%global _empty_manifest_terminate_build 0 Name: python-targeted Version: 0.0.30 Release: 1 Summary: Python package for targeted inference. License: Apache Software License URL: https://targetlib.org/python/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/69/41/eb97302d2ab4912cfb04c6f4bb29e690321e4c52490c314ee5b4808df1c3/targeted-0.0.30.tar.gz BuildArch: noarch %description # Targeted Learning Library Python package for targeted inference. **targeted** provides a number of methods for semi-parametric estimation. The library also contains implementations of various parametric models (including different discrete choice models) and model diagnostics tools. The implemention currently includes - **Risk regression models** with binary exposure (Richardson et al., 2017, doi:10.1080/01621459.2016.1192546) - **Augmented Inverse Probability Weighted** estimators for missing data and causal inference (Bang and Robins, 2005, doi:10.1111/j.1541-0420.2005.00377.x) - Model diagnostics based on **cumulative residuals** methods - Efficient weighted **Pooled Adjacent Violator Algorithms** - **Nested multinomial logit** models Documentation and tutorials can be found at https://targetlib.org/python/. %package -n python3-targeted Summary: Python package for targeted inference. Provides: python-targeted BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-targeted # Targeted Learning Library Python package for targeted inference. **targeted** provides a number of methods for semi-parametric estimation. The library also contains implementations of various parametric models (including different discrete choice models) and model diagnostics tools. The implemention currently includes - **Risk regression models** with binary exposure (Richardson et al., 2017, doi:10.1080/01621459.2016.1192546) - **Augmented Inverse Probability Weighted** estimators for missing data and causal inference (Bang and Robins, 2005, doi:10.1111/j.1541-0420.2005.00377.x) - Model diagnostics based on **cumulative residuals** methods - Efficient weighted **Pooled Adjacent Violator Algorithms** - **Nested multinomial logit** models Documentation and tutorials can be found at https://targetlib.org/python/. %package help Summary: Development documents and examples for targeted Provides: python3-targeted-doc %description help # Targeted Learning Library Python package for targeted inference. **targeted** provides a number of methods for semi-parametric estimation. The library also contains implementations of various parametric models (including different discrete choice models) and model diagnostics tools. The implemention currently includes - **Risk regression models** with binary exposure (Richardson et al., 2017, doi:10.1080/01621459.2016.1192546) - **Augmented Inverse Probability Weighted** estimators for missing data and causal inference (Bang and Robins, 2005, doi:10.1111/j.1541-0420.2005.00377.x) - Model diagnostics based on **cumulative residuals** methods - Efficient weighted **Pooled Adjacent Violator Algorithms** - **Nested multinomial logit** models Documentation and tutorials can be found at https://targetlib.org/python/. %prep %autosetup -n targeted-0.0.30 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-targeted -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 10 2023 Python_Bot - 0.0.30-1 - Package Spec generated