%global _empty_manifest_terminate_build 0 Name: python-bittensor Version: 4.0.1 Release: 1 Summary: bittensor License: MIT URL: https://github.com/opentensor/bittensor Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b2/b7/edd639c895875c16cc864ebc383a7c660fc849cb7bb0551c89b252ac1398/bittensor-4.0.1.tar.gz BuildArch: noarch Requires: python3-ansible-vault Requires: python3-argparse Requires: python3-backoff Requires: python3-base58 Requires: python3-certifi Requires: python3-cryptography Requires: python3-fuzzywuzzy Requires: python3-google-api-python-client Requires: python3-grpcio-tools Requires: python3-grpcio Requires: python3-hypothesis Requires: python3-idna Requires: python3-jinja2 Requires: python3-jsonschema[format-nongpl] Requires: python3-loguru Requires: python3-markupsafe Requires: python3-miniupnpc Requires: python3-msgpack-numpy Requires: python3-msgpack Requires: python3-munch Requires: python3-nest-asyncio Requires: python3-netaddr Requires: python3-numpy Requires: python3-pandas Requires: python3-password-strength Requires: python3-prometheus-client Requires: python3-protobuf Requires: python3-psutil Requires: python3-py-bip39-bindings Requires: python3-py-ed25519-bindings Requires: python3-py-sr25519-bindings Requires: python3-pycryptodome Requires: python3-levenshtein Requires: python3-pyyaml Requires: python3-qqdm Requires: python3-requests Requires: python3-retry Requires: python3-rich Requires: python3-scalecodec Requires: python3-sentencepiece Requires: python3-substrate-interface Requires: python3-termcolor Requires: python3-torch Requires: python3-tqdm Requires: python3-transformers Requires: python3-wandb Requires: python3-wheel Requires: python3-coveralls Requires: python3-ddt Requires: python3-pytest-cov Requires: python3-pytest-rerunfailures Requires: python3-pytest-split Requires: python3-pytest-xdist Requires: python3-pytest %description ### Internet-scale Neural Networks [Discord](https://discord.gg/bittensor) • [Docs](https://docs.bittensor.com/) • [Network](https://www.bittensor.com/network) • [Research](https://drive.google.com/file/d/1VnsobL6lIAAqcA1_Tbm8AYIQscfJV4KU) • [Code](https://github.com/opentensor/BitTensor) This repository contains Bittensor's Python API, which can be used for the following purposes: 1. Querying the Bittensor network as a [client](https://github.com/opentensor/bittensor#31-client). 2. Running and building Bittensor miners and validators for [mining TAO](https://github.com/opentensor/bittensor#43-running-a-template-miner). 3. Pulling network [state information](https://github.com/opentensor/bittensor#3-using-bittensor). 4. Managing [TAO wallets](https://github.com/opentensor/bittensor#41-cli), balances, transfers, etc. Bittensor is a mining network, similar to Bitcoin, that includes built-in incentives designed to encourage miners to provide value by hosting trained or training machine learning models. These models can be queried by clients seeking inference over inputs, such as token-based text generations or numerical embeddings from a large foundation model like GPT-NeoX-20B. Token-based incentives are designed to drive the network's growth and distribute the value generated by the network directly to the individuals producing that value, without intermediaries. The network is open to all participants, and no individual or group has full control over what is learned, who can profit from it, or who can access it. To learn more about Bittensor, please read our [paper](https://drive.google.com/file/d/1VnsobL6lIAAqcA1_Tbm8AYIQscfJV4KU/view). - [1. Documentation](#1-documentation) - [2. Install](#2-install) - [3. Using Bittensor](#3-using-bittensor) - [3.1. Client](#31-client) - [3.2. Server](#32-server) - [3.3. Validator](#33-validator) - [4. Features](#4-features) - [4.1. Using the CLI](#41-cli) - [4.2. Selecting the network to join](#42-selecting-the-network-to-join) - [4.3. Running a template miner](#43-running-a-template-miner) - [4.4. Running a template server](#44-running-a-template-server) - [4.5. Syncing with the chain/ Finding the