%global _empty_manifest_terminate_build 0 Name: python-TTS Version: 0.13.3 Release: 1 Summary: Deep learning for Text to Speech by Coqui. License: MPL-2.0 URL: https://github.com/coqui-ai/TTS Source0: https://mirrors.nju.edu.cn/pypi/web/packages/dc/4d/c39d3cbc089ea6733f7ddf9785b69663759470fa4cd6c12e087827d6dc74/TTS-0.13.3.tar.gz BuildArch: noarch Requires: python3-cython Requires: python3-scipy Requires: python3-torch Requires: python3-torchaudio Requires: python3-soundfile Requires: python3-librosa Requires: python3-inflect Requires: python3-tqdm Requires: python3-anyascii Requires: python3-pyyaml Requires: python3-fsspec Requires: python3-aiohttp Requires: python3-packaging Requires: python3-flask Requires: python3-pysbd Requires: python3-umap-learn Requires: python3-pandas Requires: python3-matplotlib Requires: python3-trainer Requires: python3-coqpit Requires: python3-jieba Requires: python3-pypinyin Requires: python3-mecab-python3 Requires: python3-unidic-lite Requires: python3-gruut[de] Requires: python3-jamo Requires: python3-nltk Requires: python3-g2pkk Requires: python3-bangla Requires: python3-bnnumerizer Requires: python3-bnunicodenormalizer Requires: python3-numpy Requires: python3-numba Requires: python3-numpy Requires: python3-numba Requires: python3-black Requires: python3-coverage Requires: python3-isort Requires: python3-nose2 Requires: python3-pylint Requires: python3-bokeh Requires: python3-black Requires: python3-coverage Requires: python3-isort Requires: python3-nose2 Requires: python3-pylint Requires: python3-bokeh %description ## 🐸Coqui.ai News - 📣 Coqui Studio API is landed on 🐸TTS. You can use the studio voices in combination with 🐸TTS models. [Example](https://github.com/coqui-ai/TTS/edit/dev/README.md#-python-api) - 📣 Voice generation with prompts - **Prompt to Voice** - is live on Coqui.ai!! [Blog Post](https://coqui.ai/blog/tts/prompt-to-voice) - 📣 Clone your voice with a single click on [🐸Coqui.ai](https://app.coqui.ai/auth/signin)
## 🐸TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. 🐸TTS comes with pretrained models, tools for measuring dataset quality and already used in **20+ languages** for products and research projects. [![Dicord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv) [![License]()](https://opensource.org/licenses/MPL-2.0) [![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS) [![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md) [![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts) [![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg) [![Docs]()](https://tts.readthedocs.io/en/latest/) 📰 [**Subscribe to 🐸Coqui.ai Newsletter**](https://coqui.ai/?subscription=true) 📢 [English Voice Samples](https://erogol.github.io/ddc-samples/) and [SoundCloud playlist](https://soundcloud.com/user-565970875/pocket-article-wavernn-and-tacotron2) 📄 [Text-to-Speech paper collection](https://github.com/erogol/TTS-papers) ## 💬 Where to ask questions Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it. | Type | Platforms | | ------------------------------- | --------------------------------------- | | 🚨 **Bug Reports** | [GitHub Issue Tracker] | | 🎁 **Feature Requests & Ideas** | [GitHub Issue Tracker] | | 👩‍💻 **Usage Questions** | [GitHub Discussions] | | 🗯 **General Discussion** | [GitHub Discussions] or [Discord] | [github issue tracker]: https://github.com/coqui-ai/tts/issues [github discussions]: https://github.com/coqui-ai/TTS/discussions [discord]: https://discord.gg/5eXr5seRrv [Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials ## 🔗 Links and Resources | Type | Links | | ------------------------------- | --------------------------------------- | | 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/) | 💾 **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#install-tts)| | 👩‍💻 **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)| | 📌 **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378) | 🚀 **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)| ## 🥇 TTS Performance

Underlined "TTS*" and "Judy*" are 🐸TTS models ## Features - High-performance Deep Learning models for Text2Speech tasks. - Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech). - Speaker Encoder to compute speaker embeddings efficiently. - Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN) - Fast and efficient model training. - Detailed training logs on the terminal and Tensorboard. - Support for Multi-speaker TTS. - Efficient, flexible, lightweight but feature complete `Trainer API`. - Released and ready-to-use models. - Tools to curate Text2Speech datasets under```dataset_analysis```. - Utilities to use and test your models. - Modular (but not too much) code base enabling easy implementation of new ideas. ## Implemented Models ### Spectrogram models - Tacotron: [paper](https://arxiv.org/abs/1703.10135) - Tacotron2: [paper](https://arxiv.org/abs/1712.05884) - Glow-TTS: [paper](https://arxiv.org/abs/2005.11129) - Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802) - Align-TTS: [paper](https://arxiv.org/abs/2003.01950) - FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf) - FastSpeech: [paper](https://arxiv.org/abs/1905.09263) - FastSpeech2: [paper](https://arxiv.org/abs/2006.04558) - SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557) - Capacitron: [paper](https://arxiv.org/abs/1906.03402) - OverFlow: [paper](https://arxiv.org/abs/2211.06892) - Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320) ### End-to-End Models - VITS: [paper](https://arxiv.org/pdf/2106.06103) - YourTTS: [paper](https://arxiv.org/abs/2112.02418) ### Attention Methods - Guided Attention: [paper](https://arxiv.org/abs/1710.08969) - Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006) - Graves Attention: [paper](https://arxiv.org/abs/1910.10288) - Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) - Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf) - Alignment Network: [paper](https://arxiv.org/abs/2108.10447) ### Speaker Encoder - GE2E: [paper](https://arxiv.org/abs/1710.10467) - Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf) ### Vocoders - MelGAN: [paper](https://arxiv.org/abs/1910.06711) - MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106) - ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480) - GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646) - WaveRNN: [origin](https://github.com/fatchord/WaveRNN/) - WaveGrad: [paper](https://arxiv.org/abs/2009.00713) - HiFiGAN: [paper](https://arxiv.org/abs/2010.05646) - UnivNet: [paper](https://arxiv.org/abs/2106.07889) ### Voice Conversion - FreeVC: [paper](https://arxiv.org/abs/2210.15418) You can also help us implement more models. ## Install TTS 🐸TTS is tested on Ubuntu 18.04 with **python >= 3.7, < 3.11.**. If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option. ```bash pip install TTS ``` If you plan to code or train models, clone 🐸TTS and install it locally. ```bash git clone https://github.com/coqui-ai/TTS pip install -e .[all,dev,notebooks] # Select the relevant extras ``` If you are on Ubuntu (Debian), you can also run following commands for installation. ```bash $ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS. $ make install ``` If you are on Windows, 👑@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system). ## Docker Image You can also try TTS without install with the docker image. Simply run the following command and you will be able to run TTS without installing it. ```bash docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu python3 TTS/server/server.py --list_models #To get the list of available models python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server ``` You can then enjoy the TTS server [here](http://[::1]:5002/) More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html) ## Synthesizing speech by 🐸TTS ### 🐍 Python API ```python from TTS.api import TTS # Running a multi-speaker and multi-lingual model # List available 🐸TTS models and choose the first one model_name = TTS.list_models()[0] # Init TTS tts = TTS(model_name) # Run TTS # ❗ Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language # Text to speech with a numpy output wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) # Text to speech to a file tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") # Running a single speaker model # Init TTS with the target model name tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False) # Run TTS tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH) # Example voice cloning with YourTTS in English, French and Portuguese: tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav") tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav") # Example voice conversion converting speaker of the `source_wav` to the speaker of the `target_wav` tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False, gpu=True) tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav") # Example voice cloning by a single speaker TTS model combining with the voice conversion model. This way, you can # clone voices by using any model in 🐸TTS. tts = TTS("tts_models/de/thorsten/tacotron2-DDC") tts.tts_with_vc_to_file( "Wie sage ich auf Italienisch, dass ich dich liebe?", speaker_wav="target/speaker.wav", file_path="ouptut.wav" ) # Example text to speech using [🐸Coqui Studio](https://coqui.ai) models. You can use all of your available speakers in the studio. # [🐸Coqui Studio](https://coqui.ai) API token is required. You can get it from the [account page](https://coqui.ai/account). # You should set the `COQUI_STUDIO_TOKEN` environment variable to use the API token. # If you have a valid API token set you will