%global _empty_manifest_terminate_build 0 Name: python-libnum Version: 1.7.1 Release: 1 Summary: Working with numbers (primes, modular, etc.) License: MIT URL: https://pypi.org/project/libnum/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d1/b3/25a3af3537d5dbcd23c651b942e6715b55f3ffeada97a5be328c0f1ac7a1/libnum-1.7.1.tar.gz BuildArch: noarch %description # libnum This is a python library for some numbers functions: * working with primes (generating, primality tests) * common maths (gcd, lcm, n'th root) * modular arithmetics (inverse, Jacobi symbol, square root, solve CRT) * converting strings to numbers or binary strings Library may be used for learning/experimenting/research purposes. Should NOT be used for secure crypto implementations. ## Installation ```bash $ pip install libnum ``` Note that only Python 3 version is maintained. ## Development For development or building this repository, [poetry](https://python-poetry.org/) is needed. Tests can be ran with ```bash $ pytest --doctest-modules . ``` ## List of functions Common maths * len\_in\_bits(n) - number of bits in binary representation of @n * randint\_bits(size) - random number with a given bit size * extract\_prime\_power(a, p) - s,t such that a = p**s * t * nroot(x, n) - truncated n'th root of x * gcd(a, b, ...) - greatest common divisor of all arguments * lcm(a, b, ...) - least common multiplier of all arguments * xgcd(a, b) - Extented Euclid GCD algorithm, returns (x, y, g) : a * x + b * y = gcd(a, b) = g Modular * has\_invmod(a, n) - checks if a has modulo inverse * invmod(a, n) - modulo inverse * solve\_crt(remainders, modules) - solve Chinese Remainder Theoreme * factorial\_mod(n, factors) - compute factorial modulo composite number, needs factorization * nCk\_mod(n, k, factors) - compute combinations number modulo composite number, needs factorization * nCk\_mod\_prime\_power(n, k, p, e) - compute combinations number modulo prime power Modular square roots * jacobi(a, b) - Jacobi symbol * has\_sqrtmod\_prime\_power(a, p, k) - checks if a number has modular square root, modulus is p**k * sqrtmod\_prime\_power(a, p, k) - modular square root by p**k * has\_sqrtmod(a, factors) - checks if a composite number has modular square root, needs factorization * sqrtmod(a, factors) - modular square root by a composite modulus, needs factorization Primes * primes(n) - list of primes not greater than @n, slow method * generate\_prime(size, k=25) - generates a pseudo-prime with @size bits length. @k is a number of tests. * generate\_prime\_from\_string(s, size=None, k=25) - generate a pseudo-prime starting with @s in string representation Factorization * is\_power(n) - check if @n is p**k, k >= 2: return (p, k) or False * factorize(n) - factorize @n (currently with rho-Pollard method) warning: format of factorization is now dict like {p1: e1, p2: e2, ...} ECC * Curve(a, b, p, g, order, cofactor, seed) - class for representing elliptic curve. Methods: * .is\_null(p) - checks if point is null * .is\_opposite(p1, p2) - checks if 2 points are opposite * .check(p) - checks if point is on the curve * .check\_x(x) - checks if there are points with given x on the curve (and returns them if any) * .find\_points\_in\_range(start, end) - list of points in range of x coordinate * .find\_points\_rand(count) - list of count random points * .add(p1, p2) - p1 + p2 on elliptic curve * .power(p, n) - n✕P or (P + P + ... + P) n times * .generate(n) - n✕G * .get\_order(p, limit) - slow method, trying to determine order of p; limit is max order to try Converting * s2n(s) - packed string to number * n2s(n) - number to packed string * s2b(s) - packed string to binary string * b2s(b) - binary string to packed string Stuff * grey\_code(n) - number in Grey code * rev\_grey\_code(g) - number from Grey code * nCk(n, k) - number of combinations * factorial(n) - factorial ## About Author: hellman License: [MIT License](http://opensource.org/licenses/MIT) %package -n python3-libnum Summary: Working with numbers (primes, modular, etc.) Provides: python-libnum BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-libnum # libnum This is a python library for some numbers functions: * working with primes (generating, primality tests) * common maths (gcd, lcm, n'th root) * modular arithmetics (inverse, Jacobi symbol, square root, solve CRT) * converting strings to numbers or binary strings Library may be used for learning/experimenting/research purposes. Should NOT be used for secure crypto implementations. ## Installation ```bash $ pip install libnum ``` Note that only Python 3 version is maintained. ## Development For development or building this repository, [poetry](https://python-poetry.org/) is needed. Tests can be ran with ```bash $ pytest --doctest-modules . ``` ## List of functions Common maths * len\_in\_bits(n) - number of bits in binary representation of @n * randint\_bits(size) - random number with a given bit size * extract\_prime\_power(a, p) - s,t such that a = p**s * t * nroot(x, n) - truncated n'th root of x * gcd(a, b, ...) - greatest common divisor of all arguments * lcm(a, b, ...) - least common multiplier of all arguments * xgcd(a, b) - Extented Euclid GCD algorithm, returns (x, y, g) : a * x + b * y = gcd(a, b) = g Modular * has\_invmod(a, n) - checks if a has modulo inverse * invmod(a, n) - modulo inverse * solve\_crt(remainders, modules) - solve Chinese Remainder Theoreme * factorial\_mod(n, factors) - compute factorial modulo composite number, needs factorization * nCk\_mod(n, k, factors) - compute combinations number modulo composite number, needs factorization * nCk\_mod\_prime\_power(n, k, p, e) - compute combinations number modulo prime power Modular square roots * jacobi(a, b) - Jacobi symbol * has\_sqrtmod\_prime\_power(a, p, k) - checks if a number has modular square root, modulus is p**k * sqrtmod\_prime\_power(a, p, k) - modular square root by p**k * has\_sqrtmod(a, factors) - checks if a composite number has modular square root, needs factorization * sqrtmod(a, factors) - modular square root by a composite modulus, needs factorization Primes * primes(n) - list of primes not greater than @n, slow method * generate\_prime(size, k=25) - generates a pseudo-prime with @size bits length. @k is a number of tests. * generate\_prime\_from\_string(s, size=None, k=25) - generate a pseudo-prime starting with @s in string representation Factorization * is\_power(n) - check if @n is p**k, k >= 2: return (p, k) or False * factorize(n) - factorize @n (currently with rho-Pollard method) warning: format of factorization is now dict like {p1: e1, p2: e2, ...