%global _empty_manifest_terminate_build 0
Name: python-d3rlpy
Version: 1.1.1
Release: 1
Summary: An offline deep reinforcement learning library
License: MIT License
URL: https://github.com/takuseno/d3rlpy
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3b/0c/bba8b546426819a2c297ddd9f2268b5f156180057e8db4a6b66eafa78e9b/d3rlpy-1.1.1.tar.gz
Requires: python3-torch
Requires: python3-scikit-learn
Requires: python3-tensorboardX
Requires: python3-tqdm
Requires: python3-h5py
Requires: python3-gym
Requires: python3-click
Requires: python3-typing-extensions
Requires: python3-scipy
Requires: python3-structlog
Requires: python3-colorama
%description

# d3rlpy: An offline deep reinforcement learning library


[](https://d3rlpy.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/gh/takuseno/d3rlpy)
[](https://codeclimate.com/github/takuseno/d3rlpy/maintainability)
[](https://gitter.im/d3rlpy/d3rlpy)

d3rlpy is an offline deep reinforcement learning library for practitioners and researchers.
```py
import d3rlpy
dataset, env = d3rlpy.datasets.get_dataset("hopper-medium-v0")
# prepare algorithm
sac = d3rlpy.algos.SAC()
# train offline
sac.fit(dataset, n_steps=1000000)
# train online
sac.fit_online(env, n_steps=1000000)
# ready to control
actions = sac.predict(x)
```
- Documentation: https://d3rlpy.readthedocs.io
- Paper: https://arxiv.org/abs/2111.03788
## key features
### :zap: Most Practical RL Library Ever
- **offline RL**: d3rlpy supports state-of-the-art offline RL algorithms. Offline RL is extremely powerful when the online interaction is not feasible during training (e.g. robotics, medical).
- **online RL**: d3rlpy also supports conventional state-of-the-art online training algorithms without any compromising, which means that you can solve any kinds of RL problems only with `d3rlpy`.
- **advanced engineering**: d3rlpy is designed to implement the faster and efficient training algorithms. For example, you can train Atari environments with x4 less memory space and as fast as the fastest RL library.
### :beginner: User-friendly API
- **zero-knowledge of DL library**: d3rlpy provides many state-of-the-art algorithms through intuitive APIs. You can become a RL engineer even without knowing how to use deep learning libraries.
- **extensive documentation**: d3rlpy is fully documented and accompanied with tutorials and reproduction scripts of the original papers.
### :rocket: Beyond State-of-the-art
- **distributional Q function**: d3rlpy is the first library that supports distributional Q functions in the all algorithms. The distributional Q function is known as the very powerful method to achieve the state-of-the-performance.
- **many tweek options**: d3rlpy is also the first to support N-step TD backup and ensemble value functions in the all algorithms, which lead you to the place no one ever reached yet.
## installation
d3rlpy supports Linux, macOS and Windows.
### PyPI (recommended)
[](https://badge.fury.io/py/d3rlpy)

```
$ pip install d3rlpy
```
### Anaconda
[](https://anaconda.org/conda-forge/d3rlpy)
[](https://anaconda.org/conda-forge/d3rlpy)
[](https://anaconda.org/conda-forge/d3rlpy)
```
$ conda install -c conda-forge d3rlpy
```
### Docker

```
$ docker run -it --gpus all --name d3rlpy takuseno/d3rlpy:latest bash
```
## supported algorithms
| algorithm | discrete control | continuous control | offline RL? |
|:-|:-:|:-:|:-:|
| Behavior Cloning (supervised learning) | :white_check_mark: | :white_check_mark: | |
| [Neural Fitted Q Iteration (NFQ)](https://link.springer.com/chapter/10.1007/11564096_32) | :white_check_mark: | :no_entry: | :white_check_mark: |
| [Deep Q-Network (DQN)](https://www.nature.com/articles/nature14236) | :white_check_mark: | :no_entry: | |
| [Double DQN](https://arxiv.org/abs/1509.06461) | :white_check_mark: | :no_entry: | |
| [Deep Deterministic Policy Gradients (DDPG)](https://arxiv.org/abs/1509.02971) | :no_entry: | :white_check_mark: | |
