%global _empty_manifest_terminate_build 0 Name: python-keras-swa Version: 0.1.7 Release: 1 Summary: Simple stochastic weight averaging callback for Keras. License: MIT URL: https://github.com/simon-larsson/keras-swa Source0: https://mirrors.nju.edu.cn/pypi/web/packages/29/5d/487813b1983c777eeea282779ca6f9663570b721139034afa310e35de129/keras-swa-0.1.7.tar.gz BuildArch: noarch %description # Keras SWA - Stochastic Weight Averaging [![PyPI version](https://badge.fury.io/py/keras-swa.svg)](https://pypi.python.org/pypi/keras-swa/) [![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/simon-larsson/keras-swa/blob/master/LICENSE) This is an implemention of SWA for Keras and TF-Keras. ## Introduction Stochastic weight averaging (SWA) is build upon the same principle as [snapshot ensembling](https://arxiv.org/abs/1704.00109) and [fast geometric ensembling](https://arxiv.org/abs/1802.10026). The idea is that averaging select stages of training can lead to better models. Where as the two former methods average by sampling and ensembling models, SWA instead average weights. This has been shown to give comparable improvements confined into a single model. [![Illustration](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/swa_illustration.png)](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/swa_illustration.png) ## Paper - Title: Averaging Weights Leads to Wider Optima and Better Generalization - Link: https://arxiv.org/abs/1803.05407 - Authors: Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson - Repo: https://github.com/timgaripov/swa (PyTorch) ## Installation pip install keras-swa ### SWA API Keras callback object for SWA. ### Arguments **start_epoch** - Starting epoch for SWA. **lr_schedule** - Learning rate schedule. `'manual'` , `'constant'` or `'cyclic'`. **swa_lr** - Learning rate used when averaging weights. **swa_lr2** - Upper bound of learning rate for the cyclic schedule. **swa_freq** - Frequency of weight averagining. Used with cyclic schedules. **batch_size** - Batch size model is being trained with (only when using batch normalization). **verbose** - Verbosity mode, 0 or 1. ### Batch Normalization Last epoch will be a forward pass, i.e. have learning rate set to zero, for models with batch normalization. This is due to the fact that batch normalization uses the running mean and variance of it's preceding layer to make a normalization. SWA will offset this normalization by suddenly changing the weights in the end of training. Therefore, it is necessary for the last epoch to be used to reset and recalculate batch normalization running mean and variance for the updated weights. Batch normalization gamma and beta values are preserved. **When using manual schedule:** The SWA callback will set learning rate to zero in the last epoch if batch normalization is used. This must not be undone by any external learning rate schedulers for SWA to work properly. ### Learning Rate Schedules The default schedule is `'manual'`, allowing the learning rate to be controlled by an external learning rate scheduler or the optimizer. Then SWA will only affect the final weights and the learning rate of the last epoch if batch normalization is used. The schedules for the two predefined, `'constant'` or `'cyclic'` can be observed below. [![lr_schedules](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/lr_schedules.png)](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/lr_schedules.png) #### Example For Tensorflow Keras (with constant LR) ```python from sklearn.datasets import make_blobs from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import SGD from swa.tfkeras import SWA # make dataset X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2) y = to_categorical(y) # build model model = Sequential() model.add(Dense(50, input_dim=2, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1)) epochs = 100 start_epoch = 75 # define swa callback swa = SWA(start_epoch=start_epoch, lr_schedule='constant', swa_lr=0.01, verbose=1) # train model.fit(X, y, epochs=epochs, verbose=1, callbacks=[swa]) ``` Or for Keras (with Cyclic LR) ```python from sklearn.datasets import make_blobs from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, BatchNormalization from keras.optimizers import SGD from swa.keras import SWA # make dataset X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2) y = to_categorical(y) # build model model = Sequential() model.add(Dense(50, input_dim=2, activation='relu')) model.add(BatchNormalization()) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=SGD(learning_rate=0.1)) epochs = 100 start_epoch = 75 # define swa callback swa = SWA(start_epoch=start_epoch, lr_schedule='cyclic', swa_lr=0.001, swa_lr2=0.003, swa_freq=3, batch_size=32, # needed when using batch norm verbose=1) # train model.fit(X, y, batch_size=32, epochs=epochs, verbose=1, callbacks=[swa]) ``` Output ``` Model uses batch normalization. SWA will require last epoch to be a forward pass and will run with no learning rate Epoch 1/100 1000/1000 [==============================] - 1s 547us/sample - loss: 0.5529 Epoch 2/100 1000/1000 [==============================] - 0s 160us/sample - loss: 0.4720 ... Epoch 74/100 1000/1000 [==============================] - 0s 160us/sample - loss: 0.4249 Epoch 00075: starting stochastic weight averaging Epoch 75/100 1000/1000 [==============================] - 0s 164us/sample - loss: 0.4357 Epoch 76/100 1000/1000 [==============================] - 0s 165us/sample - loss: 0.4209 ... Epoch 99/100 1000/1000 [==============================] - 0s 167us/sample - loss: 0.4263 Epoch 00100: final model weights set to stochastic weight average Epoch 00100: reinitializing batch normalization layers Epoch 00100: running forward pass to adjust batch normalization Epoch 100/100 1000/1000 [==============================] - 0s 166us/sample - loss: 0.4408 ``` ### Collaborators - [Simon Larsson](https://github.com/simon-larsson "Github") - [Alex Stoken](https://github.com/alexstoken "Github") %package -n python3-keras-swa Summary: Simple stochastic weight averaging callback for Keras. Provides: python-keras-swa BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-keras-swa # Keras SWA - Stochastic Weight Averaging [![PyPI version](https://badge.fury.io/py/keras-swa.svg)](https://pypi.python.org/pypi/keras-swa/) [![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/simon-larsson/keras-swa/blob/master/LICENSE) This is an implemention of SWA for Keras and TF-Keras. ## Introduction Stochastic weight averaging (SWA) is build upon the same principle as [snapshot ensembling](https://arxiv.org/abs/1704.00109) and [fast geometric ensembling](https://arxiv.org/abs/1802.10026). The idea is that averaging select stages of training can lead to better models. Where as the two former methods average by sampling and ensembling models, SWA instead average weights. This has been shown to give comparable improvements confined into a single model. [![Illustration](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/swa_illustration.png)](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/swa_illustration.png) ## Paper - Title: Averaging Weights Leads to Wider Optima and Better Generalization - Link: https://arxiv.org/abs/1803.05407 - Authors: Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson - Repo: https://github.com/timgaripov/swa (PyTorch) ## Installation pip install keras-swa ### SWA API Keras callback object for SWA. ### Arguments **start_epoch** - Starting epoch for SWA. **lr_schedule** - Learning rate schedule. `'manual'` , `'constant'` or `'cyclic'`. **swa_lr** - Learning rate used when averaging weights. **swa_lr2** - Upper bound of learning rate for the cyclic schedule. **swa_freq** - Frequency of weight averagining. Used with cyclic schedules. **batch_size** - Batch size model is being trained with (only when using batch normalization). **verbose** - Verbosity mode, 0 or 1. ### Batch Normalization Last epoch will be a forward pass, i.e. have learning rate set to zero, for models with batch normalization. This is due to the fact that batch normalization uses the running mean and variance of it's preceding layer to make a normalization. SWA will offset this normalization by suddenly changing the weights in the end of training. Therefore, it is necessary for the last epoch to be used to reset and recalculate batch normalization running mean and variance for the updated weights. Batch normalization gamma and beta values are preserved. **When using manual schedule:** The SWA callback will set learning rate to zero in the last epoch if batch normalization is used. This must not be undone by any external learning rate schedulers for SWA to work properly. ### Learning Rate Schedules The default schedule is `'manual'`, allowing the learning rate to be controlled by an external learning rate scheduler or the optimizer. Then