ranks/stake/uids of other nodes](#46-syncing-with-the-chain-finding-the-ranksstakeuids-of-other-nodes) - [4.6. Finding and creating the endpoints for other nodes in the network](#47-finding-and-creating-the-endpoints-for-other-nodes-in-the-network) - [4.7. Querying others in the network](#48-querying-others-in-the-network) - [5. Release](#5-release) - [6. License](#6-license) - [7. Acknowledgments](#7-acknowledgments) ## 1. Documentation https://docs.bittensor.com/ ## 2. Install Three ways to install Bittensor 1. Through the installer: ``` $ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/opentensor/bittensor/master/scripts/install.sh)" ``` 2. With pip: ```bash $ pip3 install bittensor ``` 3. From source: ``` $ git clone https://github.com/opentensor/bittensor.git $ python3 -m pip install -e bittensor/ ``` ## 3. Using Bittensor The following examples showcase how to use the Bittensor API for 3 separate purposes. ### 3.1. Client Querying the network for generations. ```python import bittensor wallet = bittensor.wallet().create_if_non_existent() graph = bittensor.metagraph().sync() print ( bittensor.dendrite( wallet = wallet ).generate ( endpoints = graph.endpoints[graph.incentive.sort()[1][-1]], // The highest ranked peer. prompt = "The quick brown fox jumped over the lazy dog", num_to_generate = 20 ) ) ``` Querying the network for representations. ```python import bittensor wallet = bittensor.wallet().create_if_non_existent() graph = bittensor.metagraph().sync() print ( bittensor.dendrite( wallet = wallet ).text_last_hidden_state ( endpoints = graph.endpoints[graph.incentive.sort()[1][-1]], // The highest ranked peer. inputs = "The quick brown fox jumped over the lazy dog" ) ) // Apply model. loss.backward() // Accumulate gradients on endpoints. ``` ### 3.2. Server Serving a custom model. ```python import bittensor import torch from transformers import GPT2Model, GPT2Config model = GPT2Model( GPT2Config(vocab_size = bittensor.__vocab_size__, n_embd = bittensor.__network_dim__ , n_head = 8)) optimizer = torch.optim.SGD( [ {"params": model.parameters()} ], lr = 0.01 ) def forward_text( pubkey, inputs_x ): return model( inputs_x ) def backward_text( pubkey, inputs_x, grads_dy ): with torch.enable_grad(): outputs_y = model( inputs_x.to(device) ).last_hidden_state torch.autograd.backward ( tensors = [ outputs_y.to(device) ], grad_tensors = [ grads_dy.to(device) ] ) optimizer.step() optimizer.zero_grad() wallet = bittensor.wallet().create().register() axon = bittensor.axon ( wallet = wallet, forward_text = forward_text, backward_text = backward_text ).start().serve() ``` ### 3.3. Validator Validating models by setting weights. ```python import bittensor import torch graph = bittensor.metagraph().sync() dataset = bittensor.dataset() chain_weights = torch.ones( [graph.n.item()], dtype = torch.float32 ) for batch in dataset.dataloader( 10 ): // Train chain_weights. bittensor.subtensor().set_weights ( weights = chain_weights, uids = graph.uids, wait_for_inclusion = True, wallet = bittensor.wallet(), ) ``` ## 4. Features ### 4.1. CLI Creating a new wallet. ```bash $ btcli new_coldkey $ btcli new_hotkey ``` Listing your wallets ```bash $ btcli list ``` Registering a wallet ```bash $ btcli register ``` Running a miner ```bash $ btcli run ``` Checking balances ```bash $ btcli overview ``` Checking the incentive mechanism. ```bash $ btcli metagraph ``` Transfering funds ```bash $ btcli transfer ``` Staking/Unstaking from a hotkey ```bash $ btcli stake $ btcli unstake ``` ### 4.2. Selecting the network to join There are two open Bittensor networks: staging (Nobunaga) and main (Nakamoto, Local). - Nobunaga (staging) - Nakamoto (main) - Local (localhost, mirrors nakamoto) ```bash $ export NETWORK=local $ python (..) --subtensor.network $NETWORK or >> btcli run --subtensor.network $NETWORK ``` ### 4.3. Running a template miner The following command will run Bittensor's template miner ```bash $ cd bittensor $ python ./bittensor/_neuron/text/template_miner/main.py ``` or ```python3 >> import bittensor >> bittensor.neurons.text.template_miner.neuron().run() ``` OR with customized settings ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/template_miner/main.py --wallet.name --wallet.hotkey ``` For the full list of settings, please run ```bash $ python3 ~/.bittensor/bittensor/bittensor/_neuron/neurons/text/template_miner/main.py --help ``` ### 4.4. Running a template server The template server follows a similar structure as the template miner. ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/core_server/main.py --wallet.name --wallet.hotkey ``` or ```python3 >> import bittensor >> bittensor.neurons.text.core_server.neuron().run() ``` For the full list of settings, please run ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/core_server/main.py --help ``` ### 4.5. Serving an endpoint on the network Endpoints are served to the bittensor network through the axon. The axon is instantiated via a wallet which holds an account on the Bittensor network. ```python import bittensor wallet = bittensor.wallet().create().register() axon = bittensor.axon ( wallet = wallet, forward_text = forward_text, backward_text = backward_text ).start().serve() ``` ### 4.6. Syncing with the chain/ Finding the ranks/stake/uids of other nodes Information from the chain is collected/formated by the metagraph. ```bash btcli metagraph ``` and ```python import bittensor meta = bittensor.metagraph() meta.sync() # --- uid --- print(meta.uids) # --- hotkeys --- print(meta.hotkeys) # --- ranks --- print(meta.R) # --- stake --- print(meta.S) ``` ### 4.7. Finding and creating the endpoints for other nodes in the network ```python import bittensor meta = bittensor.metagraph() meta.sync() ### Address for the node uid 0 endpoint_as_tensor = meta.endpoints[0] endpoint_as_object = meta.endpoint_objs[0] ``` ### 4.8. Querying others in the network ```python import bittensor meta = bittensor.metagraph() meta.sync() ### Address for the node uid 0 endpoint_0 = meta.endpoints[0] ### Creating the wallet, and dendrite wallet = bittensor.wallet().create().register() den = bittensor.dendrite(wallet = wallet) representations, _, _ = den.forward_text ( endpoints = endpoint_0, inputs = "Hello World" ) ``` ## 5. Release The release manager should follow the instructions of the [RELEASE_GUIDELINES.md](./RELEASE_GUIDELINES.md) document. ## 6. License The MIT License (MIT) Copyright © 2021 Yuma Rao Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## 7. Acknowledgments **learning-at-home/hivemind** %package -n python3-bittensor Summary: bittensor Provides: python-bittensor BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-bittensor ### Internet-scale Neural Networks [Discord](https://discord.gg/bittensor) • [Docs](https://docs.bittensor.com/) • [Network](https://www.bittensor.com/network) • [Research](https://drive.google.com/file/d/1VnsobL6lIAAqcA1_Tbm8AYIQscfJV4KU) • [Code](https://github.com/opentensor/BitTensor) This repository contains Bittensor's Python API, which can be used for the following purposes: 1. Querying the Bittensor network as a [client](https://github.com/opentensor/bittensor#31-client). 2. Running and building Bittensor miners and validators for [mining TAO](https://github.com/opentensor/bittensor#43-running-a-template-miner). 3. Pulling network [state information](https://github.com/opentensor/bittensor#3-using-bittensor). 4. Managing [TAO wallets](https://github.com/opentensor/bittensor#41-cli), balances, transfers, etc. Bittensor is a mining network, similar to Bitcoin, that includes built-in incentives designed to encourage miners to provide value by hosting trained or training machine learning models. These models can be queried by clients seeking inference over inputs, such as token-based text generations or numerical embeddings from a large foundation model like GPT-NeoX-20B. Token-based incentives are designed to drive the network's growth and distribute the value generated by the network directly to the individuals producing that value, without intermediaries. The network is open to all participants, and no individual or group has full