%global _empty_manifest_terminate_build 0 Name: python-tfidf-matcher Version: 0.3.0 Release: 1 Summary: A small package that enables super-fast TF-IDF based string matching. License: MIT License URL: https://github.com/louistsiattalou/tfidf_matcher Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cc/cd/af378c05b1f199879f2deed7c31abc4175dad73052f08832a4b4752cdbf6/tfidf_matcher-0.3.0.tar.gz BuildArch: noarch Requires: python3-scikit-learn Requires: python3-pandas %description This package provides two functions: - `ngrams()`: Simple ngram generator. - `matcher()`: Matches a list of strings against a reference corpus. Does this by: - Vectorizing the reference corpus using TF-IDF into a term-document matrix. - Fitting a K-NearestNeighbours model to the sparse matrix. - Vectorizing the list of strings to be matched and passing it in to the KNN model to calculate the cosine distance (the OOTB `cosine_similarity` function in sklearn is very memory-inefficient for our use case). - Some data manipulation to emit `k_matches` closest matches. %package -n python3-tfidf-matcher Summary: A small package that enables super-fast TF-IDF based string matching. Provides: python-tfidf-matcher BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-tfidf-matcher This package provides two functions: - `ngrams()`: Simple ngram generator. - `matcher()`: Matches a list of strings against a reference corpus. Does this by: - Vectorizing the reference corpus using TF-IDF into a term-document matrix. - Fitting a K-NearestNeighbours model to the sparse matrix. - Vectorizing the list of strings to be matched and passing it in to the KNN model to calculate the cosine distance (the OOTB `cosine_similarity` function in sklearn is very memory-inefficient for our use case). - Some data manipulation to emit `k_matches` closest matches. %package help Summary: Development documents and examples for tfidf-matcher Provides: python3-tfidf-matcher-doc %description help This package provides two functions: - `ngrams()`: Simple ngram generator. - `matcher()`: Matches a list of strings against a reference corpus. Does this by: - Vectorizing the reference corpus using TF-IDF into a term-document matrix. - Fitting a K-NearestNeighbours model to the sparse matrix. - Vectorizing the list of strings to be matched and passing it in to the KNN model to calculate the cosine distance (the OOTB `cosine_similarity` function in sklearn is very memory-inefficient for our use case). - Some data manipulation to emit `k_matches` closest matches. %prep %autosetup -n tfidf-matcher-0.3.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-tfidf-matcher -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 29 2023 Python_Bot - 0.3.0-1 - Package Spec generated