%global _empty_manifest_terminate_build 0 Name: python-navec Version: 0.10.0 Release: 1 Summary: Compact high quality word embeddings for russian language License: MIT URL: https://github.com/natasha/navec Source0: https://mirrors.nju.edu.cn/pypi/web/packages/7d/52/2469e9323708e367c6c2fea1c7964e51ab4b0cda782251df07fe22c88ea3/navec-0.10.0.tar.gz BuildArch: noarch Requires: python3-numpy %description ``` Currently two models are published:
Model Size Description Sources
navec_hudlit_v1_12B_500K_300d_100q.tar # 50MB Should be used by default. Shows best results on intrinsic evaluations. Model was trained on large corpus of russian literature (~150GB). librusec
navec_news_v1_1B_250K_300d_100q.tar # 25MB Try to use this model to news texts. It is two times smaller than `hudlit` but covers same 98% of words in news articles. lenta ria taiga_fontanka buriy_news buriy_webhose ods_gazeta ods_interfax
## Installation Navec supports Pyton 3.5+ and PyPy 3. ```bash $ pip install navec ``` ## Usage First download `hudlit` emdeddings (see the table above): ```bash wget https://storage.yandexcloud.net/natasha-navec/packs/navec_hudlit_v1_12B_500K_300d_100q.tar ``` Load tar-archive with `Navec.load`, it takes ~1s and ~100MB of RAM: ```python >>> from navec import Navec >>> path = 'hudlit_12B_500K_300d_100q.tar' >>> navec = Navec.load(path) ``` Then `navec` can be used as a dict object: ```python >>> navec['навек'] array([ 0.3955571 , 0.11600914, 0.24605067, -0.35206917, -0.08932345, 0.3382279 , -0.5457616 , 0.07472657, -0.4753835 , -0.3330848 , >>> 'нааавееек' in navec False >>> navec.get('нааавееек') None ``` To get an index of word, use `navec.vocab`: ```python >>> navec.vocab['навек'] 225823 >>> navec.vocab.get('наааавеeeк', navec.vocab.unk_id) 500000 # == navec.vocab[''] ``` There are two special words in vocab, `` and ``: ```python >>> navec[''] array([ 3.69125791e-02, 9.32818875e-02, 2.01917738e-02, ... >>> navec[''] array([0., 0., 0., 0., 0., 0., ... ``` To use Navec in PyTorch model there is a Slovnet module: ```python >>> import torch >>> from slovnet.model.emb import NavecEmbedding >>> emb = NavecEmbedding(navec) >>> input = torch.tensor([1, 2, 0]) >>> output = emb(input) >>> output.shape torch.Size([3, 300]) >>> output tensor([[ 4.2000e-01, 3.6666e-01, 1.7728e-01, -3.8719e-01, -1.0762e-01, 1.6954e-01, -4.6063e-01, 5.4519e-01, -2.1212e-01, 2.0965e-01, 1.9658e-01, 2.7807e-01, -2.3802e-01, 3.5155e-01, 1.4491e-02, ``` ## Evaluation Let's compore Navec to top 5 RusVectores models (based on `simlex` and `hj` eval datasets). In each column top 3 results are highlighted. * `init` — time it takes to load model file to RAM. `tayga_upos_skipgram_300_2_2019` word2vec binary file takes 5 seconds to load with `gensim.KeyedVectors.load_word2vec_format`. `tayga_none_fasttextcbow_300_10_2019` fastText large ~2.7 GB file takes 8 seconds. Navec `hudlit` with vocab 2 times larger than previous two takes 1 second. * `get` — time is takes to query embedding vector for a single word. Word2vec models win here, to fetch a vector they basically do `dict.get`. FastText and Navec for every query do extra computation. FastText extracts and sums word ngrams, Navec unpacks vector from quantization table. In practice query to embeddings table is small compared to all other computation in network. * `disk` — model file size. It is convenient for deployment and distribution to have small models. Notice that `hudlit` model is 4-20 times smaller with vocab size 2 times bigger. * `ram` — space model takes in RAM after loading. It is convenient to have small memory footprint to fit more computation on single server. * `vocab` — number of words in vocab, number of embedding vectors. Since Navec vectors table takes less space we can have larger vocab. With 500K vocab `hudlit` model has ~2% OVV rate on average.
type init, s get, µs disk, mb ram, mb vocab
hudlit_12B_500K_300d_100q navec 1.1 21.6 50.6 95.3 500K
news_1B_250K_300d_100q navec 0.8 20.7 25.4 47.7 250K
ruscorpora_upos_cbow_300_20_2019 w2v 3.3 1.4 220.6 236.1 189K
ruwikiruscorpora_upos_skipgram_300_2_2019 w2v 5.0 1.5 290.0 309.4 248K
tayga_upos_skipgram_300_2_2019 w2v 5.2 1.4 290.7 310.9 249K
tayga_none_fasttextcbow_300_10_2019 fasttext 8.0 13.4 2741.9 2746.9 192K
araneum_none_fasttextcbow_300_5_2018 fasttext 16.4 10.6 2752.1 2754.7 195K
Now let's look at intrinsic evaluation scores. Navec `hudlit` model does not show best results on all datasets but it is usually in top 3. We'll use 6 datasets: * `simlex965`, `hj` — two small datasets (965 and 398 tests respectively) used by RusVectores, see the their paper for more info. Metric is spearman correlation, other datasets use average precision. * `rt`, `ae`, `ae2` — large datasets (114066, 22919, 86772 tests) from RUSSE workshop, see project description for more. * `lrwc` — relatively new dataset by Yandex.Toloka, see their page.