control over what is learned, who can profit from it, or who can access it. To learn more about Bittensor, please read our [paper](https://drive.google.com/file/d/1VnsobL6lIAAqcA1_Tbm8AYIQscfJV4KU/view). - [1. Documentation](#1-documentation) - [2. Install](#2-install) - [3. Using Bittensor](#3-using-bittensor) - [3.1. Client](#31-client) - [3.2. Server](#32-server) - [3.3. Validator](#33-validator) - [4. Features](#4-features) - [4.1. Using the CLI](#41-cli) - [4.2. Selecting the network to join](#42-selecting-the-network-to-join) - [4.3. Running a template miner](#43-running-a-template-miner) - [4.4. Running a template server](#44-running-a-template-server) - [4.5. Syncing with the chain/ Finding the ranks/stake/uids of other nodes](#46-syncing-with-the-chain-finding-the-ranksstakeuids-of-other-nodes) - [4.6. Finding and creating the endpoints for other nodes in the network](#47-finding-and-creating-the-endpoints-for-other-nodes-in-the-network) - [4.7. Querying others in the network](#48-querying-others-in-the-network) - [5. Release](#5-release) - [6. License](#6-license) - [7. Acknowledgments](#7-acknowledgments) ## 1. Documentation https://docs.bittensor.com/ ## 2. Install Three ways to install Bittensor 1. Through the installer: ``` $ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/opentensor/bittensor/master/scripts/install.sh)" ``` 2. With pip: ```bash $ pip3 install bittensor ``` 3. From source: ``` $ git clone https://github.com/opentensor/bittensor.git $ python3 -m pip install -e bittensor/ ``` ## 3. Using Bittensor The following examples showcase how to use the Bittensor API for 3 separate purposes. ### 3.1. Client Querying the network for generations. ```python import bittensor wallet = bittensor.wallet().create_if_non_existent() graph = bittensor.metagraph().sync() print ( bittensor.dendrite( wallet = wallet ).generate ( endpoints = graph.endpoints[graph.incentive.sort()[1][-1]], // The highest ranked peer. prompt = "The quick brown fox jumped over the lazy dog", num_to_generate = 20 ) ) ``` Querying the network for representations. ```python import bittensor wallet = bittensor.wallet().create_if_non_existent() graph = bittensor.metagraph().sync() print ( bittensor.dendrite( wallet = wallet ).text_last_hidden_state ( endpoints = graph.endpoints[graph.incentive.sort()[1][-1]], // The highest ranked peer. inputs = "The quick brown fox jumped over the lazy dog" ) ) // Apply model. loss.backward() // Accumulate gradients on endpoints. ``` ### 3.2. Server Serving a custom model. ```python import bittensor import torch from transformers import GPT2Model, GPT2Config model = GPT2Model( GPT2Config(vocab_size = bittensor.__vocab_size__, n_embd = bittensor.__network_dim__ , n_head = 8)) optimizer = torch.optim.SGD( [ {"params": model.parameters()} ], lr = 0.01 ) def forward_text( pubkey, inputs_x ): return model( inputs_x ) def backward_text( pubkey, inputs_x, grads_dy ): with torch.enable_grad(): outputs_y = model( inputs_x.to(device) ).last_hidden_state torch.autograd.backward ( tensors = [ outputs_y.to(device) ], grad_tensors = [ grads_dy.to(device) ] ) optimizer.step() optimizer.zero_grad() wallet = bittensor.wallet().create().register() axon = bittensor.axon ( wallet = wallet, forward_text = forward_text, backward_text = backward_text ).start().serve() ``` ### 3.3. Validator Validating models by setting weights. ```python import bittensor import torch graph = bittensor.metagraph().sync() dataset = bittensor.dataset() chain_weights = torch.ones( [graph.n.item()], dtype = torch.float32 ) for batch in dataset.dataloader( 10 ): // Train chain_weights. bittensor.subtensor().set_weights ( weights = chain_weights, uids = graph.uids, wait_for_inclusion = True, wallet = bittensor.wallet(), ) ``` ## 4. Features ### 4.1. CLI Creating a new wallet. ```bash $ btcli new_coldkey $ btcli new_hotkey ``` Listing your wallets ```bash $ btcli list ``` Registering a wallet ```bash $ btcli register ``` Running a miner ```bash $ btcli run ``` Checking balances ```bash $ btcli overview ``` Checking the incentive