| [Twin Delayed Deep Deterministic Policy Gradients (TD3)](https://arxiv.org/abs/1802.09477) | :no_entry: | :white_check_mark: | |
| [Soft Actor-Critic (SAC)](https://arxiv.org/abs/1812.05905) | :white_check_mark: | :white_check_mark: | |
| [Batch Constrained Q-learning (BCQ)](https://arxiv.org/abs/1812.02900) | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| [Bootstrapping Error Accumulation Reduction (BEAR)](https://arxiv.org/abs/1906.00949) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Conservative Q-Learning (CQL)](https://arxiv.org/abs/2006.04779) | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| [Advantage Weighted Actor-Critic (AWAC)](https://arxiv.org/abs/2006.09359) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Critic Reguralized Regression (CRR)](https://arxiv.org/abs/2006.15134) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Policy in Latent Action Space (PLAS)](https://arxiv.org/abs/2011.07213) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [TD3+BC](https://arxiv.org/abs/2106.06860) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Implicit Q-Learning (IQL)](https://arxiv.org/abs/2110.06169) | :no_entry: | :white_check_mark: | :white_check_mark: |
## supported Q functions
- [x] standard Q function
- [x] [Quantile Regression](https://arxiv.org/abs/1710.10044)
- [x] [Implicit Quantile Network](https://arxiv.org/abs/1806.06923)
## experimental features
- Model-based Algorithms
- [Model-based Offline Policy Optimization (MOPO)](https://arxiv.org/abs/2005.13239)
- [Conservative Offline Model-Based Policy Optimization (COMBO)](https://arxiv.org/abs/2102.08363)
- Q-functions
- [Fully parametrized Quantile Function](https://arxiv.org/abs/1911.02140) (experimental)
## benchmark results
d3rlpy is benchmarked to ensure the implementation quality.
The benchmark scripts are available [reproductions](https://github.com/takuseno/d3rlpy/tree/master/reproductions) directory.
The benchmark results are available [d3rlpy-benchmarks](https://github.com/takuseno/d3rlpy-benchmarks) repository.
## examples
### MuJoCo

```py
import d3rlpy
# prepare dataset
dataset, env = d3rlpy.datasets.get_d4rl('hopper-medium-v0')
# prepare algorithm
cql = d3rlpy.algos.CQL(use_gpu=True)
# train
cql.fit(
dataset,
eval_episodes=dataset,
n_epochs=100,
scorers={
'environment': d3rlpy.metrics.evaluate_on_environment(env),
'td_error': d3rlpy.metrics.td_error_scorer,
},
)
```
See more datasets at [d4rl](https://github.com/rail-berkeley/d4rl).
### Atari 2600

```py
import d3rlpy
from sklearn.model_selection import train_test_split
# prepare dataset
dataset, env = d3rlpy.datasets.get_atari('breakout-expert-v0')
# split dataset
train_episodes, test_episodes = train_test_split(dataset, test_size=0.1)
# prepare algorithm
cql = d3rlpy.algos.DiscreteCQL(
n_frames=4,
q_func_factory='qr',
scaler='pixel',
use_gpu=True,
)
# start training
cql.fit(
train_episodes,
eval_episodes=test_episodes,
n_epochs=100,
scorers={
'environment': d3rlpy.metrics.evaluate_on_environment(env),
'td_error': d3rlpy.metrics.td_error_scorer,
},
)
```
See more Atari datasets at [d4rl-atari](https://github.com/takuseno/d4rl-atari).
### Online Training
```py
import d3rlpy
import gym
# prepare environment
env = gym.make('HopperBulletEnv-v0')
eval_env = gym.make('HopperBulletEnv-v0')
# prepare algorithm
sac = d3rlpy.algos.SAC(use_gpu=True)
# prepare replay buffer
buffer = d3rlpy.online.buffers.ReplayBuffer(maxlen=1000000, env=env)
# start training
sac.fit_online(env, buffer, n_steps=1000000, eval_env=eval_env)
```
## tutorials
Try cartpole examples on Google Colaboratory!
- offline RL tutorial: [](https://colab.research.google.com/github/takuseno/d3rlpy/blob/master/tutorials/cartpole.ipynb)
- online RL tutorial: [](https://colab.research.google.com/github/takuseno/d3rlpy/blob/master/tutorials/online.ipynb)
More tutorial documentations are available [here](https://d3rlpy.readthedocs.io/en/stable/tutorials/index.html).