} ECC * Curve(a, b, p, g, order, cofactor, seed) - class for representing elliptic curve. Methods: * .is\_null(p) - checks if point is null * .is\_opposite(p1, p2) - checks if 2 points are opposite * .check(p) - checks if point is on the curve * .check\_x(x) - checks if there are points with given x on the curve (and returns them if any) * .find\_points\_in\_range(start, end) - list of points in range of x coordinate * .find\_points\_rand(count) - list of count random points * .add(p1, p2) - p1 + p2 on elliptic curve * .power(p, n) - n✕P or (P + P + ... + P) n times * .generate(n) - n✕G * .get\_order(p, limit) - slow method, trying to determine order of p; limit is max order to try Converting * s2n(s) - packed string to number * n2s(n) - number to packed string * s2b(s) - packed string to binary string * b2s(b) - binary string to packed string Stuff * grey\_code(n) - number in Grey code * rev\_grey\_code(g) - number from Grey code * nCk(n, k) - number of combinations * factorial(n) - factorial ## About Author: hellman License: [MIT License](http://opensource.org/licenses/MIT) %package help Summary: Development documents and examples for libnum Provides: python3-libnum-doc %description help # libnum This is a python library for some numbers functions: * working with primes (generating, primality tests) * common maths (gcd, lcm, n'th root) * modular arithmetics (inverse, Jacobi symbol, square root, solve CRT) * converting strings to numbers or binary strings Library may be used for learning/experimenting/research purposes. Should NOT be used for secure crypto implementations. ## Installation ```bash $ pip install libnum ``` Note that only Python 3 version is maintained. ## Development For development or building this repository, [poetry](https://python-poetry.org/) is needed. Tests can be ran with ```bash $ pytest --doctest-modules . ``` ## List of functions Common maths * len\_in\_bits(n) - number of bits in binary representation of @n * randint\_bits(size) - random number with a given bit size * extract\_prime\_power(a, p) - s,t such that a = p**s * t * nroot(x, n) - truncated n'th root of x * gcd(a, b, ...) - greatest common divisor of all arguments * lcm(a, b, ...) - least common multiplier of all arguments * xgcd(a, b) - Extented Euclid GCD algorithm, returns (x, y, g) : a * x + b * y = gcd(a, b) = g Modular * has\_invmod(a, n) - checks if a has modulo inverse * invmod(a, n) - modulo inverse * solve\_crt(remainders, modules) - solve Chinese Remainder Theoreme * factorial\_mod(n, factors) - compute factorial modulo composite number, needs factorization * nCk\_mod(n, k, factors) - compute combinations number modulo composite number, needs factorization * nCk\_mod\_prime\_power(n, k, p, e) - compute combinations number modulo prime power Modular square roots * jacobi(a, b) - Jacobi symbol * has\_sqrtmod\_prime\_power(a, p, k) - checks if a number has modular square root, modulus is p**k * sqrtmod\_prime\_power(a, p, k) - modular square root by p**k * has\_sqrtmod(a, factors) - checks if a composite number has modular square root, needs factorization * sqrtmod(a, factors) - modular square root by a composite modulus, needs factorization Primes * primes(n) - list of primes not greater than @n, slow method * generate\_prime(size, k=25) - generates a pseudo-prime with @size bits length. @k is a number of tests. * generate\_prime\_from\_string(s, size=None, k=25) - generate a pseudo-prime starting with @s in string representation Factorization * is\_power(n) - check if @n is p**k, k >= 2: return (p, k) or False * factorize(n) - factorize @n (currently with rho-Pollard method) warning: format of factorization is now dict like {p1: e1, p2: e2, ...} ECC * Curve(a, b, p, g, order, cofactor, seed) - class for representing elliptic curve. Methods: * .is\_null(p) - checks if point is null * .is\_opposite(p1, p2) - checks if 2 points are opposite * .check(p) - checks if point is on the curve * .check\_x(x) - checks if there are points with given x on the curve (and returns them if any) * .find\_points\_in\_range(start, end) - list of points in range of x coordinate * .find\_points\_rand(count) - list of count random points * .add(p1, p2) - p1 + p2 on elliptic curve * .power(p, n) - n✕P or (P + P + ... + P) n times * .generate(n) - n✕G * .get\_order(p, limit) - slow method, trying to determine order of p; limit is max order to try Converting * s2n(s) - packed string to number * n2s(n) - number to packed string * s2b(s) - packed string to binary string * b2s(b) - binary string to packed string Stuff * grey\_code(n) - number in Grey code * rev\_grey\_code(g) - number from Grey code * nCk(n, k) - number of combinations * factorial(n) - factorial ## About Author: hellman License: [MIT License](http://opensource.org/licenses/MIT) %prep %autosetup -n libnum-1.7.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-libnum -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot - 1.7.1-1 - Package Spec generated