_collections()` ### create a new experiment ``` exp = o.new_experiment code='MY_NEW_EXPERIMENT', type='DEFAULT_EXPERIMENT', space='MY_SPACE', project='YEASTS' ) exp.save() ``` ### search for experiments ``` experiments = o.get_experiments( project = 'YEASTS', space = 'MY_SPACE', type = 'DEFAULT_EXPERIMENT', tags = '*', finished_flag = False, props = ['name', 'finished_flag'] ) experiments = project.get_experiments() experiment = experiments[0] # get first experiment of result list experiment = experiment for experiment in experiments: # iterate over search results print(experiment.props.all()) dataframe = experiments.df # get Pandas DataFrame of result list exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT') ``` ### Experiment attributes ``` exp.attrs.all() # returns all attributes as a dict exp.attrs.tags = ['some', 'tags'] exp.tags = ['some', 'tags'] # same thing exp.save() exp.code exp.description exp.registrator ... exp.project = 'my_project' exp.space = 'my_space' exp.freeze = True exp.freezeForDataSets = True exp.freezeForSamples = True exp.save() # needed to save/update the changed attributes and properties ``` ### Experiment properties **Getting properties** ``` experiment.props == ds.p # you can use either .props or .p to access the properties experiment.p # in Jupyter: show all properties in a nice table experiment.p() # get all properties as a dict experiment.props.all() # get all properties as a dict experiment.p('prop1','prop2') # get some properties as a dict experiment.p.get('$name') # get the value of a property experiment.p['property'] # get the value of a property ``` **Setting properties** ``` experiment.experiment = 'first_exp' # assign sample to an experiment experiment.project = 'my_project' # assign sample to a project experiment.p. + TAB # in Jupyter/IPython: show list of available properties experiment.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary experiment.p['my_property']= "value" # set the value of a property experiment.p.set('my_property, 'value') # set the value of a property experiment.p.my_property = "some value" # set the value of a property experiment.p.set({'my_property':'value'}) # set the values of some properties experiment.set_props({ key: value }) # set the values of some properties experiment.save() # needed to save/update the changed attributes and properties ``` ## Samples / Objects Samples usually live within experiments/collections: - space - project - experiment / collection - sample / object - dataset The new name for **sample** is **object**. You can use boths names interchangeably: - `get_sample()` = `get_object()` - `new_sample()` = `new_object()` - `get_samples()` = `get_objects()` etc. ``` sample = o.new_sample( type = 'YEAST', space = 'MY_SPACE', experiment = '/MY_SPACE/MY_PROJECT/EXPERIMENT_1', parents = [parent_sample, '/MY_SPACE/YEA66'], # you can use either permId, identifier children = [child_sample], # or sample object props = {"name": "some name", "description": "something interesting"} ) sample = space.new_sample( type='YEAST' ) sample.save() sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE') sample = o.get_sample('20170518112808649-52') samples= o.get_samples(type='UNKNOWN') # search for samples, see below # get individual attributes sample.space sample.code sample.permId sample.identifier sample.type # once the sample type is defined, you cannot modify it # set attribute sample.space = 'MY_OTHER_SPACE' sample.experiment # a sample can belong to one experiment only sample.experiment = '/MY_SPACE/MY_PROJECT/MY_EXPERIMENT' sample.project sample.project = '/MY_SPACE/MY_PROJECT' # only works if project samples are enabled sample.tags sample.tags = ['guten_tag', 'zahl_tag' ] sample.attrs.all() # returns all attributes as a dict sample.props.all() # returns all properties as a dict sample.get_attachments() # deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. sample.download_attachments() # deprecated, see above sample.add_attachment('testfile.xls') # deprecated, see above sample.delete('deleted for some reason') ``` ## create/update/delete many samples in a transaction Creating a single sample takes some time. If you need to create many samples, you might want to create them in one transaction. This will transfer all your sample data at once. The Upside of this is the **gain in speed**. The