## contributions
Any kind of contribution to d3rlpy would be highly appreciated!
Please check the [contribution guide](CONTRIBUTING.md).
The release planning can be checked at [milestones](https://github.com/takuseno/d3rlpy/milestones).
## community
| Channel | Link |
|:-|:-|
| Chat | [Gitter](https://gitter.im/d3rlpy/d3rlpy) |
| Issues | [GitHub Issues](https://github.com/takuseno/d3rlpy/issues) |
## family projects
| Project | Description |
|:-:|:-|
| [d4rl-pybullet](https://github.com/takuseno/d4rl-pybullet) | An offline RL datasets of PyBullet tasks |
| [d4rl-atari](https://github.com/takuseno/d4rl-atari) | A d4rl-style library of Google's Atari 2600 datasets |
| [MINERVA](https://github.com/takuseno/minerva) | An out-of-the-box GUI tool for offline RL |
## roadmap
The roadmap to the future release is available in [ROADMAP.md](ROADMAP.md).
## citation
The paper is available [here](https://arxiv.org/abs/2111.03788).
```
@InProceedings{seno2021d3rlpy,
author = {Takuma Seno, Michita Imai},
title = {d3rlpy: An Offline Deep Reinforcement Library},
booktitle = {NeurIPS 2021 Offline Reinforcement Learning Workshop},
month = {December},
year = {2021}
}
```
## acknowledgement
This work is supported by Information-technology Promotion Agency, Japan
(IPA), Exploratory IT Human Resources Project (MITOU Program) in the fiscal
year 2020.
%package -n python3-d3rlpy
Summary: An offline deep reinforcement learning library
Provides: python-d3rlpy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-d3rlpy

# d3rlpy: An offline deep reinforcement learning library


[](https://d3rlpy.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/gh/takuseno/d3rlpy)
[](https://codeclimate.com/github/takuseno/d3rlpy/maintainability)
[](https://gitter.im/d3rlpy/d3rlpy)

d3rlpy is an offline deep reinforcement learning library for practitioners and researchers.
```py
import d3rlpy
dataset, env = d3rlpy.datasets.get_dataset("hopper-medium-v0")
# prepare algorithm
sac = d3rlpy.algos.SAC()
# train offline
sac.fit(dataset, n_steps=1000000)
# train online
sac.fit_online(env, n_steps=1000000)
# ready to control
actions = sac.predict(x)
```
- Documentation: https://d3rlpy.readthedocs.io
- Paper: https://arxiv.org/abs/2111.03788
## key features
### :zap: Most Practical RL Library Ever
- **offline RL**: d3rlpy supports state-of-the-art offline RL algorithms. Offline RL is extremely powerful when the online interaction is not feasible during training (e.g. robotics, medical).
- **online RL**: d3rlpy also supports conventional state-of-the-art online training algorithms without any compromising, which means that you can solve any kinds of RL problems only with `d3rlpy`.
- **advanced engineering**: d3rlpy is designed to implement the faster and efficient training algorithms. For example, you can train Atari environments with x4 less memory space and as fast as the fastest RL library.
### :beginner: User-friendly API
- **zero-knowledge of DL library**: d3rlpy provides many state-of-the-art algorithms through intuitive APIs. You can become a RL engineer even without knowing how to use deep learning libraries.
- **extensive documentation**: d3rlpy is fully documented and accompanied with tutorials and reproduction scripts of the original papers.
### :rocket: Beyond State-of-the-art
- **distributional Q function**: d3rlpy is the first library that supports distributional Q functions in the all algorithms. The distributional Q function is known as the very powerful method to achieve the state-of-the-performance.
- **many tweek options**: d3rlpy is also the first to support N-step TD backup and ensemble value functions in the all algorithms, which lead you to the place no one ever reached yet.
## installation
d3rlpy supports Linux, macOS and Windows.