type simlex hj rt ae ae2 lrwc
hudlit_12B_500K_300d_100q navec 0.310 0.707 0.842 0.931 0.923 0.604
news_1B_250K_300d_100q navec 0.230 0.590 0.784 0.866 0.861 0.589
ruscorpora_upos_cbow_300_20_2019 w2v 0.359 0.685 0.852 0.758 0.896 0.602
ruwikiruscorpora_upos_skipgram_300_2_2019 w2v 0.321 0.723 0.817 0.801 0.860 0.629
tayga_upos_skipgram_300_2_2019 w2v 0.429 0.749 0.871 0.771 0.899 0.639
tayga_none_fasttextcbow_300_10_2019 fasttext 0.369 0.639 0.793 0.682 0.813 0.536
araneum_none_fasttextcbow_300_5_2018 fasttext 0.349 0.671 0.801 0.706 0.793 0.579
## Support - Chat — https://telegram.me/natural_language_processing - Issues — https://github.com/natasha/navec/issues - Commercial support — https://lab.alexkuk.ru ## Development Test ```bash make test ``` Package ```bash make version git push git push --tags make clean wheel upload ``` Notice! All commands belows use code from `navec/train`, it is not under CI, it works only with Python 3, it is expected user is familiar with source code. We use Yandex Cloud Compute and Object Storage. Create remote worker To compute cooc (large HDD, 1Tb for librusec). ```bash yc compute instance create \ --name worker \ --zone ru-central1-a \ --network-interface subnet-name=default,nat-ip-version=ipv4 \ --create-boot-disk image-folder-id=standard-images,image-family=ubuntu-1804,type=network-hdd,size=1000 \ --memory 8 \ --cores 2 \ --core-fraction 100 \ --ssh-key ~/.ssh/id_rsa.pub \ --folder-name default \ --preemptible # in case computation takes <24h ``` To fit embedings (multiple cores). HDD should be > cooc.bin * 3 (for suffle + tmp) ```bash yc compute instance create \ --name worker \ --zone ru-central1-a \ --network-interface subnet-name=default,nat-ip-version=ipv4 \ --create-boot-disk image-folder-id=standard-images,image-family=ubuntu-1804,type=network-hdd,size=700 \ --memory 16 \ --cores 16 \ --core-fraction 100 \ --ssh-key ~/.ssh/id_rsa.pub \ --folder-name default \ --preemptible ``` Setup machine ```bash yc compute instance list --folder-name default ssh yc-user@123.123.123.123 sudo locale-gen en_US.UTF-8 sudo timedatectl set-timezone Europe/Moscow sudo apt-get update sudo DEBIAN_FRONTEND=noninteractive apt-get install -y language-pack-ru python3-pip screen unzip git pv cmake wget https://nlp.stanford.edu/software/GloVe-1.2.zip unzip GloVe-1.2.zip rm GloVe-1.2.zip mv GloVe-1.2 glove cd glove make cd .. export GLOVE_DIR=~/glove/build git clone https://github.com/natasha/navec.git sudo -H pip3 install -e navec sudo -H pip3 install -r navec/requirements/train.txt screen ctrl a d ``` Remove instance ```bash yc compute instance list --folder-name default yc compute instance delete xxxxxxxxx ```` Env, used by `navec-train s3|vocab|cooc|emb` ```bash export S3_KEY=_XxXXXxxx_XXXxxxxXxxx export S3_SECRET=XXxxx_XXXXXXxxxxxxXXXXxxXXx-XxxXXxxxX export S3_BUCKET=XXXXXXX export GLOVE_DIR=~/path/to/glove/build ``` Share text data (see corus) ```bash navec-train s3 upload librusec_fb2.plain.gz sources/librusec.gz navec-train s3 upload taiga/proza_ru.zip sources/taiga_proza.zip navec-train s3 upload ruwiki-latest-pages-articles.xml.bz2 sources/wiki.xml.bz2 navec-train s3 upload lenta-ru-news.csv.gz sources/lenta.csv.gz navec-train s3 upload ria.json.gz sources/ria.json.gz navec-train s3 upload taiga/Fontanka.tar.gz sources/taiga_fontanka.tar.gz navec-train s3 upload buriy/news-articles-2014.tar.bz2 sources/buriy_news1.tar.bz2 navec-train s3 upload buriy/news-articles-2015-part1.tar.bz2 sources/buriy_news2.tar.bz2 navec-train s3 upload buriy/news-articles-2015-part2.tar.bz2 sources/buriy_news3.tar.bz2 navec-train s3 upload buriy/webhose-2016.tar.bz2 sources/buriy_webhose.tar.bz2 navec-train s3 upload ods/gazeta_v1.csv.zip sources/ods_gazeta.csv.zip navec-train s3 upload ods/interfax_v1.csv.zip sources/ods_interfax.csv.zip navec-train s3 download sources/librusec.gz navec-train s3 download sources/taiga_proza.zip navec-train s3 download sources/wiki.xml.bz2 navec-train s3 download sources/lenta.csv.gz navec-train s3 download sources/ria.json.gz navec-train s3 download sources/taiga_fontanka.tar.gz navec-train s3 download sources/buriy_news1.tar.bz2 navec-train s3 download sources/buriy_news2.tar.bz2 navec-train s3 download sources/buriy_news3.tar.bz2 navec-train s3 download sources/buriy_webhose.tar.bz2 navec-train s3 download sources/ods_gazeta.csv.zip navec-train s3 download sources/ods_interfax.csv.zip ``` Text to tokens ```bash navec-train corpus librusec librusec.gz | pv | navec-train tokenize > tokens.txt # ~12B words navec-train corpus taiga_proza taiga_proza.zip | pv | navec-train tokenize > tokens.txt # ~3B navec-train corpus wiki wiki.xml.bz2 | pv | navec-train tokenize > tokens.txt # ~0.5B navec-train corpus lenta lenta.csv.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus ria ria.json.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus taiga_fontanka taiga_fontanka.tar.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news1.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news2.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news3.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_webhose buriy_webhose.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus ods_gazeta ods_gazeta.csv.zip | pv | navec-train tokenize >> tokens.txt navec-train corpus ods_interfax ods_interfax.csv.zip | pv | navec-train tokenize >> tokens.txt # ~1B pv tokens.txt | gzip > tokens.txt.gz navec-train s3 upload tokens.txt.gz librusec_tokens.txt.gz navec-train s3 upload tokens.txt taiga_proza_tokens.txt navec-train s3 upload tokens.txt news_tokens.txt navec-train s3 upload tokens.txt wiki_tokens.txt ``` Tokens to vocab ```bash pv tokens.txt \ | navec-train vocab count \ > full_vocab.txt pv full_vocab.txt \ | navec-train vocab quantile # librusec # ... # 0.970 325 882 # 0.980 511 542 # 0.990 1 122 624 # 1.000 22 129 654 # taiga_proza # ... # 0.960 229 906 # 0.970 321 810 # 0.980 517 647 # 0.990 1 224 277 # 1.000 14 302 409 # wiki # ... # 0.950 380 134 # 0.960 519 817 # 0.970 757 561 # 0.980 1 223 201 # 0.990 2 422 265 # 1.000 6 664 630 # news # ... # 0.970 163 833 # 0.980 243 903 # 0.990 462 361 # 1.000 3 744 070 # threashold at ~0.98 # librusec 500000 # taiga_proza 500000 # wiki 750000 # news 250000 cat full_vocab.txt \ | head -500000 \ | LC_ALL=C sort \ > vocab.txt navec-train s3 upload full_vocab.txt librusec_full_vocab.txt navec-train s3 upload vocab.txt librusec_vocab.txt navec-train s3 upload full_vocab.txt taiga_proza_full_vocab.txt navec-train s3 upload vocab.txt taiga_proza_vocab.txt navec-train s3 upload full_vocab.txt wiki_full_vocab.txt navec-train s3 upload vocab.txt wiki_vocab.txt navec-train s3 upload full_vocab.txt news_full_vocab.txt navec-train s3 upload vocab.txt news_vocab.txt ``` Compute coocurence pairs ```bash # Default limit on max number of open files is 1024, merge fails if # number of chunks is large ulimit -n # 1024 sudo nano /etc/security/limits.conf * soft nofile 65535 * hard nofile 65535 # relogin ulimit -n # 65535 pv tokens.txt \ | navec-train cooc count vocab.txt --memory 7 --window 10 \ > cooc.bin # Monitor ls /tmp/cooc_* tail -c 16 cooc.bin | navec-train cooc parse navec-train s3 upload cooc.bin librusec_cooc.bin navec-train s3 upload cooc.bin taiga_proza_cooc.bin navec-train s3 upload cooc.bin wiki_cooc.bin navec-train s3 upload cooc.bin news_cooc.bin ``` Merge (did not give much boost compared to plain librusec, so all_vocab.txt, all_cooc.bin not used below) ```bash for i in librusec taiga_proza wiki news; do navec-train s3 download $i_vocab.txt; navec-train s3 download $i_cooc.bin; done navec-train merge vocabs \ librusec_vocab.txt \ taiga_proza_vocab.txt \ wiki_vocab.txt \ news_vocab.txt \ | pv > vocab.txt navec-train merge coocs vocab.txt \ librusec_cooc.bin:librusec_vocab.txt \ taiga_proza_cooc.bin:taiga_proza_vocab.txt \ wiki_cooc.bin:wiki_vocab.txt \ news_cooc.bin:news_vocab.txt \ | pv > cooc.bin navec-train s3 upload vocab.txt all_vocab.txt navec-train s3 upload cooc.bin all_cooc.bin ``` Compute embedings ```bash navec-train s3 download librusec_vocab.txt vocab.txt navec-train s3 download librusec_cooc.bin cooc.bin navec-train s3 download wiki_vocab.txt vocab.txt navec-train s3 download wiki_cooc.bin cooc.bin navec-train s3 download news_vocab.txt vocab.txt navec-train s3 download news_cooc.bin cooc.bin pv cooc.bin \ | navec-train cooc shuffle --memory 15 \ > shuf_cooc.bin # Search dim with best score for i in 100 200 300 400 500 600; do navec-train emb shuf_cooc.bin vocab.txt emb_${i}d.txt --dim $i --threads 10 --iterations 2; done # 300 has ok score. 400, 500 are a bit better, but too heavy navec-train emb shuf_cooc.bin vocab.txt emb.txt --dim 300 --threads 16 --iterations 15 navec-train s3 upload emb.txt librusec_emb.txt navec-train s3 upload emb.txt wiki_emb.txt navec-train s3 upload emb.txt news_emb.txt ``` Quantize ```bash navec-train s3 download librusec_emb.txt emb.txt navec-train s3 download wiki_emb.txt emb.txt navec-train s3 download news_emb.txt emb.txt # Search for best compression that has still ok score for i in 150 100 75 60 50; do pv emb.txt | navec-train pq fit $i --sample 100000 --iterations 15 > pq_${i}q.bin; done # 100 is <1% worse on eval but much lighter pv emb.txt | navec-train pq fit 100 --sample 100000 --iterations 20 > pq.bin navec-train pq pad < pq.bin > t; mv t pq.bin navec-train s3 upload pq.bin librusec_pq.bin navec-train s3 upload pq.bin wiki_pq.bin navec-train s3 upload pq.bin news_pq.bin ``` Pack ``` navec-train s3 download librusec_pq.bin pq.bin navec-train s3 download librusec_vocab.txt vocab.txt navec-train s3 download news_pq.bin pq.bin navec-train s3 download news_vocab.txt vocab.txt navec-train vocab pack < vocab.txt > vocab.bin navec-train pack vocab.bin pq.bin hudlit_v1_12B_500K_300d_100q navec-train s3 upload navec_hudlit_v1_12B_500K_300d_100q.tar packs/navec_hudlit_v1_12B_500K_300d_100q.tar navec-train pack vocab.bin pq.bin news_v1_1B_250K_300d_100q navec-train s3 upload navec_news_v1_1B_250K_300d_100q.tar packs/navec_news_v1_1B_250K_300d_100q.tar ``` Publish ``` navec-train s3 download packs/navec_hudlit_v1_12B_500K_300d_100q.tar navec-train s3 download packs/navec_news_v1_1B_250K_300d_100q.tar ``` %package -n python3-navec Summary: Compact high quality word embeddings for russian language Provides: python-navec BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-navec ``` Currently two models are published:
Model Size Description Sources
navec_hudlit_v1_12B_500K_300d_100q.tar # 50MB Should be used by default. Shows best results on intrinsic evaluations. Model was trained on large corpus of russian literature (~150GB). librusec
navec_news_v1_1B_250K_300d_100q.tar # 25MB Try to use this model to news texts. It is two times smaller than `hudlit` but covers same 98% of words in news articles. lenta ria taiga_fontanka buriy_news buriy_webhose ods_gazeta ods_interfax
## Installation Navec supports Pyton 3.5+ and PyPy 3. ```bash $ pip install navec ``` ## Usage First download `hudlit` emdeddings (see the table above): ```bash wget https://storage.yandexcloud.net/natasha-navec/packs/navec_hudlit_v1_12B_500K_300d_100q.tar ``` Load tar-archive with `Navec.load`, it takes ~1s and ~100MB of RAM: ```python >>> from navec import Navec >>> path = 'hudlit_12B_500K_300d_100q.tar' >>> navec = Navec.load(path) ``` Then `navec` can be used as a dict object: ```python >>> navec['навек'] array([ 0.3955571 , 0.11600914, 0.24605067, -0.35206917, -0.08932345, 0.3382279 , -0.5457616 , 0.07472657, -0.4753835 , -0.3330848 , >>> 'нааавееек' in navec False >>> navec.get('нааавееек') None ``` To get an index of word, use `navec.vocab`: ```python >>> navec.vocab['навек'] 225823 >>> navec.vocab.get('наааавеeeк', navec.vocab.unk_id) 500000 # == navec.vocab[''] ``` There are two special words in vocab, `` and ``: ```python >>> navec[''] array([ 3.69125791e-02, 9.32818875e-02, 2.01917738e-02, ... >>> navec[''] array([0., 0., 0., 0., 0., 0., ... ``` To use Navec in PyTorch model there is a Slovnet module: ```python >>> import torch >>> from slovnet.model.emb import NavecEmbedding >>> emb = NavecEmbedding(navec) >>> input = torch.tensor([1, 2, 0]) >>> output = emb(input) >>> output.shape torch.Size([3, 300]) >>> output tensor([[ 4.2000e-01, 3.6666e-01, 1.7728e-01, -3.8719e-01, -1.0762e-01, 1.6954e-01, -4.6063e-01, 5.4519e-01, -2.1212e-01, 2.0965e-01, 1.9658e-01, 2.7807e-01, -2.3802e-01, 3.5155e-01, 1.4491e-02, ``` ## Evaluation Let's compore Navec to top 5 RusVectores models (based on `simlex` and `hj` eval datasets). In each column top 3 results are highlighted. * `init` — time it takes to load model file to RAM. `tayga_upos_skipgram_300_2_2019` word2vec binary file takes 5 seconds to load with `gensim.KeyedVectors.load_word2vec_format`. `tayga_none_fasttextcbow_300_10_2019` fastText large ~2.7 GB file takes 8 seconds. Navec `hudlit` with vocab 2 times larger than previous two takes 1 second. * `get` — time is takes to query embedding vector for a single word. Word2vec models win here, to fetch a vector they basically do `dict.get`. FastText and Navec for every query do extra computation. FastText extracts and sums word ngrams, Navec unpacks vector from quantization table. In practice query to embeddings table is small compared to all other computation in network. * `disk` — model file size. It is convenient for deployment and distribution to have small models. Notice that `hudlit` model is 4-20 times smaller with vocab size 2 times bigger. * `ram` — space model takes in RAM after loading. It is convenient to have small memory footprint to fit more computation on single server. * `vocab` — number of words in vocab, number of embedding vectors. Since Navec vectors table takes less space we can have larger vocab. With 500K vocab `hudlit` model has ~2% OVV rate on average.
