%global _empty_manifest_terminate_build 0 Name: python-wordnet Version: 0.0.1b2 Release: 1 Summary: An module to create network of words on bases of realtive sense under a corpus of document. License: GNU General Public License v3 URL: https://anuragkumarak95.github.io/wordnet/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e5/c9/93f89fc3613db301ff92be67aa67a5f9e4b5e212081ce3569e84a9e57304/wordnet-0.0.1b2.tar.gz BuildArch: noarch %description # WordNet [![Build Status](https://travis-ci.org/anuragkumarak95/wordnet.svg?branch=master)](https://travis-ci.org/anuragkumarak95/wordnet) [![codecov](https://codecov.io/gh/anuragkumarak95/wordnet/branch/master/graph/badge.svg)](https://codecov.io/gh/anuragkumarak95/wordnet) [![Requirements Status](https://requires.io/github/anuragkumarak95/wordnet/requirements.svg?branch=master)](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master) Create a Simple **network of words** related to each other using **Twitter Streaming API**. ![Made with python-3.5](http://forthebadge.com/images/badges/made-with-python.svg) Major parts of this project. * `Streamer` : ~/twitter_streaming.py * `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py * `NN` words Gene :~/ wordnet/nn_words.py * `NETWORK` Gene : ~/wordnet/word_net.py ## Using Streamer Functionality 1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go.. 1. Go to root-dir(~), Create a config.py file with details mentioned below: ```python # Variables that contains the user credentials to access Twitter Streaming API # this link will help you(http://socialmedia-class.org/twittertutorial.html) access_token = "xxx-xx-xxxx" access_token_secret = "xxxxx" consumer_key = "xxxxxx" consumer_secret = "xxxxxxxx" ``` 1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`. ## Using WordNet Module 1. `Clone this repo` and install wordnet module using this script, $python setup.py install 1. To create a `TF-IDF` structure file for every doc, use: ```python from wordnet import find_tf_idf df, tf_idf = find_tf_idf( file_names=['file/path1','file/path2',..], # paths of files to be processed.(create using twitter_streamer.py) prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None dump_path='path/to/dump/file.tfidfpkl' # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None ) ''' if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned, else will only return the new tf-idf list of dictionaries, and df dictionary. ''' ``` 1. To use `NN` Word Gene of this module, simply use wordnet.find_knn: ```python from wordnet import find_knn words = find_knn( tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. input_word='german', # a word for which k nearest neighbours are required. k=10, # k = number of neighbours required, default=10 rand_on=True # rand_on = either to randomly skip few words or show initial k words default=True ) ''' This function will return a list of words closely related to provided input_word refering to tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump file dumped by the same function at your choosen directory. the file contains 2 lists in format (idf, tf_idf). ''' ``` 1. To create a Word `Network`, use : ```python from wordnet import generate_net word_net = generate_net( df=df, # this df is returned by find_tf_idf() above. tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. dump_path='path/to/dump.wrnt' # dump_path = path to dump the generated files, format standard is .wrnt. default=None ) ''' this function returns a dict of Word entities, with word as key. ''' ``` 1. To retrieve a Word `Network`, use : ```python from wordnet import retrieve_net word_net = retrieve_net( 'path/to/network.wrnt' # path to network file, format standard is .wrnt. ) ''' this function returns a dictionary of Word entities, with word as key. ''' ``` 1. To retrieve list of words that are at some depth form a root word in the network, use: ```python from wordnet import return_net words = return_net( word, # root word in this process. word_net, # word network generated from generate_net() depth=1 # depth to which you wish this word collector to traverse. ) ''' This function returns a list of words that are at provided depth from root word in the network provided. ''' ``` ### Test Run To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected. test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`. > `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module. #### Contributions Are welcomed here ![BUILT WITH LOVE](http://forthebadge.com/images/badges/built-with-love.svg) by [@Anurag](https://github.com/anuragkumarak95) %package -n python3-wordnet Summary: An module to create network of words on bases of realtive sense under a corpus of document. Provides: python-wordnet BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-wordnet # WordNet [![Build Status](https://travis-ci.org/anuragkumarak95/wordnet.svg?branch=master)](https://travis-ci.org/anuragkumarak95/wordnet) [![codecov](https://codecov.io/gh/anuragkumarak95/wordnet/branch/master/graph/badge.svg)](https://codecov.io/gh/anuragkumarak95/wordnet) [![Requirements Status](https://requires.io/github/anuragkumarak95/wordnet/requirements.svg?branch=master)](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master) Create a Simple **network of words** related to each other using **Twitter Streaming API**. ![Made with python-3.5](http://forthebadge.com/images/badges/made-with-python.svg) Major parts of this project. * `Streamer` : ~/twitter_streaming.py * `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py * `NN` words Gene :~/ wordnet/nn_words.py * `NETWORK` Gene : ~/wordnet/word_net.py ## Using Streamer Functionality 1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go.. 1. Go to root-dir(~), Create a config.py file with details mentioned below: ```python # Variables that contains the user credentials to access Twitter Streaming API # this link will help you(http://socialmedia-class.org/twittertutorial.html) access_token = "xxx-xx-xxxx" access_token_secret = "xxxxx" consumer_key = "xxxxxx" consumer_secret = "xxxxxxxx" ``` 1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`. ## Using WordNet Module 1. `Clone this repo` and install wordnet module using this script, $python setup.py install 1. To create a `TF-IDF` structure file for every doc, use: ```python from wordnet import find_tf_idf df, tf_idf = find_tf_idf( file_names=['file/path1','file/path2',..], # paths of files to be processed.