### PyPI (recommended)
[](https://badge.fury.io/py/d3rlpy)

```
$ pip install d3rlpy
```
### Anaconda
[](https://anaconda.org/conda-forge/d3rlpy)
[](https://anaconda.org/conda-forge/d3rlpy)
[](https://anaconda.org/conda-forge/d3rlpy)
```
$ conda install -c conda-forge d3rlpy
```
### Docker

```
$ docker run -it --gpus all --name d3rlpy takuseno/d3rlpy:latest bash
```
## supported algorithms
| algorithm | discrete control | continuous control | offline RL? |
|:-|:-:|:-:|:-:|
| Behavior Cloning (supervised learning) | :white_check_mark: | :white_check_mark: | |
| [Neural Fitted Q Iteration (NFQ)](https://link.springer.com/chapter/10.1007/11564096_32) | :white_check_mark: | :no_entry: | :white_check_mark: |
| [Deep Q-Network (DQN)](https://www.nature.com/articles/nature14236) | :white_check_mark: | :no_entry: | |
| [Double DQN](https://arxiv.org/abs/1509.06461) | :white_check_mark: | :no_entry: | |
| [Deep Deterministic Policy Gradients (DDPG)](https://arxiv.org/abs/1509.02971) | :no_entry: | :white_check_mark: | |
| [Twin Delayed Deep Deterministic Policy Gradients (TD3)](https://arxiv.org/abs/1802.09477) | :no_entry: | :white_check_mark: | |
| [Soft Actor-Critic (SAC)](https://arxiv.org/abs/1812.05905) | :white_check_mark: | :white_check_mark: | |
| [Batch Constrained Q-learning (BCQ)](https://arxiv.org/abs/1812.02900) | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| [Bootstrapping Error Accumulation Reduction (BEAR)](https://arxiv.org/abs/1906.00949) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Conservative Q-Learning (CQL)](https://arxiv.org/abs/2006.04779) | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| [Advantage Weighted Actor-Critic (AWAC)](https://arxiv.org/abs/2006.09359) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Critic Reguralized Regression (CRR)](https://arxiv.org/abs/2006.15134) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Policy in Latent Action Space (PLAS)](https://arxiv.org/abs/2011.07213) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [TD3+BC](https://arxiv.org/abs/2106.06860) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Implicit Q-Learning (IQL)](https://arxiv.org/abs/2110.06169) | :no_entry: | :white_check_mark: | :white_check_mark: |
## supported Q functions
- [x] standard Q function
- [x] [Quantile Regression](https://arxiv.org/abs/1710.10044)
- [x] [Implicit Quantile Network](https://arxiv.org/abs/1806.06923)
## experimental features
- Model-based Algorithms
- [Model-based Offline Policy Optimization (MOPO)](https://arxiv.org/abs/2005.13239)
- [Conservative Offline Model-Based Policy Optimization (COMBO)](https://arxiv.org/abs/2102.08363)
- Q-functions
- [Fully parametrized Quantile Function](https://arxiv.org/abs/1911.02140) (experimental)
## benchmark results
d3rlpy is benchmarked to ensure the implementation quality.
The benchmark scripts are available [reproductions](https://github.com/takuseno/d3rlpy/tree/master/reproductions) directory.
The benchmark results are available [d3rlpy-benchmarks](https://github.com/takuseno/d3rlpy-benchmarks) repository.
## examples
### MuJoCo

```py
import d3rlpy
# prepare dataset
dataset, env = d3rlpy.datasets.get_d4rl('hopper-medium-v0')
# prepare algorithm
cql = d3rlpy.algos.CQL(use_gpu=True)
# train
cql.fit(
dataset,
eval_episodes=dataset,
n_epochs=100,
scorers={
'environment': d3rlpy.metrics.evaluate_on_environment(env),
'td_error': d3rlpy.metrics.td_error_scorer,
},
)
```
See more datasets at [d4rl](https://github.com/rail-berkeley/d4rl).
### Atari 2600

```py
import d3rlpy
from sklearn.model_selection import train_test_split
# prepare dataset
dataset, env = d3rlpy.datasets.get_atari('breakout-expert-v0')
# split dataset
train_episodes, test_episodes = train_test_split(dataset, test_size=0.1)
# prepare algorithm
cql = d3rlpy.algos.DiscreteCQL(
n_frames=4,
q_func_factory='qr',
scaler='pixel',
use_gpu=True,
)
# start training
cql.fit(
train_episodes,
eval_episodes=test_episodes,
n_epochs=100,
scorers={
'environment': d3rlpy.metrics.evaluate_on_environment(env),
'td_error': d3rlpy.metrics.td_error_scorer,
},
)
```
See more Atari datasets at [d4rl-atari](https://github.com/takuseno/d4rl-atari).