mechanism. ```bash $ btcli metagraph ``` Transfering funds ```bash $ btcli transfer ``` Staking/Unstaking from a hotkey ```bash $ btcli stake $ btcli unstake ``` ### 4.2. Selecting the network to join There are two open Bittensor networks: staging (Nobunaga) and main (Nakamoto, Local). - Nobunaga (staging) - Nakamoto (main) - Local (localhost, mirrors nakamoto) ```bash $ export NETWORK=local $ python (..) --subtensor.network $NETWORK or >> btcli run --subtensor.network $NETWORK ``` ### 4.3. Running a template miner The following command will run Bittensor's template miner ```bash $ cd bittensor $ python ./bittensor/_neuron/text/template_miner/main.py ``` or ```python3 >> import bittensor >> bittensor.neurons.text.template_miner.neuron().run() ``` OR with customized settings ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/template_miner/main.py --wallet.name --wallet.hotkey ``` For the full list of settings, please run ```bash $ python3 ~/.bittensor/bittensor/bittensor/_neuron/neurons/text/template_miner/main.py --help ``` ### 4.4. Running a template server The template server follows a similar structure as the template miner. ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/core_server/main.py --wallet.name --wallet.hotkey ``` or ```python3 >> import bittensor >> bittensor.neurons.text.core_server.neuron().run() ``` For the full list of settings, please run ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/core_server/main.py --help ``` ### 4.5. Serving an endpoint on the network Endpoints are served to the bittensor network through the axon. The axon is instantiated via a wallet which holds an account on the Bittensor network. ```python import bittensor wallet = bittensor.wallet().create().register() axon = bittensor.axon ( wallet = wallet, forward_text = forward_text, backward_text = backward_text ).start().serve() ``` ### 4.6. Syncing with the chain/ Finding the ranks/stake/uids of other nodes Information from the chain is collected/formated by the metagraph. ```bash btcli metagraph ``` and ```python import bittensor meta = bittensor.metagraph() meta.sync() # --- uid --- print(meta.uids) # --- hotkeys --- print(meta.hotkeys) # --- ranks --- print(meta.R) # --- stake --- print(meta.S) ``` ### 4.7. Finding and creating the endpoints for other nodes in the network ```python import bittensor meta = bittensor.metagraph() meta.sync() ### Address for the node uid 0 endpoint_as_tensor = meta.endpoints[0] endpoint_as_object = meta.endpoint_objs[0] ``` ### 4.8. Querying others in the network ```python import bittensor meta = bittensor.metagraph() meta.sync() ### Address for the node uid 0 endpoint_0 = meta.endpoints[0] ### Creating the wallet, and dendrite wallet = bittensor.wallet().create().register() den = bittensor.dendrite(wallet = wallet) representations, _, _ = den.forward_text ( endpoints = endpoint_0, inputs = "Hello World" ) ``` ## 5. Release The release manager should follow the instructions of the [RELEASE_GUIDELINES.md](./RELEASE_GUIDELINES.md) document. ## 6. License The MIT License (MIT) Copyright © 2021 Yuma Rao Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## 7. Acknowledgments **learning-at-home/hivemind** %package help Summary: Development documents and examples for bittensor Provides: python3-bittensor-doc %description help ### Internet-scale Neural Networks [Discord](https://discord.gg/bittensor) • [Docs](https://docs.bittensor.com/) • [Network](https://www.bittensor.com/network) • [Research](https://drive.google.com/file/d/1VnsobL6lIAAqcA1_Tbm8AYIQscfJV4KU) • [Code](https://github.com/opentensor/BitTensor) This repository contains Bittensor's Python API, which can be used for the following purposes: 1. Querying the Bittensor network as a [client](https://github.com/opentensor/bittensor#31-client). 2. Running and building Bittensor miners and validators for [mining TAO](https://github.com/opentensor/bittensor#43-running-a-template-miner). 3. Pulling network [state information](https://github.com/opentensor/bittensor#3-using-bittensor). 