downside: this is a **all-or-nothing** operation, which means, either all samples will be registered or none (if any error occurs). **create many samples in one transaction** ``` trans = o.new_transaction() for i in range (0, 100): sample = o.new_sample(...) trans.add(sample) trans.commit() ``` **update many samples in one transaction** ``` trans = o.new_transaction() for sample in o.get_samples(count=100): sample.prop.some_property = 'different value' trans.add(sample) trans.commit() ``` **delete many samples in one transaction** ``` trans = o.new_transaction() for sample in o.get_samples(count=100): sample.mark_to_be_deleted() trans.add(sample) trans.reason('go what has to go') trans.commit() ``` **Note:** You can use the `mark_to_be_deleted()`, `unmark_to_be_deleted()` and `is_marked_to_be_deleted()` methods to set and read the internal flag. ### parents, children, components and container ``` sample.get_parents() sample.set_parents(['/MY_SPACE/PARENT_SAMPLE_NAME') sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME') sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME') sample.get_children() sample.set_children('/MY_SPACE/CHILD_SAMPLE_NAME') sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME') sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME') # A Sample may belong to another Sample, which acts as a container. # As opposed to DataSets, a Sample may only belong to one container. sample.container # returns a sample object sample.container = '/MY_SPACE/CONTAINER_SAMPLE_NAME' # watch out, this will change the identifier of the sample to: # /MY_SPACE/CONTAINER_SAMPLE_NAME:SAMPLE_NAME sample.container = '' # this will remove the container. # A Sample may contain other Samples, in order to act like a container (see above) # caveat: containers are NOT compatible with ELN-LIMS # The Sample-objects inside that Sample are called «components» or «contained Samples» # You may also use the xxx_contained() functions, which are just aliases. sample.get_components() sample.set_components('/MY_SPACE/COMPONENT_NAME') sample.add_components('/MY_SPACE/COMPONENT_NAME') sample.del_components('/MY_SPACE/COMPONENT_NAME') ``` ### sample tags ``` sample.get_tags() sample.set_tags('tag1') sample.add_tags(['tag2','tag3']) sample.del_tags('tag1') ``` ### Sample attributes and properties **Getting properties** ``` sample.attrs.all() # returns all attributes as a dict sample.attribute_name # return the attribute value sample.props == ds.p # you can use either .props or .p to access the properties sample.p # in Jupyter: show all properties in a nice table sample.p() # get all properties as a dict sample.props.all() # get all properties as a dict sample.p('prop1','prop2') # get some properties as a dict sample.p.get('$name') # get the value of a property sample.p['property'] # get the value of a property ``` **Setting properties** ``` sample.experiment = 'first_exp' # assign sample to an experiment sample.project = 'my_project' # assign sample to a project sample.p. + TAB # in Jupyter/IPython: show list of available properties sample.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary sample.p['my_property']= "value" # set the value of a property sample.p.set('my_property, 'value') # set the value of a property sample.p.my_property = "some value" # set the value of a property sample.p.set({'my_property':'value'}) # set the values of some properties sample.set_props({ key: value }) # set the values of some properties sample.save() # needed to save/update the attributes and properties ``` ### search for samples / objects The result of a search is always list, even when no items are found. The `.df` attribute returns the Pandas dataFrame of the results. ``` samples = o.get_samples( space ='MY_SPACE', type ='YEAST', tags =['*'], # only sample with existing tags start_with = 0, # start_with and count count = 10, # enable paging where = { "$SOME.WEIRD-PROP": "hello" # only receive samples where properties match } registrationDate = "2020-01-01", # date format: YYYY-MM-DD modificationDate = "<2020-12-31", # use > or < to search for specified date and later / earlier attrs=[ # show these attributes in the dataFrame 'sample.code', 'registrator.email', 'type.generatedCodePrefix' ], parent_property = 'value', # search in a parent's property child_property = 'value', # search in a child's