%global _empty_manifest_terminate_build 0 Name: python-jmetalpy Version: 1.6.0 Release: 1 Summary: Python version of the jMetal framework License: MIT URL: https://github.com/jMetal/jMetalPy Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b7/29/ab3d41a6c5318ba8a438ad301e463ca1faa381c39f5c53871c86d3dfc504/jmetalpy-1.6.0.tar.gz BuildArch: noarch Requires: python3-tqdm Requires: python3-numpy Requires: python3-pandas Requires: python3-plotly Requires: python3-matplotlib Requires: python3-scipy Requires: python3-statsmodels Requires: python3-dask[complete] Requires: python3-distributed Requires: python3-pyspark Requires: python3-isort Requires: python3-black Requires: python3-mypy Requires: python3-mockito Requires: python3-PyHamcrest Requires: python3-isort Requires: python3-black Requires: python3-mypy Requires: python3-dask[complete] Requires: python3-distributed Requires: python3-pyspark Requires: python3-mockito Requires: python3-PyHamcrest %description ![jMetalPy](docs/source/jmetalpy.png) [![CI](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml/badge.svg)](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml) [![PyPI Python version](https://img.shields.io/pypi/pyversions/jMetalPy.svg)]() [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.swevo.2019.100598-blue)](https://doi.org/10.1016/j.swevo.2019.100598) [![PyPI License](https://img.shields.io/pypi/l/jMetalPy.svg)]() [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) A paper introducing jMetalPy is available at: https://doi.org/10.1016/j.swevo.2019.100598 ### Table of Contents - [Installation](#installation) - [Usage](#hello-world-) - [Features](#features) - [Changelog](#changelog) - [License](#license) ## Installation You can install the latest version of jMetalPy with `pip`, ```console pip install jmetalpy # or "jmetalpy[distributed]" ```
Notes on installing with pip

jMetalPy includes features for parallel and distributed computing based on [pySpark](https://spark.apache.org/docs/latest/api/python/index.html) and [Dask](https://dask.org/). These (extra) dependencies are *not* automatically installed when running `pip`, which only comprises the core functionality of the framework (enough for most users): ```console pip install jmetalpy ``` This is the equivalent of running: ```console pip install "jmetalpy[core]" ``` Other supported commands are listed next: ```console pip install "jmetalpy[dev]" # Install requirements for development pip install "jmetalpy[distributed]" # Install requirements for parallel/distributed computing pip install "jmetalpy[complete]" # Install all requirements ```