4. Managing [TAO wallets](https://github.com/opentensor/bittensor#41-cli), balances, transfers, etc. Bittensor is a mining network, similar to Bitcoin, that includes built-in incentives designed to encourage miners to provide value by hosting trained or training machine learning models. These models can be queried by clients seeking inference over inputs, such as token-based text generations or numerical embeddings from a large foundation model like GPT-NeoX-20B. Token-based incentives are designed to drive the network's growth and distribute the value generated by the network directly to the individuals producing that value, without intermediaries. The network is open to all participants, and no individual or group has full control over what is learned, who can profit from it, or who can access it. To learn more about Bittensor, please read our [paper](https://drive.google.com/file/d/1VnsobL6lIAAqcA1_Tbm8AYIQscfJV4KU/view). - [1. Documentation](#1-documentation) - [2. Install](#2-install) - [3. Using Bittensor](#3-using-bittensor) - [3.1. Client](#31-client) - [3.2. Server](#32-server) - [3.3. Validator](#33-validator) - [4. Features](#4-features) - [4.1. Using the CLI](#41-cli) - [4.2. Selecting the network to join](#42-selecting-the-network-to-join) - [4.3. Running a template miner](#43-running-a-template-miner) - [4.4. Running a template server](#44-running-a-template-server) - [4.5. Syncing with the chain/ Finding the ranks/stake/uids of other nodes](#46-syncing-with-the-chain-finding-the-ranksstakeuids-of-other-nodes) - [4.6. Finding and creating the endpoints for other nodes in the network](#47-finding-and-creating-the-endpoints-for-other-nodes-in-the-network) - [4.7. Querying others in the network](#48-querying-others-in-the-network) - [5. Release](#5-release) - [6. License](#6-license) - [7. Acknowledgments](#7-acknowledgments) ## 1. Documentation https://docs.bittensor.com/ ## 2. Install Three ways to install Bittensor 1. Through the installer: ``` $ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/opentensor/bittensor/master/scripts/install.sh)" ``` 2. With pip: ```bash $ pip3 install bittensor ``` 3. From source: ``` $ git clone https://github.com/opentensor/bittensor.git $ python3 -m pip install -e bittensor/ ``` ## 3. Using Bittensor The following examples showcase how to use the Bittensor API for 3 separate purposes. ### 3.1. Client Querying the network for generations. ```python import bittensor wallet = bittensor.wallet().create_if_non_existent() graph = bittensor.metagraph().sync() print ( bittensor.dendrite( wallet = wallet ).generate ( endpoints = graph.endpoints[graph.incentive.sort()[1][-1]], // The highest ranked peer. prompt = "The quick brown fox jumped over the lazy dog", num_to_generate = 20 ) ) ``` Querying the network for representations. ```python import bittensor wallet = bittensor.wallet().create_if_non_existent() graph = bittensor.metagraph().sync() print ( bittensor.dendrite( wallet = wallet ).text_last_hidden_state ( endpoints = graph.endpoints[graph.incentive.sort()[1][-1]], // The highest ranked peer. inputs = "The quick brown fox jumped over the lazy dog" ) ) // Apply model. loss.backward() // Accumulate gradients on endpoints. ``` ### 3.2. Server Serving a custom model. ```python import bittensor import torch from transformers import GPT2Model, GPT2Config model = GPT2Model( GPT2Config(vocab_size = bittensor.__vocab_size__, n_embd = bittensor.__network_dim__ , n_head = 8)) optimizer = torch.optim.SGD( [ {"params": model.parameters()} ], lr = 0.01 ) def forward_text( pubkey, inputs_x ): return model( inputs_x ) def backward_text( pubkey, inputs_x, grads_dy ): with torch.enable_grad(): outputs_y = model( inputs_x.to(device) ).last_hidden_state torch.autograd.backward ( tensors = [ outputs_y.to(device) ], grad_tensors = [ grads_dy.to(device) ] ) optimizer.step() optimizer.zero_grad() wallet = bittensor.wallet().create().register() axon = bittensor.axon ( wallet = wallet, forward_text = forward_text, backward_text = backward_text ).start().serve() ``` ### 3.3. Validator Validating models by setting