property container_property = 'value' # search in a container's property parent = '/MY_SPACE/PARENT_SAMPLE', # sample has this as its parent parent = '*', # sample has at least one parent child = '/MY_SPACE/CHILD_SAMPLE', child = '*', # sample has at least one child container = 'MY_SPACE/CONTAINER', container = '*' # sample lives in a container props=['$NAME', 'MATING_TYPE'] # show these properties in the result ) sample = samples[9] # get the 10th sample # of the search results sample = samples['/SPACE/AABC'] # same, fetched by identifier for sample in samples: # iterate over the print(sample.code) # search results samples.df # returns a Pandas DataFrame object samples = o.get_samples(props="*") # retrieve all properties of all samples ``` ### freezing samples ``` sample.freeze = True sample.freezeForComponents = True sample.freezeForChildren = True sample.freezeForParents = True sample.freezeForDataSets = True ``` ## Datasets Datasets are by all means the most important openBIS entity. The actual files are stored as datasets; all other openBIS entities mainly are necessary to annotate and to structure the data: - space - project - experiment / collection - sample / object - dataset ### working with existing dataSets **search for datasets** This example does the following - search for all datasets of type `SCANS`, retrieve the first 10 entries - print out all properties - print the list of all files in this dataset - download the dataset ``` datasets = sample.get_datasets(type='SCANS', start_with=0, count=10) for dataset in datasets: print(dataset.props()) print(dataset.file_list) dataset.download() dataset = datasets[0] ``` **More dataset functions:** ``` ds = o.get_dataset('20160719143426517-259') ds.get_parents() ds.get_children() ds.sample ds.experiment ds.physicalData ds.status # AVAILABLE LOCKED ARCHIVED # ARCHIVE_PENDING UNARCHIVE_PENDING # BACKUP_PENDING ds.archive() # archives a dataset, i.e. moves it to a slower but cheaper diskspace (tape). # archived datasets cannot be downloaded, they need to be unarchived first. # This is an asynchronous process, # check ds.status regularly until the dataset becomes 'ARCHIVED' ds.unarchive() # this starts an asynchronous process which gets the dataset from the tape. # Check ds.status regularly until it becomes 'AVAILABLE' ds.attrs.all() # returns all attributes as a dict ds.props.all() # returns all properties as a dict ds.add_attachment() # Deprecated. Attachments usually contain meta-data ds.get_attachments() # about the dataSet, not the data itself. ds.download_attachments() # Deprecated, as attachments are not compatible with ELN-LIMS. # Attachments are an old concept and should not be used anymore. ``` ### download dataSets ``` o.download_prefix # used for download() and symlink() method. # Is set to data/hostname by default, but can be changed. ds.get_files(start_folder="/") # get file list as Pandas dataFrame ds.file_list # get file list as array ds.file_links # file list as a dict containing direct https links ds.download() # simply download all files to data/hostname/permId/ ds.download( destination = 'my_data', # download files to folder my_data/ create_default_folders = False, # ignore the /original/DEFAULT folders made by openBIS wait_until_finished = False, # download in background, continue immediately workers = 10 # 10 downloads parallel (default) ) ds.download_path # returns the relative path (destination) of the files after a ds.download() ds.is_physical() # TRUE if dataset is physically ``` ### link dataSets Instead of downloading a dataSet, you can create a symbolic link to a dataSet in the openBIS dataStore. To do that, the openBIS dataStore needs to be mounted first (see mount method above). **Note:** Symbolic links and the mount() feature currently do not work with Windows. ``` o.download_prefix # used for download() and symlink() method. # Is set to data/hostname by default, but can be changed. ds.symlink() # creates a symlink for this dataset: data/hostname/permId # tries to mount openBIS instance # in case it is not mounted yet ds.symlink( target_dir = 'data/dataset_1/', # default target_dir is: data/hostname/permId replace_if_symlink_exists=True ) ds.is_symlink() ``` ### dataSet attributes and properties **Getting properties** ``` ds.attrs.all() # returns all attributes as a dict ds.attribute_name # return the attribute value ds.props == ds.p # you can use either .props or .p to access the properties ds.p # in Jupyter: show all properties in a nice table ds.p() # get all properties as a dict ds.props.all() # get all properties as a dict ds.p('prop1','prop2') # get some properties as a dict ds.p.get('$name') # get the value of a property ds.p['property'] # get the value of a property ``` **Setting properties** ``` ds.experiment = 'first_exp' # assign dataset to an experiment ds.sample = 'my_sample' # assign dataset to a sample ds.p. + TAB # in Jupyter/IPython: show list of available properties ds.p.my_property_ + TAB # in Jupyter/IPython: show datatype or controlled vocabulary ds.p['my_property']= "value" # set the value of a property ds.p.set('my_property, 'value') # set the value of a property ds.p.my_property = "some value" # set the value of a property ds.p.set({'my_property':'value'}) # set the values of some properties ds.set_props({ key: value }) # set the values of some properties ``` ### search for dataSets - The result of a search is always list, even when no items are found - The `.df` attribute returns the Pandas dataFrame of the results ``` datasets = o.get_datasets( type ='MY_DATASET_TYPE', **{ "SOME.WEIRD:PROP": "value"}, # property name contains a dot or a # colon: cannot be passed as an argument start_with = 0, # start_with and count count = 10, # enable paging registrationDate = "2020-01-01", # date format: YYYY-MM-DD modificationDate = "<2020-12-31", # use > or < to search for specified date and later / earlier parent_property = 'value', # search in a parent's property child_property = 'value', # search in a child's property container_property = 'value' # search in a container's property parent = '/MY_SPACE/PARENT_DS', # has this dataset as its parent parent = '*', # has at least one parent dataset child = '/MY_SPACE/CHILD_DS', child = '*', # has at least one child dataset container = 'MY_SPACE/CONTAINER_DS', container = '*', # belongs to a container dataset attrs=[ # show these attributes in the dataFrame 'sample.code', 'registrator.email', 'type.generatedCodePrefix' ], props=['$NAME', 'MATING_TYPE'] # show these properties in the result ) datasets = o.get_datasets(props="*") # retrieve all properties of all dataSets dataset = datasets[0] # get the first dataset in the search result for dataset in datasets: # iterate over the datasets ... df = datasets.df # returns a Pandas dataFrame object of the search results ``` In some cases, you might want to retrieve precisely certain datasets. This can be achieved by methods chaining (but be aware, it might not be very performant): ``` datasets = o.get_experiments(project='YEASTS')\ .get_samples(type='FLY')\ .get_datasets( type='ANALYZED_DATA', props=['MY_PROPERTY'], MY_PROPERTY='some analyzed data' ) ``` - another example: ``` datasets = o.get_experiment('/MY_NEW_SPACE/MY_PROJECT/MY_EXPERIMENT4')\ .get_samples(type='UNKNOWN')\ .get_parents()\ .get_datasets(type='RAW_DATA') ``` ### freeze dataSets - once a dataSet has been frozen, it cannot be changed by anyone anymore - so be careful! ``` ds.freeze = True ds.freezeForChildren = True ds.freezeForParents = True ds.freezeForComponents = True ds.freezeForContainers = True ds.save() ``` ### create a new dataSet ``` ds_new = o.new_dataset( type = 'ANALYZED_DATA', experiment = '/SPACE/PROJECT/EXP1', sample = '/SPACE/SAMP1', files = ['my_analyzed_data.dat'], props = {'name': 'some good name', 'description': '...' } ) ds_new.save() ``` ### create dataSet with zipfile DataSet containing one zipfile which will be unzipped in openBIS: ```python ds_new = o.new_dataset( type = 'RAW_DATA', sample = '/SPACE/SAMP1', zipfile = 'my_zipped_folder.zip', ) ds_new.save() ``` ### create dataSet with mixed content - mixed content means: folders and files are provided - a relative specified folder (and all its content) will end up in the root, while keeping its structure - `../measurements/` --> `/measurements/` - `some/folder/somewhere/` --> `/somewhere/` - relative files will also end up in the root - `my_file.txt` --> `/my_file.txt` - `../somwhere/else/my_other_file.txt` --> `/my_other_file.txt` - `some/folder/file.txt` --> `/file.txt` - useful if DataSet contains files and folders - the content of the folder will be zipped (on-the-fly) and uploaded to openBIS - openBIS will keep the