see the studio speakers as separate models in the list. # The name format is coqui_studio/en//coqui_studio models = TTS().list_models() # Init TTS with the target studio speaker tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False, gpu=False) # Run TTS tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH) # Run TTS with emotion and speed control tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5) ``` ### Command line `tts` #### Single Speaker Models - List provided models: ``` $ tts --list_models ``` - Get model info (for both tts_models and vocoder_models): - Query by type/name: The model_info_by_name uses the name as it from the --list_models. ``` $ tts --model_info_by_name "///" ``` For example: ``` $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts ``` ``` $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 ``` - Query by type/idx: The model_query_idx uses the corresponding idx from --list_models. ``` $ tts --model_info_by_idx "/" ``` For example: ``` $ tts --model_info_by_idx tts_models/3 ``` - Run TTS with default models: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav ``` - Run a TTS model with its default vocoder model: ``` $ tts --text "Text for TTS" --model_name "///" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav ``` - Run with specific TTS and vocoder models from the list: ``` $ tts --text "Text for TTS" --model_name "///" --vocoder_name "///" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav ``` - Run your own TTS model (Using Griffin-Lim Vocoder): ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav ``` - Run your own TTS and Vocoder models: ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json ``` #### Multi-speaker Models - List the available speakers and choose as among them: ``` $ tts --model_name "//" --list_speaker_idxs ``` - Run the multi-speaker TTS model with the target speaker ID: ``` $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "//" --speaker_idx ``` - Run your own multi-speaker TTS model: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx ``` ## Directory Structure ``` |- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.) |- utils/ (common utilities.) |- TTS |- bin/ (folder for all the executables.) |- train*.py (train your target model.) |- ... |- tts/ (text to speech models) |- layers/ (model layer definitions) |- models/ (model definitions) |- utils/ (model specific utilities.) |- speaker_encoder/ (Speaker Encoder models.) |- (same) |- vocoder/ (Vocoder models.) |- (same) ``` %package -n python3-TTS Summary: Deep learning for Text to Speech by Coqui. Provides: python-TTS BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-TTS ## 🐸Coqui.ai News - 📣 Coqui Studio API is landed on 🐸TTS. You can use the studio voices in combination with 🐸TTS models. [Example](https://github.com/coqui-ai/TTS/edit/dev/README.md#-python-api) - 📣 Voice generation with prompts - **Prompt to Voice** - is live on Coqui.ai!! [Blog Post](https://coqui.ai/blog/tts/prompt-to-voice) - 📣 Clone your voice with a single click on [🐸Coqui.ai](https://app.coqui.ai/auth/signin)
## 🐸TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. 🐸TTS comes with pretrained models, tools for measuring dataset quality and already used in **20+ languages** for products and research projects. [![Dicord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv) [![License]()](https://opensource.org/licenses/MPL-2.0) [![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS) [![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md) [![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts) [![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg) [![Docs]()](https://tts.readthedocs.io/en/latest/) 📰 [**Subscribe to 🐸Coqui.ai Newsletter**](https://coqui.ai/?subscription=true) 📢 [English Voice Samples](https://erogol.github.io/ddc-samples/) and [SoundCloud playlist](https://soundcloud.com/user-565970875/pocket-article-wavernn-and-tacotron2) 📄 [Text-to-Speech paper collection](https://github.com/erogol/TTS-papers) ## 💬 Where to ask questions Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it. | Type | Platforms | | ------------------------------- | --------------------------------------- | | 🚨 **Bug Reports** | [GitHub Issue Tracker] | | 🎁 **Feature Requests & Ideas** | [GitHub Issue Tracker] | | 👩‍💻 **Usage Questions** | [GitHub Discussions] | | 🗯 **General Discussion** | [GitHub Discussions] or [Discord] | [github issue tracker]: https://github.com/coqui-ai/tts/issues [github discussions]: https://github.com/coqui-ai/TTS/discussions [discord]: https://discord.gg/5eXr5seRrv [Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials ## 🔗 Links and Resources | Type | Links | | ------------------------------- | --------------------------------------- | | 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/) | 