type init, s get, µs disk, mb ram, mb vocab
hudlit_12B_500K_300d_100q navec 1.1 21.6 50.6 95.3 500K
news_1B_250K_300d_100q navec 0.8 20.7 25.4 47.7 250K
ruscorpora_upos_cbow_300_20_2019 w2v 3.3 1.4 220.6 236.1 189K
ruwikiruscorpora_upos_skipgram_300_2_2019 w2v 5.0 1.5 290.0 309.4 248K
tayga_upos_skipgram_300_2_2019 w2v 5.2 1.4 290.7 310.9 249K
tayga_none_fasttextcbow_300_10_2019 fasttext 8.0 13.4 2741.9 2746.9 192K
araneum_none_fasttextcbow_300_5_2018 fasttext 16.4 10.6 2752.1 2754.7 195K
Now let's look at intrinsic evaluation scores. Navec `hudlit` model does not show best results on all datasets but it is usually in top 3. We'll use 6 datasets: * `simlex965`, `hj` — two small datasets (965 and 398 tests respectively) used by RusVectores, see the their paper for more info. Metric is spearman correlation, other datasets use average precision. * `rt`, `ae`, `ae2` — large datasets (114066, 22919, 86772 tests) from RUSSE workshop, see project description for more. * `lrwc` — relatively new dataset by Yandex.Toloka, see their page.
type simlex hj rt ae ae2 lrwc
hudlit_12B_500K_300d_100q navec 0.310 0.707 0.842 0.931 0.923 0.604
news_1B_250K_300d_100q navec 0.230 0.590 0.784 0.866 0.861 0.589
ruscorpora_upos_cbow_300_20_2019 w2v 0.359 0.685 0.852 0.758 0.896 0.602
ruwikiruscorpora_upos_skipgram_300_2_2019 w2v 0.321 0.723 0.817 0.801 0.860 0.629
tayga_upos_skipgram_300_2_2019 w2v 0.429 0.749 0.871 0.771 0.899 0.639
tayga_none_fasttextcbow_300_10_2019 fasttext 0.369 0.639 0.793 0.682 0.813 0.536
araneum_none_fasttextcbow_300_5_2018 fasttext 0.349 0.671 0.801 0.706 0.793 0.579
## Support - Chat — https://telegram.me/natural_language_processing - Issues — https://github.com/natasha/navec/issues - Commercial support — https://lab.alexkuk.ru ## Development Test ```bash make test ``` Package ```bash make version git push git push --tags make clean wheel upload ``` Notice! All commands belows use code from `navec/train`, it is not under CI, it works only with Python 3, it is expected user is familiar with source code. We use Yandex Cloud Compute and Object Storage. Create remote worker To compute cooc (large HDD, 1Tb for librusec). ```bash yc compute instance create \ --name worker \ --zone ru-central1-a \ --network-interface subnet-name=default,nat-ip-version=ipv4 \ --create-boot-disk image-folder-id=standard-images,image-family=ubuntu-1804,type=network-hdd,size=1000 \ --memory 8 \ --cores 2 \ --core-fraction 100 \ --ssh-key ~/.ssh/id_rsa.pub \ --folder-name default \ --preemptible # in case computation takes <24h ``` To fit embedings (multiple cores). HDD should be > cooc.bin * 3 (for suffle + tmp) ```bash yc compute instance create \ --name worker \ --zone ru-central1-a \ --network-interface subnet-name=default,nat-ip-version=ipv4 \ --create-boot-disk image-folder-id=standard-images,image-family=ubuntu-1804,type=network-hdd,size=700 \ --memory 16 \ --cores 16 \ --core-fraction 100 \ --ssh-key ~/.ssh/id_rsa.pub \ --folder-name default \ --preemptible ``` Setup machine ```bash yc compute instance list --folder-name default ssh yc-user@123.123.123.123 sudo locale-gen en_US.UTF-8 sudo timedatectl set-timezone Europe/Moscow sudo apt-get update sudo DEBIAN_FRONTEND=noninteractive apt-get install -y language-pack-ru python3-pip screen unzip git pv cmake wget https://nlp.stanford.edu/software/GloVe-1.2.zip unzip GloVe-1.2.zip rm GloVe-1.2.zip mv GloVe-1.2 glove cd glove make cd .. export GLOVE_DIR=~/glove/build git clone https://github.com/natasha/navec.git sudo -H pip3 install -e navec sudo -H pip3 install -r navec/requirements/train.txt screen ctrl a d ``` Remove instance ```bash yc compute instance list --folder-name default yc compute instance delete xxxxxxxxx ```` Env, used by `navec-train s3|vocab|cooc|emb` ```bash export S3_KEY=_XxXXXxxx_XXXxxxxXxxx export S3_SECRET=XXxxx_XXXXXXxxxxxxXXXXxxXXx-XxxXXxxxX export S3_BUCKET=XXXXXXX export GLOVE_DIR=~/path/to/glove/build ``` Share text data (see corus) ```bash navec-train s3 upload librusec_fb2.plain.gz sources/librusec.gz navec-train s3 upload taiga/proza_ru.zip sources/taiga_proza.zip navec-train s3 upload ruwiki-latest-pages-articles.xml.bz2 sources/wiki.xml.bz2 navec-train s3 upload lenta-ru-news.csv.gz sources/lenta.csv.gz navec-train s3 upload ria.json.gz sources/ria.json.gz navec-train s3 upload taiga/Fontanka.tar.gz sources/taiga_fontanka.tar.gz navec-train s3 upload buriy/news-articles-2014.tar.bz2 sources/buriy_news1.tar.bz2 navec-train s3 upload buriy/news-articles-2015-part1.tar.bz2 sources/buriy_news2.tar.bz2 navec-train s3 upload buriy/news-articles-2015-part2.tar.bz2 sources/buriy_news3.tar.bz2 navec-train s3 upload buriy/webhose-2016.tar.bz2 sources/buriy_webhose.tar.bz2 navec-train s3 upload ods/gazeta_v1.csv.zip sources/ods_gazeta.csv.zip navec-train s3 upload ods/interfax_v1.csv.zip sources/ods_interfax.csv.zip navec-train s3 download sources/librusec.gz navec-train s3 download