%global _empty_manifest_terminate_build 0 Name: python-dm-control Version: 1.0.12 Release: 1 Summary: Continuous control environments and MuJoCo Python bindings. License: Apache License 2.0 URL: https://github.com/deepmind/dm_control Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6b/dd/851022971997f7d064cbd4daa8f834ec48cb5e7728021a128821321934c6/dm_control-1.0.12.tar.gz BuildArch: noarch Requires: python3-absl-py Requires: python3-dm-env Requires: python3-dm-tree Requires: python3-glfw Requires: python3-labmaze Requires: python3-lxml Requires: python3-mujoco Requires: python3-numpy Requires: python3-protobuf Requires: python3-pyopengl Requires: python3-pyparsing Requires: python3-requests Requires: python3-setuptools Requires: python3-scipy Requires: python3-tqdm Requires: python3-h5py %description # `dm_control`: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. An **introductory tutorial** for this package is available as a Colaboratory notebook: [Open In Google Colab](https://colab.research.google.com/github/deepmind/dm_control/blob/main/tutorial.ipynb). %package -n python3-dm-control Summary: Continuous control environments and MuJoCo Python bindings. Provides: python-dm-control BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-dm-control # `dm_control`: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. An **introductory tutorial** for this package is available as a Colaboratory notebook: [Open In Google Colab](https://colab.research.google.com/github/deepmind/dm_control/blob/main/tutorial.ipynb). %package help Summary: Development documents and examples for dm-control Provides: python3-dm-control-doc %description help # `dm_control`: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. An **introductory tutorial** for this package is available as a Colaboratory notebook: [Open In Google Colab](https://colab.research.google.com/github/deepmind/dm_control/blob/main/tutorial.ipynb). %prep %autosetup -n dm-control-1.0.12 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-dm-control -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.0.12-1 - Package Spec generated