weights. ```python import bittensor import torch graph = bittensor.metagraph().sync() dataset = bittensor.dataset() chain_weights = torch.ones( [graph.n.item()], dtype = torch.float32 ) for batch in dataset.dataloader( 10 ): // Train chain_weights. bittensor.subtensor().set_weights ( weights = chain_weights, uids = graph.uids, wait_for_inclusion = True, wallet = bittensor.wallet(), ) ``` ## 4. Features ### 4.1. CLI Creating a new wallet. ```bash $ btcli new_coldkey $ btcli new_hotkey ``` Listing your wallets ```bash $ btcli list ``` Registering a wallet ```bash $ btcli register ``` Running a miner ```bash $ btcli run ``` Checking balances ```bash $ btcli overview ``` Checking the incentive mechanism. ```bash $ btcli metagraph ``` Transfering funds ```bash $ btcli transfer ``` Staking/Unstaking from a hotkey ```bash $ btcli stake $ btcli unstake ``` ### 4.2. Selecting the network to join There are two open Bittensor networks: staging (Nobunaga) and main (Nakamoto, Local). - Nobunaga (staging) - Nakamoto (main) - Local (localhost, mirrors nakamoto) ```bash $ export NETWORK=local $ python (..) --subtensor.network $NETWORK or >> btcli run --subtensor.network $NETWORK ``` ### 4.3. Running a template miner The following command will run Bittensor's template miner ```bash $ cd bittensor $ python ./bittensor/_neuron/text/template_miner/main.py ``` or ```python3 >> import bittensor >> bittensor.neurons.text.template_miner.neuron().run() ``` OR with customized settings ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/template_miner/main.py --wallet.name --wallet.hotkey ``` For the full list of settings, please run ```bash $ python3 ~/.bittensor/bittensor/bittensor/_neuron/neurons/text/template_miner/main.py --help ``` ### 4.4. Running a template server The template server follows a similar structure as the template miner. ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/core_server/main.py --wallet.name --wallet.hotkey ``` or ```python3 >> import bittensor >> bittensor.neurons.text.core_server.neuron().run() ``` For the full list of settings, please run ```bash $ cd bittensor $ python3 ./bittensor/_neuron/text/core_server/main.py --help ``` ### 4.5. Serving an endpoint on the network Endpoints are served to the bittensor network through the axon. The axon is instantiated via a wallet which holds an account on the Bittensor network. ```python import bittensor wallet = bittensor.wallet().create().register() axon = bittensor.axon ( wallet = wallet, forward_text = forward_text, backward_text = backward_text ).start().serve() ``` ### 4.6. Syncing with the chain/ Finding the ranks/stake/uids of other nodes Information from the chain is collected/formated by the metagraph. ```bash btcli metagraph ``` and ```python import bittensor meta = bittensor.metagraph() meta.sync() # --- uid --- print(meta.uids) # --- hotkeys --- print(meta.hotkeys) # --- ranks --- print(meta.R) # --- stake --- print(meta.S) ``` ### 4.7. Finding and creating the endpoints for other nodes in the network ```python import bittensor meta = bittensor.metagraph() meta.sync() ### Address for the node uid 0 endpoint_as_tensor = meta.endpoints[0] endpoint_as_object = meta.endpoint_objs[0] ``` ### 4.8. Querying others in the network ```python import bittensor meta = bittensor.metagraph() meta.sync() ### Address for the node uid 0 endpoint_0 = meta.endpoints[0] ### Creating the wallet, and dendrite wallet = bittensor.wallet().create().register() den = bittensor.dendrite(wallet = wallet) representations, _, _ = den.forward_text ( endpoints = endpoint_0, inputs = "Hello World" ) ``` ## 5. Release The release manager should follow the instructions of the [RELEASE_GUIDELINES.md](./RELEASE_GUIDELINES.md) document. ## 6. License The MIT License (MIT) Copyright © 2021 Yuma Rao Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## 7. Acknowledgments **learning-at-home/hivemind** %prep %autosetup -n bittensor-4.0.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-bittensor -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 4.0.1-1 - Package Spec generated