sources/taiga_proza.zip navec-train s3 download sources/wiki.xml.bz2 navec-train s3 download sources/lenta.csv.gz navec-train s3 download sources/ria.json.gz navec-train s3 download sources/taiga_fontanka.tar.gz navec-train s3 download sources/buriy_news1.tar.bz2 navec-train s3 download sources/buriy_news2.tar.bz2 navec-train s3 download sources/buriy_news3.tar.bz2 navec-train s3 download sources/buriy_webhose.tar.bz2 navec-train s3 download sources/ods_gazeta.csv.zip navec-train s3 download sources/ods_interfax.csv.zip ``` Text to tokens ```bash navec-train corpus librusec librusec.gz | pv | navec-train tokenize > tokens.txt # ~12B words navec-train corpus taiga_proza taiga_proza.zip | pv | navec-train tokenize > tokens.txt # ~3B navec-train corpus wiki wiki.xml.bz2 | pv | navec-train tokenize > tokens.txt # ~0.5B navec-train corpus lenta lenta.csv.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus ria ria.json.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus taiga_fontanka taiga_fontanka.tar.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news1.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news2.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news3.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_webhose buriy_webhose.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus ods_gazeta ods_gazeta.csv.zip | pv | navec-train tokenize >> tokens.txt navec-train corpus ods_interfax ods_interfax.csv.zip | pv | navec-train tokenize >> tokens.txt # ~1B pv tokens.txt | gzip > tokens.txt.gz navec-train s3 upload tokens.txt.gz librusec_tokens.txt.gz navec-train s3 upload tokens.txt taiga_proza_tokens.txt navec-train s3 upload tokens.txt news_tokens.txt navec-train s3 upload tokens.txt wiki_tokens.txt ``` Tokens to vocab ```bash pv tokens.txt \ | navec-train vocab count \ > full_vocab.txt pv full_vocab.txt \ | navec-train vocab quantile # librusec # ... # 0.970 325 882 # 0.980 511 542 # 0.990 1 122 624 # 1.000 22 129 654 # taiga_proza # ... # 0.960 229 906 # 0.970 321 810 # 0.980 517 647 # 0.990 1 224 277 # 1.000 14 302 409 # wiki # ... # 0.950 380 134 # 0.960 519 817 # 0.970 757 561 # 0.980 1 223 201 # 0.990 2 422 265 # 1.000 6 664 630 # news # ... # 0.970 163 833 # 0.980 243 903 # 0.990 462 361 # 1.000 3 744 070 # threashold at ~0.98 # librusec 500000 # taiga_proza 500000 # wiki 750000 # news 250000 cat full_vocab.txt \ | head -500000 \ | LC_ALL=C sort \ > vocab.txt navec-train s3 upload full_vocab.txt librusec_full_vocab.txt navec-train s3 upload vocab.txt librusec_vocab.txt navec-train s3 upload full_vocab.txt taiga_proza_full_vocab.txt navec-train s3 upload vocab.txt taiga_proza_vocab.txt navec-train s3 upload full_vocab.txt wiki_full_vocab.txt navec-train s3 upload vocab.txt wiki_vocab.txt navec-train s3 upload full_vocab.txt news_full_vocab.txt navec-train s3 upload vocab.txt news_vocab.txt ``` Compute coocurence pairs ```bash # Default limit on max number of open files is 1024, merge fails if # number of chunks is large ulimit -n # 1024 sudo nano /etc/security/limits.conf * soft nofile 65535 * hard nofile 65535 # relogin ulimit -n # 65535 pv tokens.txt \ | navec-train cooc count vocab.txt --memory 7 --window 10 \ > cooc.bin # Monitor ls /tmp/cooc_* tail -c 16 cooc.bin | navec-train cooc parse navec-train s3 upload cooc.bin librusec_cooc.bin navec-train s3 upload cooc.bin taiga_proza_cooc.bin navec-train s3 upload cooc.bin wiki_cooc.bin navec-train s3 upload cooc.bin news_cooc.bin ``` Merge (did not give much boost compared to plain librusec, so all_vocab.txt, all_cooc.bin not used below) ```bash for i in librusec taiga_proza wiki news; do navec-train s3 download $i_vocab.txt; navec-train s3 download $i_cooc.bin; done navec-train merge vocabs \ librusec_vocab.txt \ taiga_proza_vocab.txt \ wiki_vocab.txt \ news_vocab.txt \ | pv > vocab.txt navec-train merge coocs vocab.txt \ librusec_cooc.bin:librusec_vocab.txt \ taiga_proza_cooc.bin:taiga_proza_vocab.txt \ wiki_cooc.bin:wiki_vocab.txt \ news_cooc.bin:news_vocab.txt \ | pv > cooc.bin navec-train s3 upload vocab.txt all_vocab.txt navec-train s3 upload cooc.bin all_cooc.bin ``` Compute embedings ```bash navec-train s3 download librusec_vocab.txt vocab.txt navec-train s3 download librusec_cooc.bin cooc.bin navec-train s3 download wiki_vocab.txt vocab.txt navec-train s3 download wiki_cooc.bin cooc.bin navec-train s3 download news_vocab.txt vocab.txt navec-train s3 download news_cooc.bin cooc.bin pv cooc.bin \ | navec-train cooc shuffle --memory 15 \ > shuf_cooc.bin # Search dim with best score for i in 100 200 300 400 500 600; do navec-train emb shuf_cooc.bin vocab.txt emb_${i}d.txt --dim $i --threads 10 --iterations 2; done # 300 has ok score. 