(create using twitter_streamer.py) prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None dump_path='path/to/dump/file.tfidfpkl' # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None ) ''' if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned, else will only return the new tf-idf list of dictionaries, and df dictionary. ''' ``` 1. To use `NN` Word Gene of this module, simply use wordnet.find_knn: ```python from wordnet import find_knn words = find_knn( tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. input_word='german', # a word for which k nearest neighbours are required. k=10, # k = number of neighbours required, default=10 rand_on=True # rand_on = either to randomly skip few words or show initial k words default=True ) ''' This function will return a list of words closely related to provided input_word refering to tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump file dumped by the same function at your choosen directory. the file contains 2 lists in format (idf, tf_idf). ''' ``` 1. To create a Word `Network`, use : ```python from wordnet import generate_net word_net = generate_net( df=df, # this df is returned by find_tf_idf() above. tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. dump_path='path/to/dump.wrnt' # dump_path = path to dump the generated files, format standard is .wrnt. default=None ) ''' this function returns a dict of Word entities, with word as key. ''' ``` 1. To retrieve a Word `Network`, use : ```python from wordnet import retrieve_net word_net = retrieve_net( 'path/to/network.wrnt' # path to network file, format standard is .wrnt. ) ''' this function returns a dictionary of Word entities, with word as key. ''' ``` 1. To retrieve list of words that are at some depth form a root word in the network, use: ```python from wordnet import return_net words = return_net( word, # root word in this process. word_net, # word network generated from generate_net() depth=1 # depth to which you wish this word collector to traverse. ) ''' This function returns a list of words that are at provided depth from root word in the network provided. ''' ``` ### Test Run To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected. test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`. > `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module. #### Contributions Are welcomed here ![BUILT WITH LOVE](http://forthebadge.com/images/badges/built-with-love.svg) by [@Anurag](https://github.com/anuragkumarak95) %package help Summary: Development documents and examples for wordnet Provides: python3-wordnet-doc %description help # WordNet [![Build Status](https://travis-ci.org/anuragkumarak95/wordnet.svg?branch=master)](https://travis-ci.org/anuragkumarak95/wordnet) [![codecov](https://codecov.io/gh/anuragkumarak95/wordnet/branch/master/graph/badge.svg)](https://codecov.io/gh/anuragkumarak95/wordnet) [![Requirements Status](https://requires.io/github/anuragkumarak95/wordnet/requirements.svg?branch=master)](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master) Create a Simple **network of words** related to each other using **Twitter Streaming API**. ![Made with python-3.5](http://forthebadge.com/images/badges/made-with-python.svg) Major parts of this project. * `Streamer` : ~/twitter_streaming.py * `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py * `NN` words Gene :~/ wordnet/nn_words.py * `NETWORK` Gene : ~/wordnet/word_net.py ## Using Streamer Functionality 1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go.. 1. Go to root-dir(~), Create a config.py file with details mentioned below: ```python # Variables that contains the user credentials to access Twitter Streaming API # this link will help you(http://socialmedia-class.org/twittertutorial.html) access_token = "xxx-xx-xxxx" access_token_secret = "xxxxx" consumer_key = "xxxxxx" consumer_secret = "xxxxxxxx" ``` 1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`. ## Using WordNet Module 1. `Clone this repo` and install wordnet module using this script, $python setup.py install 1. To create a `TF-IDF` structure file for every doc, use: ```python from wordnet import find_tf_idf df, tf_idf = find_tf_idf( file_names=['file/path1','file/path2',..], # paths of files to be processed.(create using twitter_streamer.py) prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None dump_path='path/to/dump/file.tfidfpkl' # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None ) ''' if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned, else will only return the new tf-idf list of dictionaries, and df dictionary. ''' ``` 1. To use `NN` Word Gene of this module, simply use wordnet.find_knn: ```python from wordnet import find_knn words = find_knn( tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. input_word='german', # a word for which k nearest neighbours are required. k=10, # k = number of neighbours required, default=10 rand_on=True # rand_on = either to randomly skip few words or show initial k words default=True ) ''' This function will return a list of words closely related to provided input_word refering to tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump file dumped by the same function at your choosen directory. the file contains 2 lists in format (idf, tf_idf). ''' ``` 1. To create a Word `Network`, use : ```python from wordnet import generate_net word_net = generate_net( df=df, # this df is returned by find_tf_idf() above. tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. dump_path='path/to/dump.wrnt' # dump_path = path to dump the generated files, format standard is .wrnt. default=None ) ''' this function returns a dict of Word entities, with word as key. ''' ``` 1. To retrieve a Word `Network`, use : ```python from wordnet import retrieve_net word_net = retrieve_net( 'path/to/network.wrnt' # path to network file, format standard is .wrnt. ) ''' this function returns a dictionary of Word entities, with word as key. ''' ``` 1. To retrieve list of words that are at some depth form a root word in the network, use: ```python from wordnet import return_net words = return_net( word, # root word in this process. word_net, # word network generated from generate_net() depth=1 # depth to which you wish this word collector to traverse. ) ''' This function returns a list of words that are at provided depth from root word in the network provided. ''' ``` ### Test Run To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected. test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`. > `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module. #### Contributions Are welcomed here ![BUILT WITH LOVE](http://forthebadge.com/images/badges/built-with-love.svg) by [@Anurag](https://github.com/anuragkumarak95) %prep %autosetup -n wordnet-0.0.1b2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-wordnet -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.0.1b2-1 - Package Spec generated