💾 **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#install-tts)| | 👩‍💻 **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)| | 📌 **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378) | 🚀 **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)| ## 🥇 TTS Performance

Underlined "TTS*" and "Judy*" are 🐸TTS models ## Features - High-performance Deep Learning models for Text2Speech tasks. - Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech). - Speaker Encoder to compute speaker embeddings efficiently. - Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN) - Fast and efficient model training. - Detailed training logs on the terminal and Tensorboard. - Support for Multi-speaker TTS. - Efficient, flexible, lightweight but feature complete `Trainer API`. - Released and ready-to-use models. - Tools to curate Text2Speech datasets under```dataset_analysis```. - Utilities to use and test your models. - Modular (but not too much) code base enabling easy implementation of new ideas. ## Implemented Models ### Spectrogram models - Tacotron: [paper](https://arxiv.org/abs/1703.10135) - Tacotron2: [paper](https://arxiv.org/abs/1712.05884) - Glow-TTS: [paper](https://arxiv.org/abs/2005.11129) - Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802) - Align-TTS: [paper](https://arxiv.org/abs/2003.01950) - FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf) - FastSpeech: [paper](https://arxiv.org/abs/1905.09263) - FastSpeech2: [paper](https://arxiv.org/abs/2006.04558) - SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557) - Capacitron: [paper](https://arxiv.org/abs/1906.03402) - OverFlow: [paper](https://arxiv.org/abs/2211.06892) - Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320) ### End-to-End Models - VITS: [paper](https://arxiv.org/pdf/2106.06103) - YourTTS: [paper](https://arxiv.org/abs/2112.02418) ### Attention Methods - Guided Attention: [paper](https://arxiv.org/abs/1710.08969) - Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006) - Graves Attention: [paper](https://arxiv.org/abs/1910.10288) - Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) - Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf) - Alignment Network: [paper](https://arxiv.org/abs/2108.10447) ### Speaker Encoder - GE2E: [paper](https://arxiv.org/abs/1710.10467) - Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf) ### Vocoders - MelGAN: [paper](https://arxiv.org/abs/1910.06711) - MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106) - ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480) - GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646) - WaveRNN: [origin](https://github.com/fatchord/WaveRNN/) - WaveGrad: [paper](https://arxiv.org/abs/2009.00713) - HiFiGAN: [paper](https://arxiv.org/abs/2010.05646) - UnivNet: [paper](https://arxiv.org/abs/2106.07889) ### Voice Conversion - FreeVC: [paper](https://arxiv.org/abs/2210.15418) You can also help us implement more models. ## Install TTS 🐸TTS is tested on Ubuntu 18.04 with **python >= 3.7, < 3.11.**. If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option. ```bash pip install TTS ``` If you plan to code or train models, clone 🐸TTS and install it locally. ```bash git clone https://github.com/coqui-ai/TTS pip install -e .[all,dev,notebooks] # Select the relevant extras ``` If you are on Ubuntu (Debian), you can also run following commands for installation. ```bash $ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS. $ make install ``` If you are on Windows, 👑@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system). ## Docker Image You can also try TTS without install with the docker image. Simply run the following command and you will be able to run TTS without installing it. ```bash docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu python3 TTS/server/server.py --list_models #To get the list of available models python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server ``` You can then enjoy the TTS server [here](http://[::1]:5002/) More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html) ## Synthesizing speech by 🐸TTS ### 🐍 Python API ```python from TTS.api import TTS # Running a multi-speaker and multi-lingual model # List available 🐸TTS models and choose the first one model_name = TTS.list_models()[0] # Init TTS tts = TTS(model_name) # Run TTS # ❗ Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language # Text to speech with a numpy output wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) # Text to speech to a file tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") # Running a single speaker model # Init TTS with the target model name tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False) # Run TTS tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH) # Example voice cloning with YourTTS in English, French