### Online Training
```py
import d3rlpy
import gym
# prepare environment
env = gym.make('HopperBulletEnv-v0')
eval_env = gym.make('HopperBulletEnv-v0')
# prepare algorithm
sac = d3rlpy.algos.SAC(use_gpu=True)
# prepare replay buffer
buffer = d3rlpy.online.buffers.ReplayBuffer(maxlen=1000000, env=env)
# start training
sac.fit_online(env, buffer, n_steps=1000000, eval_env=eval_env)
```
## tutorials
Try cartpole examples on Google Colaboratory!
- offline RL tutorial: [](https://colab.research.google.com/github/takuseno/d3rlpy/blob/master/tutorials/cartpole.ipynb)
- online RL tutorial: [](https://colab.research.google.com/github/takuseno/d3rlpy/blob/master/tutorials/online.ipynb)
More tutorial documentations are available [here](https://d3rlpy.readthedocs.io/en/stable/tutorials/index.html).
## contributions
Any kind of contribution to d3rlpy would be highly appreciated!
Please check the [contribution guide](CONTRIBUTING.md).
The release planning can be checked at [milestones](https://github.com/takuseno/d3rlpy/milestones).
## community
| Channel | Link |
|:-|:-|
| Chat | [Gitter](https://gitter.im/d3rlpy/d3rlpy) |
| Issues | [GitHub Issues](https://github.com/takuseno/d3rlpy/issues) |
## family projects
| Project | Description |
|:-:|:-|
| [d4rl-pybullet](https://github.com/takuseno/d4rl-pybullet) | An offline RL datasets of PyBullet tasks |
| [d4rl-atari](https://github.com/takuseno/d4rl-atari) | A d4rl-style library of Google's Atari 2600 datasets |
| [MINERVA](https://github.com/takuseno/minerva) | An out-of-the-box GUI tool for offline RL |
## roadmap
The roadmap to the future release is available in [ROADMAP.md](ROADMAP.md).
## citation
The paper is available [here](https://arxiv.org/abs/2111.03788).
```
@InProceedings{seno2021d3rlpy,
author = {Takuma Seno, Michita Imai},
title = {d3rlpy: An Offline Deep Reinforcement Library},
booktitle = {NeurIPS 2021 Offline Reinforcement Learning Workshop},
month = {December},
year = {2021}
}
```
## acknowledgement
This work is supported by Information-technology Promotion Agency, Japan
(IPA), Exploratory IT Human Resources Project (MITOU Program) in the fiscal
year 2020.
%package help
Summary: Development documents and examples for d3rlpy
Provides: python3-d3rlpy-doc
%description help

# d3rlpy: An offline deep reinforcement learning library


[](https://d3rlpy.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/gh/takuseno/d3rlpy)
[](https://codeclimate.com/github/takuseno/d3rlpy/maintainability)
[](https://gitter.im/d3rlpy/d3rlpy)

d3rlpy is an offline deep reinforcement learning library for practitioners and researchers.
```py
import d3rlpy
dataset, env = d3rlpy.datasets.get_dataset("hopper-medium-v0")
# prepare algorithm
sac = d3rlpy.algos.SAC()
# train offline
sac.fit(dataset, n_steps=1000000)
# train online
sac.fit_online(env, n_steps=1000000)
# ready to control
actions = sac.predict(x)
```
- Documentation: https://d3rlpy.readthedocs.io
- Paper: https://arxiv.org/abs/2111.03788
## key features
### :zap: Most Practical RL Library Ever
- **offline RL**: d3rlpy supports state-of-the-art offline RL algorithms. Offline RL is extremely powerful when the online interaction is not feasible during training (e.g. robotics, medical).
- **online RL**: d3rlpy also supports conventional state-of-the-art online training algorithms without any compromising, which means that you can solve any kinds of RL problems only with `d3rlpy`.