folder structure intact - relative path will be shortened to its basename. For example: | local | openBIS | | -------------------------- | ---------- | | `../../myData/` | `myData/` | | `some/experiment/results/` | `results/` | ``` ds_new = o.new_dataset( type = 'RAW_DATA', sample = '/SPACE/SAMP1', files = ['../measurements/', 'my_analyis.ipynb', 'results/'] ) ds_new.save() ``` ### create dataSet container A DataSet of kind=CONTAINER contains other DataSets, but no files: ``` ds_new = o.new_dataset( type = 'ANALYZED_DATA', experiment = '/SPACE/PROJECT/EXP1', sample = '/SPACE/SAMP1', kind = 'CONTAINER', props = {'name': 'some good name', 'description': '...' } ) ds_new.save() ``` ### get, set, add and remove parent datasets ``` dataset.get_parents() dataset.set_parents(['20170115220259155-412']) dataset.add_parents(['20170115220259155-412']) dataset.del_parents(['20170115220259155-412']) ``` #### get, set, add and remove child datasets ``` dataset.get_children() dataset.set_children(['20170115220259155-412']) dataset.add_children(['20170115220259155-412']) dataset.del_children(['20170115220259155-412']) ``` ### dataSet containers - A DataSet may belong to other DataSets, which must be of kind=CONTAINER - As opposed to Samples, DataSets may belong (contained) to more than one DataSet-container - caveat: containers are NOT compatible with ELN-LIMS ``` dataset.get_containers() dataset.set_containers(['20170115220259155-412']) dataset.add_containers(['20170115220259155-412']) dataset.del_containers(['20170115220259155-412']) ``` - a DataSet of kind=CONTAINER may contain other DataSets, to act like a folder (see above) - the DataSet-objects inside that DataSet are called components or contained DataSets - you may also use the xxx_contained() functions, which are just aliases. - caveat: components are NOT compatible with ELN-LIMS ``` dataset.get_components() dataset.set_components(['20170115220259155-412']) dataset.add_components(['20170115220259155-412']) dataset.del_components(['20170115220259155-412']) ``` ## Semantic Annotations create semantic annotation for sample type 'UNKNOWN': ``` sa = o.new_semantic_annotation( entityType = 'UNKNOWN', predicateOntologyId = 'po_id', predicateOntologyVersion = 'po_version', predicateAccessionId = 'pa_id', descriptorOntologyId = 'do_id', descriptorOntologyVersion = 'do_version', descriptorAccessionId = 'da_id' ) sa.save() ``` Create semantic annotation for property type (predicate and descriptor values omitted for brevity) ``` sa = o.new_semantic_annotation(propertyType = 'DESCRIPTION', ...) sa.save() ``` **Create** semantic annotation for sample property assignment (predicate and descriptor values omitted for brevity) ``` sa = o.new_semantic_annotation( entityType = 'UNKNOWN', propertyType = 'DESCRIPTION', ... ) sa.save() ``` **Create** a semantic annotation directly from a sample type. Will also create sample property assignment annotations when propertyType is given: ``` st = o.get_sample_type("ORDER") st.new_semantic_annotation(...) ``` **Get all** semantic annotations ``` o.get_semantic_annotations() ``` **Get** semantic annotation by perm id ``` sa = o.get_semantic_annotation("20171015135637955-30") ``` **Update** semantic annotation ``` sa.predicateOntologyId = 'new_po_id' sa.descriptorOntologyId = 'new_do_id' sa.save() ``` **Delete** semantic annotation ``` sa.delete('reason') ``` ## Tags ``` new_tag = o.new_tag( code = 'my_tag', description = 'some descriptive text' ) new_tag.description = 'some new description' new_tag.save() o.get_tags() o.get_tag('/username/TAG_Name') o.get_tag('TAG_Name') tag.get_experiments() tag.get_samples() tag.get_owner() # returns a person object tag.delete('why?') ``` ## Vocabulary and VocabularyTerms An entity such as Sample (Object), Experiment (Collection), Material or DataSet can be of a specific _entity type_: - Sample Type (Object Type) - Experiment Type (Collection Type) - DataSet Type - Material Type Every type defines which **Properties** may be defined. Properties act like **Attributes**, but they are type-specific. Properties can contain all sorts of information, such as free text, XML, Hyperlink, Boolean and also **Controlled Vocabulary**. Such a Controlled Vocabulary consists of many **VocabularyTerms**. These terms are used to only allow certain values entered in a Property field. So for