400, 500 are a bit better, but too heavy navec-train emb shuf_cooc.bin vocab.txt emb.txt --dim 300 --threads 16 --iterations 15 navec-train s3 upload emb.txt librusec_emb.txt navec-train s3 upload emb.txt wiki_emb.txt navec-train s3 upload emb.txt news_emb.txt ``` Quantize ```bash navec-train s3 download librusec_emb.txt emb.txt navec-train s3 download wiki_emb.txt emb.txt navec-train s3 download news_emb.txt emb.txt # Search for best compression that has still ok score for i in 150 100 75 60 50; do pv emb.txt | navec-train pq fit $i --sample 100000 --iterations 15 > pq_${i}q.bin; done # 100 is <1% worse on eval but much lighter pv emb.txt | navec-train pq fit 100 --sample 100000 --iterations 20 > pq.bin navec-train pq pad < pq.bin > t; mv t pq.bin navec-train s3 upload pq.bin librusec_pq.bin navec-train s3 upload pq.bin wiki_pq.bin navec-train s3 upload pq.bin news_pq.bin ``` Pack ``` navec-train s3 download librusec_pq.bin pq.bin navec-train s3 download librusec_vocab.txt vocab.txt navec-train s3 download news_pq.bin pq.bin navec-train s3 download news_vocab.txt vocab.txt navec-train vocab pack < vocab.txt > vocab.bin navec-train pack vocab.bin pq.bin hudlit_v1_12B_500K_300d_100q navec-train s3 upload navec_hudlit_v1_12B_500K_300d_100q.tar packs/navec_hudlit_v1_12B_500K_300d_100q.tar navec-train pack vocab.bin pq.bin news_v1_1B_250K_300d_100q navec-train s3 upload navec_news_v1_1B_250K_300d_100q.tar packs/navec_news_v1_1B_250K_300d_100q.tar ``` Publish ``` navec-train s3 download packs/navec_hudlit_v1_12B_500K_300d_100q.tar navec-train s3 download packs/navec_news_v1_1B_250K_300d_100q.tar ``` %package help Summary: Development documents and examples for navec Provides: python3-navec-doc %description help ``` Currently two models are published:
Model Size Description Sources
navec_hudlit_v1_12B_500K_300d_100q.tar # 50MB Should be used by default. Shows best results on intrinsic evaluations. Model was trained on large corpus of russian literature (~150GB). librusec
navec_news_v1_1B_250K_300d_100q.tar # 25MB Try to use this model to news texts. It is two times smaller than `hudlit` but covers same 98% of words in news articles. lenta ria taiga_fontanka buriy_news buriy_webhose ods_gazeta ods_interfax
## Installation Navec supports Pyton 3.5+ and PyPy 3. ```bash $ pip install navec ``` ## Usage First download `hudlit` emdeddings (see the table above): ```bash wget https://storage.yandexcloud.net/natasha-navec/packs/navec_hudlit_v1_12B_500K_300d_100q.tar ``` Load tar-archive with `Navec.load`, it takes ~1s and ~100MB of RAM: ```python >>> from navec import Navec >>> path = 'hudlit_12B_500K_300d_100q.tar' >>> navec = Navec.load(path) ``` Then `navec` can be used as a dict object: ```python >>> navec['навек'] array([ 0.3955571 , 0.11600914, 0.24605067, -0.35206917, -0.08932345, 0.3382279 , -0.5457616 , 0.07472657, -0.4753835 , -0.3330848 , >>> 'нааавееек' in navec False >>> navec.get('нааавееек') None ``` To get an index of word, use `navec.vocab`: ```python >>> navec.vocab['навек'] 225823 >>> navec.vocab.get('наааавеeeк', navec.vocab.unk_id) 500000 # == navec.vocab[''] ``` There are two special words in vocab, `` and ``: ```python >>> navec[''] array([ 3.69125791e-02, 9.32818875e-02, 2.01917738e-02, ... >>> navec[''] array([0., 0., 0., 0., 0., 0., ... ``` To use Navec in PyTorch model there is a Slovnet module: ```python >>> import torch >>> from slovnet.model.emb import NavecEmbedding >>> emb = NavecEmbedding(navec) >>> input = torch.tensor([1, 2, 0]) >>> output = emb(input) >>> output.shape torch.Size([3, 300]) >>> output tensor([[ 4.2000e-01, 3.6666e-01, 1.7728e-01, -3.8719e-01, -1.0762e-01, 1.6954e-01, -4.6063e-01, 5.4519e-01, -2.1212e-01, 2.0965e-01, 1.9658e-01, 2.7807e-01, -2.3802e-01, 3.5155e-01, 1.4491e-02, ``` ## Evaluation Let's compore Navec to top 5 RusVectores models (based on `simlex` and `hj` eval datasets). In each column top 3 results are highlighted. * `init` — time it takes to load model file to RAM. `tayga_upos_skipgram_300_2_2019` word2vec binary file takes 5 seconds to load with `gensim.KeyedVectors.load_word2vec_format`. `tayga_none_fasttextcbow_300_10_2019` fastText large ~2.7 GB file takes 8 seconds. Navec `hudlit` with vocab 2 times larger than previous two takes 1 second. * `get` — time is takes to query embedding vector for a single word. Word2vec models win here, to fetch a vector they basically do `dict.get`. FastText and Navec for every query do extra computation. FastText extracts and sums word ngrams, Navec unpacks vector from quantization table. In practice query to embeddings table is small compared to all other computation in network. * `disk` — model file size. It is convenient for deployment and distribution to have small models. Notice that `hudlit` model is 4-20 times smaller with vocab size 2 times bigger. * `ram` — space model takes in RAM after loading. It is convenient to have small memory footprint to fit more computation on single server. * `vocab` — number of words in vocab, number of embedding vectors. Since Navec vectors table takes less space we can have larger vocab. With 500K vocab `hudlit` model has ~2% OVV rate on average.