and Portuguese: tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav") tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav") # Example voice conversion converting speaker of the `source_wav` to the speaker of the `target_wav` tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False, gpu=True) tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav") # Example voice cloning by a single speaker TTS model combining with the voice conversion model. This way, you can # clone voices by using any model in 🐸TTS. tts = TTS("tts_models/de/thorsten/tacotron2-DDC") tts.tts_with_vc_to_file( "Wie sage ich auf Italienisch, dass ich dich liebe?", speaker_wav="target/speaker.wav", file_path="ouptut.wav" ) # Example text to speech using [🐸Coqui Studio](https://coqui.ai) models. You can use all of your available speakers in the studio. # [🐸Coqui Studio](https://coqui.ai) API token is required. You can get it from the [account page](https://coqui.ai/account). # You should set the `COQUI_STUDIO_TOKEN` environment variable to use the API token. # If you have a valid API token set you will see the studio speakers as separate models in the list. # The name format is coqui_studio/en//coqui_studio models = TTS().list_models() # Init TTS with the target studio speaker tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False, gpu=False) # Run TTS tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH) # Run TTS with emotion and speed control tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5) ``` ### Command line `tts` #### Single Speaker Models - List provided models: ``` $ tts --list_models ``` - Get model info (for both tts_models and vocoder_models): - Query by type/name: The model_info_by_name uses the name as it from the --list_models. ``` $ tts --model_info_by_name "///" ``` For example: ``` $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts ``` ``` $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 ``` - Query by type/idx: The model_query_idx uses the corresponding idx from --list_models. ``` $ tts --model_info_by_idx "/" ``` For example: ``` $ tts --model_info_by_idx tts_models/3 ``` - Run TTS with default models: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav ``` - Run a TTS model with its default vocoder model: ``` $ tts --text "Text for TTS" --model_name "///" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav ``` - Run with specific TTS and vocoder models from the list: ``` $ tts --text "Text for TTS" --model_name "///" --vocoder_name "///" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav ``` - Run your own TTS model (Using Griffin-Lim Vocoder): ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav ``` - Run your own TTS and Vocoder models: ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json ``` #### Multi-speaker Models - List the available speakers and choose as among them: ``` $ tts --model_name "//" --list_speaker_idxs ``` - Run the multi-speaker TTS model with the target speaker ID: ``` $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "//" --speaker_idx ``` - Run your own multi-speaker TTS model: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx ``` ## Directory Structure ``` |- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.) |- utils/ (common utilities.) |- TTS |- bin/ (folder for all the executables.) |- train*.py (train your target model.) |- ... |- tts/ (text to speech models) |- layers/ (model layer definitions) |- models/ (model definitions) |- utils/ (model specific utilities.) |- speaker_encoder/ (Speaker Encoder models.) |- (same) |- vocoder/ (Vocoder models.) |- (same) ``` %package help Summary: Development documents and examples for TTS Provides: python3-TTS-doc %description help ## 🐸Coqui.ai News - 📣 Coqui Studio API is landed on 🐸TTS. You can use the studio voices in combination with 🐸TTS models. [Example](https://github.com/coqui-ai/TTS/edit/dev/README.md#-python-api) - 📣 Voice generation with prompts - **Prompt to Voice** - is live on Coqui.ai!! [Blog Post](https://coqui.ai/blog/tts/prompt-to-voice) - 📣 Clone your voice with a single click on [🐸Coqui.ai](https://app.coqui.ai/auth/signin)