## Hello, world! 👋 Examples of configuring and running all the included algorithms are located [in the documentation](https://jmetal.github.io/jMetalPy/multiobjective.algorithms.html). ```python from jmetal.algorithm.multiobjective import NSGAII from jmetal.operator import SBXCrossover, PolynomialMutation from jmetal.problem import ZDT1 from jmetal.util.termination_criterion import StoppingByEvaluations problem = ZDT1() algorithm = NSGAII( problem=problem, population_size=100, offspring_population_size=100, mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBXCrossover(probability=1.0, distribution_index=20), termination_criterion=StoppingByEvaluations(max_evaluations=25000) ) algorithm.run() ``` We can then proceed to explore the results: ```python from jmetal.util.solution import get_non_dominated_solutions, print_function_values_to_file, \ print_variables_to_file front = get_non_dominated_solutions(algorithm.get_result()) # save to files print_function_values_to_file(front, 'FUN.NSGAII.ZDT1') print_variables_to_file(front, 'VAR.NSGAII.ZDT1') ``` Or visualize the Pareto front approximation produced by the algorithm: ```python from jmetal.lab.visualization import Plot plot_front = Plot(title='Pareto front approximation', axis_labels=['x', 'y']) plot_front.plot(front, label='NSGAII-ZDT1', filename='NSGAII-ZDT1', format='png') ``` Pareto front approximation ## Features The current release of jMetalPy (v1.5.7) contains the following components: * Algorithms: local search, genetic algorithm, evolution strategy, simulated annealing, random search, NSGA-II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, MOEA/D-IEpsilon, GDE3, SPEA2, HYPE, IBEA. Preference articulation-based algorithms (G-NSGA-II, G-GDE3, G-SPEA2, SMPSO/RP); Dynamic versions of NSGA-II, SMPSO, and GDE3. * Parallel computing based on Apache Spark and Dask. * Benchmark problems: ZDT1-6, DTLZ1-2, FDA, LZ09, LIR-CMOP, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka). * Encodings: real, binary, permutations. * Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random). * Quality indicators: hypervolume, additive epsilon, GD, IGD. * Pareto front approximation plotting in real-time, static or interactive. * Experiment class for performing studies either alone or alongside [jMetal](https://github.com/jMetal/jMetal). * Pairwise and multiple hypothesis testing for statistical analysis, including several frequentist and Bayesian testing methods, critical distance plots and posterior diagrams. | ![Scatter plot 2D](docs/source/_static/2D.gif) | ![Scatter plot 3D](docs/source/_static/3D.gif) | |-------------- | ---------------- | | ![Parallel coordinates](docs/source/_static/p-c.gif) | ![Interactive chord plot](docs/source/_static/chordplot.gif) | ## Changelog * [v1.6.0] Refactor class Problem, the single-objective genetic algorithm can solve constrained problems, performance improvements in NSGA-II, generation of Latex tables summarizing the results of the Wilcoxon rank sum test, added a notebook folder with examples. * [v1.5.7] Use of linters for catching errors and formatters to fix style, minor bug fixes. * [v1.5.6] Removed warnings when using Python 3.8. * [v1.5.5] Minor bug fixes. * [v1.5.4] Refactored quality indicators to accept numpy array as input parameter. * [v1.5.4] Added [CompositeSolution](https://github.com/jMetal/jMetalPy/blob/master/jmetal/core/solution.py#L111) class to support mixed combinatorial problems. [#69](https://github.com/jMetal/jMetalPy/issues/69) ## License This project is licensed under the terms of the MIT - see the [LICENSE](LICENSE) file for details. %package -n python3-jmetalpy Summary: Python version of the jMetal framework Provides: python-jmetalpy BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-jmetalpy ![jMetalPy](docs/source/jmetalpy.png) [![CI](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml/badge.svg)](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml) [![PyPI Python version](https://img.shields.io/pypi/pyversions/jMetalPy.svg)]() [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.swevo.2019.100598-blue)](https://doi.org/10.1016/j.swevo.2019.100598) [![PyPI License](https://img.shields.io/pypi/l/jMetalPy.svg)]() [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) A paper introducing jMetalPy is available at: https://doi.org/10.1016/j.swevo.2019.100598 ### Table of Contents - [Installation](#installation) - [Usage](#hello-world-) - [Features](#features) - [Changelog](#changelog) - [License](#license) ## Installation You can install the latest version of jMetalPy with `pip`, ```console pip install jmetalpy # or "jmetalpy[distributed]" ```
Notes on installing with pip

jMetalPy includes features for parallel and distributed computing based on [pySpark](https://spark.apache.org/docs/latest/api/python/index.html) and [Dask](https://dask.org/). These (extra) dependencies are *not* automatically installed when running `pip`, which only comprises the core functionality of the framework (enough for most users): ```console pip install jmetalpy ``` This is the equivalent of running: ```console pip install "jmetalpy[core]" ``` Other supported commands are listed next: ```console pip install "jmetalpy[dev]" # Install requirements for development pip install "jmetalpy[distributed]" # Install requirements for parallel/distributed computing pip install "jmetalpy[complete]" # Install all requirements ```