SWA will only affect the final weights and the learning rate of the last epoch if batch normalization is used. The schedules for the two predefined, `'constant'` or `'cyclic'` can be observed below. [![lr_schedules](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/lr_schedules.png)](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/lr_schedules.png) #### Example For Tensorflow Keras (with constant LR) ```python from sklearn.datasets import make_blobs from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import SGD from swa.tfkeras import SWA # make dataset X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2) y = to_categorical(y) # build model model = Sequential() model.add(Dense(50, input_dim=2, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1)) epochs = 100 start_epoch = 75 # define swa callback swa = SWA(start_epoch=start_epoch, lr_schedule='constant', swa_lr=0.01, verbose=1) # train model.fit(X, y, epochs=epochs, verbose=1, callbacks=[swa]) ``` Or for Keras (with Cyclic LR) ```python from sklearn.datasets import make_blobs from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, BatchNormalization from keras.optimizers import SGD from swa.keras import SWA # make dataset X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2) y = to_categorical(y) # build model model = Sequential() model.add(Dense(50, input_dim=2, activation='relu')) model.add(BatchNormalization()) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=SGD(learning_rate=0.1)) epochs = 100 start_epoch = 75 # define swa callback swa = SWA(start_epoch=start_epoch, lr_schedule='cyclic', swa_lr=0.001, swa_lr2=0.003, swa_freq=3, batch_size=32, # needed when using batch norm verbose=1) # train model.fit(X, y, batch_size=32, epochs=epochs, verbose=1, callbacks=[swa]) ``` Output ``` Model uses batch normalization. SWA will require last epoch to be a forward pass and will run with no learning rate Epoch 1/100 1000/1000 [==============================] - 1s 547us/sample - loss: 0.5529 Epoch 2/100 1000/1000 [==============================] - 0s 160us/sample - loss: 0.4720 ... Epoch 74/100 1000/1000 [==============================] - 0s 160us/sample - loss: 0.4249 Epoch 00075: starting stochastic weight averaging Epoch 75/100 1000/1000 [==============================] - 0s 164us/sample - loss: 0.4357 Epoch 76/100 1000/1000 [==============================] - 0s 165us/sample - loss: 0.4209 ... Epoch 99/100 1000/1000 [==============================] - 0s 167us/sample - loss: 0.4263 Epoch 00100: final model weights set to stochastic weight average Epoch 00100: reinitializing batch normalization layers Epoch 00100: running forward pass to adjust batch normalization Epoch 100/100 1000/1000 [==============================] - 0s 166us/sample - loss: 0.4408 ``` ### Collaborators - [Simon Larsson](https://github.com/simon-larsson "Github") - [Alex Stoken](https://github.com/alexstoken "Github") %package help Summary: Development documents and examples for keras-swa Provides: python3-keras-swa-doc %description help # Keras SWA - Stochastic Weight Averaging [![PyPI version](https://badge.fury.io/py/keras-swa.svg)](https://pypi.python.org/pypi/keras-swa/) [![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/simon-larsson/keras-swa/blob/master/LICENSE) This is an implemention of SWA for Keras and TF-Keras. ## Introduction Stochastic weight averaging (SWA) is build upon the same principle as [snapshot ensembling](https://arxiv.org/abs/1704.00109) and [fast geometric ensembling](https://arxiv.org/abs/1802.10026). The idea is that averaging select stages of training can lead to better models. Where as the two former methods average by sampling and ensembling models, SWA instead average weights. This has been shown to give comparable improvements confined into a single model. [![Illustration](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/swa_illustration.png)](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/swa_illustration.png) ## Paper - Title: Averaging Weights Leads to Wider Optima and Better Generalization - Link: https://arxiv.org/abs/1803.05407 - Authors: Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson - Repo: https://github.com/timgaripov/swa (PyTorch) ## Installation pip install keras-swa ### SWA API Keras callback object for SWA. ### Arguments **start_epoch** - Starting epoch for SWA. **lr_schedule** - Learning rate schedule. `'manual'` , `'constant'` or `'cyclic'`. **swa_lr** - Learning rate used when averaging weights. **swa_lr2** - Upper bound of learning rate for the cyclic schedule. **swa_freq** - Frequency of weight averagining. Used with cyclic schedules. **batch_size** - Batch size model is being trained with (only when using batch normalization). **verbose** - Verbosity mode, 0 or 1. ### Batch Normalization Last epoch will be a forward pass, i.e. have learning rate set to zero, for models with batch normalization. This is due to the fact that batch normalization uses the running mean and variance of it's preceding layer to make a normalization. SWA will offset this normalization by suddenly changing the weights in the end of training. Therefore, it is necessary for the last epoch to be used to reset and recalculate batch normalization running mean and variance for the updated weights. Batch normalization gamma and beta values are preserved. **When using manual schedule:** The SWA callback will set learning rate to zero in the last epoch if batch normalization is used. This must not be undone by any external learning rate schedulers for SWA to work properly. ### Learning Rate Schedules The default schedule is `'manual'`, allowing the learning rate to be controlled by an external learning rate scheduler or the optimizer. Then SWA will only affect the final weights and the learning rate of the last epoch if batch normalization is used. The schedules for the two predefined, `'constant'` or `'cyclic'` can be observed below. [![lr_schedules](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/lr_schedules.png)](https://raw.githubusercontent.com/simon-larsson/keras-swa/master/lr_schedules.png) #### Example For Tensorflow Keras (with constant LR) ```python from sklearn.datasets import make_blobs from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import SGD from swa.tfkeras import SWA # make dataset X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2) y = to_categorical(y) # build model model = Sequential() model.add(Dense(50, input_dim=2, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1)) epochs = 100 start_epoch = 75 # define swa callback swa = SWA(start_epoch=start_epoch, lr_schedule='constant', swa_lr=0.01, verbose=1) # train model.fit(X, y, epochs=epochs, verbose=1, callbacks=[swa]) ``` Or for Keras (with Cyclic LR) ```python from sklearn.datasets import make_blobs from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, BatchNormalization from keras.optimizers import SGD from swa.keras import SWA # make dataset X, y = make_blobs(n_samples=1000, centers=3, n_features=2, cluster_std=2, random_state=2) y = to_categorical(y) # build model model = Sequential() model.add(Dense(50, input_dim=2, activation='relu')) model.add(BatchNormalization()) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=SGD(learning_rate=0.1)) epochs = 100 start_epoch = 75 # define swa callback swa = SWA(start_epoch=start_epoch, lr_schedule='cyclic', swa_lr=0.001, swa_lr2=0.003, swa_freq=3, batch_size=32, # needed when using batch norm verbose=1) # train model.fit(X, y, batch_size=32, epochs=epochs, verbose=1, callbacks=[swa]) ``` Output ``` Model uses batch normalization. SWA will require last epoch to be a forward pass and will run with no learning rate Epoch 1/100 1000/1000 [==============================] - 1s 547us/sample - loss: 0.5529 Epoch 2/100 1000/1000 [==============================] - 0s 160us/sample - loss: 0.4720 ... Epoch 74/100 1000/1000 [==============================] - 0s 160us/sample - loss: 0.4249 Epoch 00075: starting stochastic weight averaging Epoch 75/100 1000/1000 [==============================] - 0s 164us/sample - loss: 0.4357 Epoch 76/100 1000/1000 [==============================] - 0s 165us/sample - loss: 0.4209 ... Epoch 99/100 1000/1000 [==============================] - 0s 167us/sample - loss: 0.4263 Epoch 00100: final model weights set to stochastic weight average Epoch 00100: reinitializing batch normalization layers Epoch 00100: running forward pass to adjust batch normalization Epoch 100/100 1000/1000 [==============================] - 0s 166us/sample - loss: 0.4408 ``` ### Collaborators - [Simon Larsson](https://github.com/simon-larsson "Github") - [Alex Stoken](https://github.com/alexstoken "Github") %prep %autosetup -n keras-swa-0.1.7 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-keras-swa -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.1.7-1 - Package Spec generated