- **advanced engineering**: d3rlpy is designed to implement the faster and efficient training algorithms. For example, you can train Atari environments with x4 less memory space and as fast as the fastest RL library.
### :beginner: User-friendly API
- **zero-knowledge of DL library**: d3rlpy provides many state-of-the-art algorithms through intuitive APIs. You can become a RL engineer even without knowing how to use deep learning libraries.
- **extensive documentation**: d3rlpy is fully documented and accompanied with tutorials and reproduction scripts of the original papers.
### :rocket: Beyond State-of-the-art
- **distributional Q function**: d3rlpy is the first library that supports distributional Q functions in the all algorithms. The distributional Q function is known as the very powerful method to achieve the state-of-the-performance.
- **many tweek options**: d3rlpy is also the first to support N-step TD backup and ensemble value functions in the all algorithms, which lead you to the place no one ever reached yet.
## installation
d3rlpy supports Linux, macOS and Windows.
### PyPI (recommended)
[](https://badge.fury.io/py/d3rlpy)

```
$ pip install d3rlpy
```
### Anaconda
[](https://anaconda.org/conda-forge/d3rlpy)
[](https://anaconda.org/conda-forge/d3rlpy)
[](https://anaconda.org/conda-forge/d3rlpy)
```
$ conda install -c conda-forge d3rlpy
```
### Docker

```
$ docker run -it --gpus all --name d3rlpy takuseno/d3rlpy:latest bash
```
## supported algorithms
| algorithm | discrete control | continuous control | offline RL? |
|:-|:-:|:-:|:-:|
| Behavior Cloning (supervised learning) | :white_check_mark: | :white_check_mark: | |
| [Neural Fitted Q Iteration (NFQ)](https://link.springer.com/chapter/10.1007/11564096_32) | :white_check_mark: | :no_entry: | :white_check_mark: |
| [Deep Q-Network (DQN)](https://www.nature.com/articles/nature14236) | :white_check_mark: | :no_entry: | |
| [Double DQN](https://arxiv.org/abs/1509.06461) | :white_check_mark: | :no_entry: | |
| [Deep Deterministic Policy Gradients (DDPG)](https://arxiv.org/abs/1509.02971) | :no_entry: | :white_check_mark: | |
| [Twin Delayed Deep Deterministic Policy Gradients (TD3)](https://arxiv.org/abs/1802.09477) | :no_entry: | :white_check_mark: | |
| [Soft Actor-Critic (SAC)](https://arxiv.org/abs/1812.05905) | :white_check_mark: | :white_check_mark: | |
| [Batch Constrained Q-learning (BCQ)](https://arxiv.org/abs/1812.02900) | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| [Bootstrapping Error Accumulation Reduction (BEAR)](https://arxiv.org/abs/1906.00949) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Conservative Q-Learning (CQL)](https://arxiv.org/abs/2006.04779) | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| [Advantage Weighted Actor-Critic (AWAC)](https://arxiv.org/abs/2006.09359) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Critic Reguralized Regression (CRR)](https://arxiv.org/abs/2006.15134) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Policy in Latent Action Space (PLAS)](https://arxiv.org/abs/2011.07213) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [TD3+BC](https://arxiv.org/abs/2106.06860) | :no_entry: | :white_check_mark: | :white_check_mark: |
| [Implicit Q-Learning (IQL)](https://arxiv.org/abs/2110.06169) | :no_entry: | :white_check_mark: | :white_check_mark: |
## supported Q functions
- [x] standard Q function
- [x] [Quantile Regression](https://arxiv.org/abs/1710.10044)
- [x] [Implicit Quantile Network](https://arxiv.org/abs/1806.06923)
## experimental features
- Model-based Algorithms
- [Model-based Offline Policy Optimization (MOPO)](https://arxiv.org/abs/2005.13239)
- [Conservative Offline Model-Based Policy Optimization (COMBO)](https://arxiv.org/abs/2102.08363)
- Q-functions
- [Fully parametrized Quantile Function](https://arxiv.org/abs/1911.02140) (experimental)
## benchmark results
d3rlpy is benchmarked to ensure the implementation quality.
The benchmark scripts are available [reproductions](https://github.com/takuseno/d3rlpy/tree/master/reproductions) directory.