## 🐸TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. 🐸TTS comes with pretrained models, tools for measuring dataset quality and already used in **20+ languages** for products and research projects. [![Dicord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv) [![License]()](https://opensource.org/licenses/MPL-2.0) [![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS) [![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md) [![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts) [![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg) [![Docs]()](https://tts.readthedocs.io/en/latest/) 📰 [**Subscribe to 🐸Coqui.ai Newsletter**](https://coqui.ai/?subscription=true) 📢 [English Voice Samples](https://erogol.github.io/ddc-samples/) and [SoundCloud playlist](https://soundcloud.com/user-565970875/pocket-article-wavernn-and-tacotron2) 📄 [Text-to-Speech paper collection](https://github.com/erogol/TTS-papers) ## 💬 Where to ask questions Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it. | Type | Platforms | | ------------------------------- | --------------------------------------- | | 🚨 **Bug Reports** | [GitHub Issue Tracker] | | 🎁 **Feature Requests & Ideas** | [GitHub Issue Tracker] | | 👩‍💻 **Usage Questions** | [GitHub Discussions] | | 🗯 **General Discussion** | [GitHub Discussions] or [Discord] | [github issue tracker]: https://github.com/coqui-ai/tts/issues [github discussions]: https://github.com/coqui-ai/TTS/discussions [discord]: https://discord.gg/5eXr5seRrv [Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials ## 🔗 Links and Resources | Type | Links | | ------------------------------- | --------------------------------------- | | 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/) | 💾 **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#install-tts)| | 👩‍💻 **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)| | 📌 **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378) | 🚀 **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)| ## 🥇 TTS Performance

Underlined "TTS*" and "Judy*" are 🐸TTS models ## Features - High-performance Deep Learning models for Text2Speech tasks. - Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech). - Speaker Encoder to compute speaker embeddings efficiently. - Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN) - Fast and efficient model training. - Detailed training logs on the terminal and Tensorboard. - Support for Multi-speaker TTS. - Efficient, flexible, lightweight but feature complete `Trainer API`. - Released and ready-to-use models. - Tools to curate Text2Speech datasets under```dataset_analysis```. - Utilities to use and test your models. - Modular (but not too much) code base enabling easy implementation of new ideas. ## Implemented Models ### Spectrogram models - Tacotron: [paper](https://arxiv.org/abs/1703.10135) - Tacotron2: [paper](https://arxiv.org/abs/1712.05884) - Glow-TTS: [paper](https://arxiv.org/abs/2005.11129) - Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802) - Align-TTS: [paper](https://arxiv.org/abs/2003.01950) - FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf) - FastSpeech: [paper](https://arxiv.org/abs/1905.09263) - FastSpeech2: [paper](https://arxiv.org/abs/2006.04558) - SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557) - Capacitron: [paper](https://arxiv.org/abs/1906.03402) - OverFlow: [paper](https://arxiv.org/abs/2211.06892) - Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320) ### End-to-End Models - VITS: [paper](https://arxiv.org/pdf/2106.06103) - YourTTS: [paper](https://arxiv.org/abs/2112.02418) ### Attention Methods - Guided Attention: [paper](https://arxiv.org/abs/1710.08969) - Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006) - Graves Attention: [paper](https://arxiv.org/abs/1910.10288) - Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) - Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf) - Alignment Network: [paper](https://arxiv.org/abs/2108.10447) ### Speaker Encoder - GE2E: [paper](https://arxiv.org/abs/1710.10467) - Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf) ### Vocoders - MelGAN: [paper](https://arxiv.org/abs/1910.06711) - MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106) - ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480) - GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646) - WaveRNN: [origin](https://github.com/fatchord/WaveRNN/) - WaveGrad: [paper](https://arxiv.org/abs/2009.00713) - HiFiGAN: [paper](https://arxiv.org/abs/2010.05646) - UnivNet: [paper](https://arxiv.org/abs/2106.07889) ### Voice Conversion - FreeVC: [paper](https://arxiv.org/abs/2210.15418) You can also help us implement more models. ## Install TTS 🐸TTS is tested on Ubuntu 18.04 with **python >= 3.7, < 3.11.**. If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option. ```bash pip install TTS ``` If you plan to code or train models, clone 🐸TTS and install it locally. ```bash git clone https://github.com/coqui-ai/TTS pip install -e .