%global _empty_manifest_terminate_build 0 Name: python-FDApy Version: 0.8.7 Release: 1 Summary: please add a summary manually as the author left a blank one License: MIT URL: https://github.com/StevenGolovkine/FDApy Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fa/58/ce9f4cebb3bff6cc026cd2a9239f96fa8248a215e6a6b50ec75b6ec5929b/FDApy-0.8.7.tar.gz BuildArch: noarch Requires: python3-csaps Requires: python3-ggplot Requires: python3-numpy Requires: python3-pandas Requires: python3-patsy Requires: python3-pygam Requires: python3-scikit-learn Requires: python3-scipy %description Statistics that deals with discrete observations of continuous d-dimensional functions. This package provide modules for the analysis of such data. It includes methods for different dimensional data as well as irregularly sampled functional data. An implementation of (multivariate) functional principal component analysis is also given. Moreover, a simulation toolbox is provided. It might be used to simulate different clusters of functional data. Check out the `documentation `_ for more complete information on the available features within the package. %package -n python3-FDApy Summary: please add a summary manually as the author left a blank one Provides: python-FDApy BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-FDApy Statistics that deals with discrete observations of continuous d-dimensional functions. This package provide modules for the analysis of such data. It includes methods for different dimensional data as well as irregularly sampled functional data. An implementation of (multivariate) functional principal component analysis is also given. Moreover, a simulation toolbox is provided. It might be used to simulate different clusters of functional data. Check out the `documentation `_ for more complete information on the available features within the package. %package help Summary: Development documents and examples for FDApy Provides: python3-FDApy-doc %description help Statistics that deals with discrete observations of continuous d-dimensional functions. This package provide modules for the analysis of such data. It includes methods for different dimensional data as well as irregularly sampled functional data. An implementation of (multivariate) functional principal component analysis is also given. Moreover, a simulation toolbox is provided. It might be used to simulate different clusters of functional data. Check out the `documentation `_ for more complete information on the available features within the package. %prep %autosetup -n FDApy-0.8.7 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-FDApy -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot - 0.8.7-1 - Package Spec generated