%global _empty_manifest_terminate_build 0 Name: python-mice Version: 0.1.30 Release: 1 Summary: Multi-iteration Stochastic Estimator License: GPLv3 URL: https://bitbucket.org/agcarlon/mice Source0: https://mirrors.nju.edu.cn/pypi/web/packages/77/c9/8f0135b0a9d099b0c6073243274e5867b6dfa72548b871d265f987890afd/mice-0.1.30.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scipy Requires: python3-pandas Requires: python3-matplotlib %description The `Multi-Iteration stochastiC Estimator`_ (MICE) is an estimator of gradients to be used in stochastic optimization. It uses control variates to build a hierarchy of iterations, adaptively sampling to keep the statistical variance below tolerance in an optimal fashion, cost-wise. The tolerance on the statistical error decreases proportionally to the square of the gradient norm, thus, SGD-MICE converges linearly in strongly convex L-smooth functions. This python implementation of MICE is able to * estimate expectations or finite sums of gradients of functions; * choose the optimal sample sizes in order to minimize the sampling cost; * build a hierarchy of iterations that minimizes the total work; * use a resampling technique to compute the gradient norm, thus enforcing stability; * define a tolerance on the norm of the gradient estimate or a maximum number of evaluations as a stopping criterion. %package -n python3-mice Summary: Multi-iteration Stochastic Estimator Provides: python-mice BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-mice The `Multi-Iteration stochastiC Estimator`_ (MICE) is an estimator of gradients to be used in stochastic optimization. It uses control variates to build a hierarchy of iterations, adaptively sampling to keep the statistical variance below tolerance in an optimal fashion, cost-wise. The tolerance on the statistical error decreases proportionally to the square of the gradient norm, thus, SGD-MICE converges linearly in strongly convex L-smooth functions. This python implementation of MICE is able to * estimate expectations or finite sums of gradients of functions; * choose the optimal sample sizes in order to minimize the sampling cost; * build a hierarchy of iterations that minimizes the total work; * use a resampling technique to compute the gradient norm, thus enforcing stability; * define a tolerance on the norm of the gradient estimate or a maximum number of evaluations as a stopping criterion. %package help Summary: Development documents and examples for mice Provides: python3-mice-doc %description help The `Multi-Iteration stochastiC Estimator`_ (MICE) is an estimator of gradients to be used in stochastic optimization. It uses control variates to build a hierarchy of iterations, adaptively sampling to keep the statistical variance below tolerance in an optimal fashion, cost-wise. The tolerance on the statistical error decreases proportionally to the square of the gradient norm, thus, SGD-MICE converges linearly in strongly convex L-smooth functions. This python implementation of MICE is able to * estimate expectations or finite sums of gradients of functions; * choose the optimal sample sizes in order to minimize the sampling cost; * build a hierarchy of iterations that minimizes the total work; * use a resampling technique to compute the gradient norm, thus enforcing stability; * define a tolerance on the norm of the gradient estimate or a maximum number of evaluations as a stopping criterion. %prep %autosetup -n mice-0.1.30 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-mice -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot - 0.1.30-1 - Package Spec generated