type init, s get, µs disk, mb ram, mb vocab
hudlit_12B_500K_300d_100q navec 1.1 21.6 50.6 95.3 500K
news_1B_250K_300d_100q navec 0.8 20.7 25.4 47.7 250K
ruscorpora_upos_cbow_300_20_2019 w2v 3.3 1.4 220.6 236.1 189K
ruwikiruscorpora_upos_skipgram_300_2_2019 w2v 5.0 1.5 290.0 309.4 248K
tayga_upos_skipgram_300_2_2019 w2v 5.2 1.4 290.7 310.9 249K
tayga_none_fasttextcbow_300_10_2019 fasttext 8.0 13.4 2741.9 2746.9 192K
araneum_none_fasttextcbow_300_5_2018 fasttext 16.4 10.6 2752.1 2754.7 195K
Now let's look at intrinsic evaluation scores. Navec `hudlit` model does not show best results on all datasets but it is usually in top 3. We'll use 6 datasets: * `simlex965`, `hj` — two small datasets (965 and 398 tests respectively) used by RusVectores, see the their paper for more info. Metric is spearman correlation, other datasets use average precision. * `rt`, `ae`, `ae2` — large datasets (114066, 22919, 86772 tests) from RUSSE workshop, see project description for more. * `lrwc` — relatively new dataset by Yandex.Toloka, see their page.
type simlex hj rt ae ae2 lrwc
hudlit_12B_500K_300d_100q navec 0.310 0.707 0.842 0.931 0.923 0.604
news_1B_250K_300d_100q navec 0.230 0.590 0.784 0.866 0.861 0.589
ruscorpora_upos_cbow_300_20_2019 w2v 0.359 0.685 0.852 0.758 0.896 0.602
ruwikiruscorpora_upos_skipgram_300_2_2019 w2v 0.321 0.723 0.817 0.801 0.860 0.629
tayga_upos_skipgram_300_2_2019 w2v 0.429 0.749 0.871 0.771 0.899 0.639
tayga_none_fasttextcbow_300_10_2019 fasttext 0.369 0.639 0.793 0.682 0.813 0.536
araneum_none_fasttextcbow_300_5_2018 fasttext 0.349 0.671 0.801 0.706 0.793 0.579
## Support - Chat — https://telegram.me/natural_language_processing - Issues — https://github.com/natasha/navec/issues - Commercial support — https://lab.alexkuk.ru ## Development Test ```bash make test ``` Package ```bash make version git push git push --tags make clean wheel upload ``` Notice! All commands belows use code from `navec/train`, it is not under CI, it works only with Python 3, it is expected user is familiar with source code. We use Yandex Cloud Compute and Object Storage. Create remote worker To compute cooc (large HDD, 1Tb for librusec). ```bash yc compute instance create \ --name worker \ --zone ru-central1-a \ --network-interface subnet-name=default,nat-ip-version=ipv4 \ --create-boot-disk image-folder-id=standard-images,image-family=ubuntu-1804,type=network-hdd,size=1000 \ --memory 8 \ --cores 2 \ --core-fraction 100 \ --ssh-key ~/.ssh/id_rsa.pub \ --folder-name default \ --preemptible # in case computation takes <24h ``` To fit embedings (multiple cores). HDD should be > cooc.bin * 3 (for suffle + tmp) ```bash yc compute instance create \ --name worker \ --zone ru-central1-a \ --network-interface subnet-name=default,nat-ip-version=ipv4 \ --create-boot-disk image-folder-id=standard-images,image-family=ubuntu-1804,type=network-hdd,size=700 \ --memory 16 \ --cores 16 \ --core-fraction 100 \ --ssh-key ~/.ssh/id_rsa.pub \ --folder-name default \ --preemptible ``` Setup machine ```bash yc compute instance list --folder-name default ssh yc-user@123.123.123.123 sudo locale-gen en_US.UTF-8 sudo timedatectl set-timezone Europe/Moscow sudo apt-get update sudo DEBIAN_FRONTEND=noninteractive apt-get install -y language-pack-ru python3-pip screen unzip git pv cmake wget https://nlp.stanford.edu/software/GloVe-1.2.zip unzip GloVe-1.2.zip rm GloVe-1.2.zip mv GloVe-1.2 glove cd glove make cd .. export GLOVE_DIR=~/glove/build git clone https://github.com/natasha/navec.git sudo -H pip3 install -e navec sudo -H pip3 install -r navec/requirements/train.txt screen ctrl a d ``` Remove instance ```bash yc compute instance list --folder-name default yc compute instance delete xxxxxxxxx ```` Env, used by `navec-train s3|vocab|cooc|emb` ```bash export S3_KEY=_XxXXXxxx_XXXxxxxXxxx export S3_SECRET=XXxxx_XXXXXXxxxxxxXXXXxxXXx-XxxXXxxxX export S3_BUCKET=XXXXXXX export GLOVE_DIR=~/path/to/glove/build ``` Share text data (see corus) ```bash navec-train s3 upload librusec_fb2.plain.gz sources/librusec.gz navec-train s3 upload taiga/proza_ru.zip sources/taiga_proza.zip navec-train s3 upload ruwiki-latest-pages-articles.xml.bz2 sources/wiki.xml.bz2 navec-train s3 upload lenta-ru-news.csv.gz sources/lenta.csv.gz navec-train s3 upload ria.json.gz sources/ria.json.gz navec-train s3 upload taiga/Fontanka.tar.gz sources/taiga_fontanka.tar.gz navec-train s3 upload buriy/news-articles-2014.tar.bz2 sources/buriy_news1.tar.bz2 navec-train s3 upload buriy/news-articles-2015-part1.tar.bz2 sources/buriy_news2.tar.bz2 navec-train s3 upload buriy/news-articles-2015-part2.tar.bz2 sources/buriy_news3.tar.bz2 navec-train s3 upload buriy/webhose-2016.tar.bz2 sources/buriy_webhose.tar.bz2 navec-train s3 upload ods/gazeta_v1.csv.zip sources/ods_gazeta.csv.zip navec-train s3 upload ods/interfax_v1.csv.zip sources/ods_interfax.csv.zip navec-train s3 download sources/librusec.gz navec-train s3 download sources/taiga_proza.zip navec-train s3 download sources/wiki.xml.bz2 navec-train s3 download sources/lenta.csv.gz navec-train s3 download sources/ria.json.gz navec-train s3 download sources/taiga_fontanka.tar.gz navec-train s3 download sources/buriy_news1.tar.bz2 navec-train s3 download sources/buriy_news2.tar.bz2 navec-train s3 download sources/buriy_news3.tar.bz2 navec-train s3 download sources/buriy_webhose.tar.bz2 navec-train s3 download sources/ods_gazeta.csv.zip navec-train s3 download sources/ods_interfax.csv.zip ``` Text to tokens ```bash navec-train corpus librusec librusec.gz | pv | navec-train tokenize > tokens.txt # ~12B words navec-train corpus taiga_proza taiga_proza.zip | pv | navec-train tokenize > tokens.txt # ~3B navec-train corpus wiki wiki.xml.bz2 | pv | navec-train tokenize > tokens.txt # ~0.5B navec-train corpus lenta lenta.csv.