[all,dev,notebooks] # Select the relevant extras ``` If you are on Ubuntu (Debian), you can also run following commands for installation. ```bash $ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS. $ make install ``` If you are on Windows, 👑@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system). ## Docker Image You can also try TTS without install with the docker image. Simply run the following command and you will be able to run TTS without installing it. ```bash docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu python3 TTS/server/server.py --list_models #To get the list of available models python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server ``` You can then enjoy the TTS server [here](http://[::1]:5002/) More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html) ## Synthesizing speech by 🐸TTS ### 🐍 Python API ```python from TTS.api import TTS # Running a multi-speaker and multi-lingual model # List available 🐸TTS models and choose the first one model_name = TTS.list_models()[0] # Init TTS tts = TTS(model_name) # Run TTS # ❗ Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language # Text to speech with a numpy output wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) # Text to speech to a file tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") # Running a single speaker model # Init TTS with the target model name tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False) # Run TTS tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH) # Example voice cloning with YourTTS in English, French and Portuguese: tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav") tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav") # Example voice conversion converting speaker of the `source_wav` to the speaker of the `target_wav` tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False, gpu=True) tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav") # Example voice cloning by a single speaker TTS model combining with the voice conversion model. This way, you can # clone voices by using any model in 🐸TTS. tts = TTS("tts_models/de/thorsten/tacotron2-DDC") tts.tts_with_vc_to_file( "Wie sage ich auf Italienisch, dass ich dich liebe?", speaker_wav="target/speaker.wav", file_path="ouptut.wav" ) # Example text to speech using [🐸Coqui Studio](https://coqui.ai) models. You can use all of your available speakers in the studio. # [🐸Coqui Studio](https://coqui.ai) API token is required. You can get it from the [account page](https://coqui.ai/account). # You should set the `COQUI_STUDIO_TOKEN` environment variable to use the API token. # If you have a valid API token set you will see the studio speakers as separate models in the list. # The name format is coqui_studio/en//coqui_studio models = TTS().list_models() # Init TTS with the target studio speaker tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False, gpu=False) # Run TTS tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH) # Run TTS with emotion and speed control tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5) ``` ### Command line `tts` #### Single Speaker Models - List provided models: ``` $ tts --list_models ``` - Get model info (for both tts_models and vocoder_models): - Query by type/name: The model_info_by_name uses the name as it from the --list_models. ``` $ tts --model_info_by_name "///" ``` For example: ``` $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts ``` ``` $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 ``` - Query by type/idx: The model_query_idx uses the corresponding idx from --list_models. ``` $ tts --model_info_by_idx "/" ``` For example: ``` $ tts --model_info_by_idx tts_models/3 ``` - Run TTS with default models: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav ``` - Run a TTS model with its default vocoder model: ``` $ tts --text "Text for TTS" --model_name "///" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav ``` - Run with specific TTS and vocoder models from the list: ``` $ tts --text "Text for TTS" --model_name "///" --vocoder_name "///" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav ``` - Run your own TTS model (Using Griffin-Lim Vocoder): ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav ``` - Run your own TTS and Vocoder models: ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json ``` #### Multi-speaker Models - List the available speakers and choose as among them: ``` $ tts --model_name "//" --list_speaker_idxs ``` - Run the multi-speaker TTS model with the target speaker ID: ``` $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "//" --speaker_idx ``` - Run your own multi-speaker TTS model: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx ``` ## Directory Structure ``` |- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.) |- utils/ (common utilities.) |- TTS |- bin/ (folder for all the executables.) |- train*.py (train your target model.) |- ... |- tts/ (text to speech models) |- layers/ (model layer definitions) |- models/ (model definitions) |- utils/ (model specific utilities.) |- speaker_encoder/ (Speaker Encoder models.) |- (same) |- vocoder/ (Vocoder models.) |- (same) ``` %prep %autosetup -n TTS-0.13.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-TTS -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.13.3-1 - Package Spec generated