The benchmark results are available [d3rlpy-benchmarks](https://github.com/takuseno/d3rlpy-benchmarks) repository.
## examples
### MuJoCo

```py
import d3rlpy
# prepare dataset
dataset, env = d3rlpy.datasets.get_d4rl('hopper-medium-v0')
# prepare algorithm
cql = d3rlpy.algos.CQL(use_gpu=True)
# train
cql.fit(
dataset,
eval_episodes=dataset,
n_epochs=100,
scorers={
'environment': d3rlpy.metrics.evaluate_on_environment(env),
'td_error': d3rlpy.metrics.td_error_scorer,
},
)
```
See more datasets at [d4rl](https://github.com/rail-berkeley/d4rl).
### Atari 2600

```py
import d3rlpy
from sklearn.model_selection import train_test_split
# prepare dataset
dataset, env = d3rlpy.datasets.get_atari('breakout-expert-v0')
# split dataset
train_episodes, test_episodes = train_test_split(dataset, test_size=0.1)
# prepare algorithm
cql = d3rlpy.algos.DiscreteCQL(
n_frames=4,
q_func_factory='qr',
scaler='pixel',
use_gpu=True,
)
# start training
cql.fit(
train_episodes,
eval_episodes=test_episodes,
n_epochs=100,
scorers={
'environment': d3rlpy.metrics.evaluate_on_environment(env),
'td_error': d3rlpy.metrics.td_error_scorer,
},
)
```
See more Atari datasets at [d4rl-atari](https://github.com/takuseno/d4rl-atari).
### Online Training
```py
import d3rlpy
import gym
# prepare environment
env = gym.make('HopperBulletEnv-v0')
eval_env = gym.make('HopperBulletEnv-v0')
# prepare algorithm
sac = d3rlpy.algos.SAC(use_gpu=True)
# prepare replay buffer
buffer = d3rlpy.online.buffers.ReplayBuffer(maxlen=1000000, env=env)
# start training
sac.fit_online(env, buffer, n_steps=1000000, eval_env=eval_env)
```
## tutorials
Try cartpole examples on Google Colaboratory!
- offline RL tutorial: [](https://colab.research.google.com/github/takuseno/d3rlpy/blob/master/tutorials/cartpole.ipynb)
- online RL tutorial: [](https://colab.research.google.com/github/takuseno/d3rlpy/blob/master/tutorials/online.ipynb)
More tutorial documentations are available [here](https://d3rlpy.readthedocs.io/en/stable/tutorials/index.html).
## contributions
Any kind of contribution to d3rlpy would be highly appreciated!
Please check the [contribution guide](CONTRIBUTING.md).
The release planning can be checked at [milestones](https://github.com/takuseno/d3rlpy/milestones).
## community
| Channel | Link |
|:-|:-|
| Chat | [Gitter](https://gitter.im/d3rlpy/d3rlpy) |
| Issues | [GitHub Issues](https://github.com/takuseno/d3rlpy/issues) |
## family projects
| Project | Description |
|:-:|:-|
| [d4rl-pybullet](https://github.com/takuseno/d4rl-pybullet) | An offline RL datasets of PyBullet tasks |
| [d4rl-atari](https://github.com/takuseno/d4rl-atari) | A d4rl-style library of Google's Atari 2600 datasets |
| [MINERVA](https://github.com/takuseno/minerva) | An out-of-the-box GUI tool for offline RL |
## roadmap
The roadmap to the future release is available in [ROADMAP.md](ROADMAP.md).
## citation
The paper is available [here](https://arxiv.org/abs/2111.03788).
```
@InProceedings{seno2021d3rlpy,
author = {Takuma Seno, Michita Imai},
title = {d3rlpy: An Offline Deep Reinforcement Library},
booktitle = {NeurIPS 2021 Offline Reinforcement Learning Workshop},
month = {December},
year = {2021}
}
```
## acknowledgement
This work is supported by Information-technology Promotion Agency, Japan
(IPA), Exploratory IT Human Resources Project (MITOU Program) in the fiscal
year 2020.
%prep
%autosetup -n d3rlpy-1.1.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-d3rlpy -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot - 1.1.1-1
- Package Spec generated