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus ria ria.json.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus taiga_fontanka taiga_fontanka.tar.gz | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news1.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news2.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_news buriy_news3.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus buriy_webhose buriy_webhose.tar.bz2 | pv | navec-train tokenize >> tokens.txt navec-train corpus ods_gazeta ods_gazeta.csv.zip | pv | navec-train tokenize >> tokens.txt navec-train corpus ods_interfax ods_interfax.csv.zip | pv | navec-train tokenize >> tokens.txt # ~1B pv tokens.txt | gzip > tokens.txt.gz navec-train s3 upload tokens.txt.gz librusec_tokens.txt.gz navec-train s3 upload tokens.txt taiga_proza_tokens.txt navec-train s3 upload tokens.txt news_tokens.txt navec-train s3 upload tokens.txt wiki_tokens.txt ``` Tokens to vocab ```bash pv tokens.txt \ | navec-train vocab count \ > full_vocab.txt pv full_vocab.txt \ | navec-train vocab quantile # librusec # ... # 0.970 325 882 # 0.980 511 542 # 0.990 1 122 624 # 1.000 22 129 654 # taiga_proza # ... # 0.960 229 906 # 0.970 321 810 # 0.980 517 647 # 0.990 1 224 277 # 1.000 14 302 409 # wiki # ... # 0.950 380 134 # 0.960 519 817 # 0.970 757 561 # 0.980 1 223 201 # 0.990 2 422 265 # 1.000 6 664 630 # news # ... # 0.970 163 833 # 0.980 243 903 # 0.990 462 361 # 1.000 3 744 070 # threashold at ~0.98 # librusec 500000 # taiga_proza 500000 # wiki 750000 # news 250000 cat full_vocab.txt \ | head -500000 \ | LC_ALL=C sort \ > vocab.txt navec-train s3 upload full_vocab.txt librusec_full_vocab.txt navec-train s3 upload vocab.txt librusec_vocab.txt navec-train s3 upload full_vocab.txt taiga_proza_full_vocab.txt navec-train s3 upload vocab.txt taiga_proza_vocab.txt navec-train s3 upload full_vocab.txt wiki_full_vocab.txt navec-train s3 upload vocab.txt wiki_vocab.txt navec-train s3 upload full_vocab.txt news_full_vocab.txt navec-train s3 upload vocab.txt news_vocab.txt ``` Compute coocurence pairs ```bash # Default limit on max number of open files is 1024, merge fails if # number of chunks is large ulimit -n # 1024 sudo nano /etc/security/limits.conf * soft nofile 65535 * hard nofile 65535 # relogin ulimit -n # 65535 pv tokens.txt \ | navec-train cooc count vocab.txt --memory 7 --window 10 \ > cooc.bin # Monitor ls /tmp/cooc_* tail -c 16 cooc.bin | navec-train cooc parse navec-train s3 upload cooc.bin librusec_cooc.bin navec-train s3 upload cooc.bin taiga_proza_cooc.bin navec-train s3 upload cooc.bin wiki_cooc.bin navec-train s3 upload cooc.bin news_cooc.bin ``` Merge (did not give much boost compared to plain librusec, so all_vocab.txt, all_cooc.bin not used below) ```bash for i in librusec taiga_proza wiki news; do navec-train s3 download $i_vocab.txt; navec-train s3 download $i_cooc.bin; done navec-train merge vocabs \ librusec_vocab.txt \ taiga_proza_vocab.txt \ wiki_vocab.txt \ news_vocab.txt \ | pv > vocab.txt navec-train merge coocs vocab.txt \ librusec_cooc.bin:librusec_vocab.txt \ taiga_proza_cooc.bin:taiga_proza_vocab.txt \ wiki_cooc.bin:wiki_vocab.txt \ news_cooc.bin:news_vocab.txt \ | pv > cooc.bin navec-train s3 upload vocab.txt all_vocab.txt navec-train s3 upload cooc.bin all_cooc.bin ``` Compute embedings ```bash navec-train s3 download librusec_vocab.txt vocab.txt navec-train s3 download librusec_cooc.bin cooc.bin navec-train s3 download wiki_vocab.txt vocab.txt navec-train s3 download wiki_cooc.bin cooc.bin navec-train s3 download news_vocab.txt vocab.txt navec-train s3 download news_cooc.bin cooc.bin pv cooc.bin \ | navec-train cooc shuffle --memory 15 \ > shuf_cooc.bin # Search dim with best score for i in 100 200 300 400 500 600; do navec-train emb shuf_cooc.bin vocab.txt emb_${i}d.txt --dim $i --threads 10 --iterations 2; done # 300 has ok score. 400, 500 are a bit better, but too heavy navec-train emb shuf_cooc.bin vocab.txt emb.txt --dim 300 --threads 16 --iterations 15 navec-train s3 upload emb.txt librusec_emb.txt navec-train s3 upload emb.txt wiki_emb.txt navec-train s3 upload emb.txt news_emb.txt ``` Quantize ```bash navec-train s3 download librusec_emb.txt emb.txt navec-train s3 download wiki_emb.txt emb.txt navec-train s3 download news_emb.txt emb.txt # Search for best compression that has still ok score for i in 150 100 75 60 50; do pv emb.txt | navec-train pq fit $i --sample 100000 --iterations 15 > pq_${i}q.bin; done # 100 is <1% worse on eval but much lighter pv emb.txt | navec-train pq fit 100 --sample 100000 --iterations 20 > pq.bin navec-train pq pad < pq.bin > t; mv t pq.bin navec-train s3 upload pq.bin librusec_pq.bin navec-train s3 upload pq.bin wiki_pq.bin navec-train s3 upload pq.bin news_pq.bin ``` Pack ``` navec-train s3 download librusec_pq.bin pq.bin navec-train s3 download librusec_vocab.txt vocab.txt navec-train s3 download news_pq.bin pq.bin navec-train s3 download news_vocab.txt vocab.txt navec-train vocab pack < vocab.txt > vocab.bin navec-train pack vocab.bin pq.bin hudlit_v1_12B_500K_300d_100q navec-train s3 upload navec_hudlit_v1_12B_500K_300d_100q.tar packs/navec_hudlit_v1_12B_500K_300d_100q.tar navec-train pack vocab.bin pq.bin news_v1_1B_250K_300d_100q navec-train s3 upload navec_news_v1_1B_250K_300d_100q.tar packs/navec_news_v1_1B_250K_300d_100q.tar ``` Publish ``` navec-train s3 download packs/navec_hudlit_v1_12B_500K_300d_100q.tar navec-train s3 download packs/navec_news_v1_1B_250K_300d_100q.tar ``` %prep %autosetup -n navec-0.10.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-navec -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 10 2023 Python_Bot - 0.10.0-1 - Package Spec generated