example, you want to add a property called **Animal** to a Sample and you want to control which terms are entered in this Property field. For this you need to do a couple of steps: 1. create a new vocabulary _AnimalVocabulary_ 2. add terms to that vocabulary: _Cat, Dog, Mouse_ 3. create a new PropertyType (e.g. _Animal_) of DataType _CONTROLLEDVOCABULARY_ and assign the _AnimalVocabulary_ to it 4. create a new SampleType (e.g. _Pet_) and _assign_ the created PropertyType to that Sample type. 5. If you now create a new Sample of type _Pet_ you will be able to add a property _Animal_ to it which only accepts the terms _Cat, Dog_ or _Mouse_. **create new Vocabulary with three VocabularyTerms** ``` voc = o.new_vocabulary( code = 'BBB', description = 'description of vocabulary aaa', urlTemplate = 'https://ethz.ch', terms = [ { "code": 'term_code1', "label": "term_label1", "description": "term_description1"}, { "code": 'term_code2', "label": "term_label2", "description": "term_description2"}, { "code": 'term_code3', "label": "term_label3", "description": "term_description3"} ] ) voc.save() voc.vocabulary = 'description of vocabulary BBB' voc.chosenFromList = True voc.save() # update ``` **create additional VocabularyTerms** ``` term = o.new_term( code='TERM_CODE_XXX', vocabularyCode='BBB', label='here comes a label', description='here might appear a meaningful description' ) term.save() ``` **update VocabularyTerms** To change the ordinal of a term, it has to be moved either to the top with the `.move_to_top()` method or after another term using the `.move_after_term('TERM_BEFORE')` method. ``` voc = o.get_vocabulary('STORAGE') term = voc.get_terms()['RT'] term.label = "Room Temperature" term.official = True term.move_to_top() term.move_after_term('-40') term.save() term.delete() ``` ## Change ELN Settings via pyBIS ### Main Menu The ELN settings are stored as a **JSON string** in the `$eln_settings` property of the `GENERAL_ELN_SETTINGS` sample. You can show the **Main Menu settings** like this: ```python import json settings_sample = o.get_sample("/ELN_SETTINGS/GENERAL_ELN_SETTINGS") settings = json.loads(settings_sample.props["$eln_settings"]) print(settings["mainMenu"]) {'showLabNotebook': True, 'showInventory': True, 'showStock': True, 'showObjectBrowser': True, 'showExports': True, 'showStorageManager': True, 'showAdvancedSearch': True, 'showUnarchivingHelper': True, 'showTrashcan': False, 'showVocabularyViewer': True, 'showUserManager': True, 'showUserProfile': True, 'showZenodoExportBuilder': False, 'showBarcodes': False, 'showDatasets': True} ``` To modify the **Main Menu settings**, you have to change the settings dictionary, convert it back to json and save the sample: ```python settings['mainMenu']['showTrashcan'] = False settings_sample.props['$eln_settings'] = json.dumps(settings) settings_sample.save() ``` ### Storages The **ELN storages settings** can be found in the samples of project `/ELN_SETTINGS/STORAGES` ```python o.get_samples(project='/ELN_SETTINGS/STORAGES') ``` To change the settings, just change the sample's properties and save the sample: ```python sto = o.get_sample('/ELN_SETTINGS/STORAGES/BENCH') sto.props() {'$name': 'Bench', '$storage.row_num': '1', '$storage.column_num': '1', '$storage.box_num': '9999', '$storage.storage_space_warning': '80', '$storage.box_space_warning': '80', '$storage.storage_validation_level': 'BOX_POSITION', '$xmlcomments': None, '$annotations_state': None} sto.props['$storage.box_space_warning']= '80' sto.save() ``` ### Templates The **ELN templates settings** can be found in the samples of project `/ELN_SETTINGS/TEMPLATES` ```python o.get_samples(project='/ELN_SETTINGS/TEMPLATES') ``` To change the settings, use the same technique as shown above with the storages settings. ### Custom Widgets To change the **Custom Widgets settings**, get the `property_type` and set the `metaData` attribute: ```python pt = o.get_property_type('YEAST.SOURCE') pt.metaData = {'custom_widget': 'Spreadsheet'} pt.save() ``` Currently, the value of the `custom_widget` key can be set to either - `Spreadsheet` (for tabular, Excel-like data) - `Word Processor` (for rich text data) %prep %autosetup -n PyBIS-1.35.4 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-PyBIS -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.35.4-1 - Package Spec generated