## Hello, world! 👋 Examples of configuring and running all the included algorithms are located [in the documentation](https://jmetal.github.io/jMetalPy/multiobjective.algorithms.html). ```python from jmetal.algorithm.multiobjective import NSGAII from jmetal.operator import SBXCrossover, PolynomialMutation from jmetal.problem import ZDT1 from jmetal.util.termination_criterion import StoppingByEvaluations problem = ZDT1() algorithm = NSGAII( problem=problem, population_size=100, offspring_population_size=100, mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBXCrossover(probability=1.0, distribution_index=20), termination_criterion=StoppingByEvaluations(max_evaluations=25000) ) algorithm.run() ``` We can then proceed to explore the results: ```python from jmetal.util.solution import get_non_dominated_solutions, print_function_values_to_file, \ print_variables_to_file front = get_non_dominated_solutions(algorithm.get_result()) # save to files print_function_values_to_file(front, 'FUN.NSGAII.ZDT1') print_variables_to_file(front, 'VAR.NSGAII.ZDT1') ``` Or visualize the Pareto front approximation produced by the algorithm: ```python from jmetal.lab.visualization import Plot plot_front = Plot(title='Pareto front approximation', axis_labels=['x', 'y']) plot_front.plot(front, label='NSGAII-ZDT1', filename='NSGAII-ZDT1', format='png') ``` Pareto front approximation ## Features The current release of jMetalPy (v1.5.7) contains the following components: * Algorithms: local search, genetic algorithm, evolution strategy, simulated annealing, random search, NSGA-II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, MOEA/D-IEpsilon, GDE3, SPEA2, HYPE, IBEA. Preference articulation-based algorithms (G-NSGA-II, G-GDE3, G-SPEA2, SMPSO/RP); Dynamic versions of NSGA-II, SMPSO, and GDE3. * Parallel computing based on Apache Spark and Dask. * Benchmark problems: ZDT1-6, DTLZ1-2, FDA, LZ09, LIR-CMOP, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka). * Encodings: real, binary, permutations. * Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random). * Quality indicators: hypervolume, additive epsilon, GD, IGD. * Pareto front approximation plotting in real-time, static or interactive. * Experiment class for performing studies either alone or alongside [jMetal](https://github.com/jMetal/jMetal). * Pairwise and multiple hypothesis testing for statistical analysis, including several frequentist and Bayesian testing methods, critical distance plots and posterior diagrams. | ![Scatter plot 2D](docs/source/_static/2D.gif) | ![Scatter plot 3D](docs/source/_static/3D.gif) | |-------------- | ---------------- | | ![Parallel coordinates](docs/source/_static/p-c.gif) | ![Interactive chord plot](docs/source/_static/chordplot.gif) | ## Changelog * [v1.6.0] Refactor class Problem, the single-objective genetic algorithm can solve constrained problems, performance improvements in NSGA-II, generation of Latex tables summarizing the results of the Wilcoxon rank sum test, added a notebook folder with examples. * [v1.5.7] Use of linters for catching errors and formatters to fix style, minor bug fixes. * [v1.5.6] Removed warnings when using Python 3.8. * [v1.5.5] Minor bug fixes. * [v1.5.4] Refactored quality indicators to accept numpy array as input parameter. * [v1.5.4] Added [CompositeSolution](https://github.com/jMetal/jMetalPy/blob/master/jmetal/core/solution.py#L111) class to support mixed combinatorial problems. [#69](https://github.com/jMetal/jMetalPy/issues/69) ## License This project is licensed under the terms of the MIT - see the [LICENSE](LICENSE) file for details. %package help Summary: Development documents and examples for jmetalpy Provides: python3-jmetalpy-doc %description help ![jMetalPy](docs/source/jmetalpy.png) [![CI](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml/badge.svg)](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml) [![PyPI Python version](https://img.shields.io/pypi/pyversions/jMetalPy.svg)]() [![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.swevo.2019.100598-blue)](https://doi.org/10.1016/j.swevo.2019.100598) [![PyPI License](https://img.shields.io/pypi/l/jMetalPy.svg)]() [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) A paper introducing jMetalPy is available at: https://doi.org/10.1016/j.swevo.2019.100598 ### Table of Contents - [Installation](#installation) - [Usage](#hello-world-) - [Features](#features) - [Changelog](#changelog) - [License](#license) ## Installation You can install the latest version of jMetalPy with `pip`, ```console pip install jmetalpy # or "jmetalpy[distributed]" ```
Notes on installing with pip

jMetalPy includes features for parallel and distributed computing based on [pySpark](https://spark.apache.org/docs/latest/api/python/index.html) and [Dask](https://dask.org/). These (extra) dependencies are *not* automatically installed when running `pip`, which only comprises the core functionality of the framework (enough for most users): ```console pip install jmetalpy ``` This is the equivalent of running: ```console pip install "jmetalpy[core]" ``` Other supported commands are listed next: ```console pip install "jmetalpy[dev]" # Install requirements for development pip install "jmetalpy[distributed]" # Install requirements for parallel/distributed computing pip install "jmetalpy[complete]" # Install all requirements ```

## Hello, world! 👋 Examples of configuring and running all the included algorithms are located [in the documentation](https://jmetal.github.io/jMetalPy/multiobjective.algorithms.html). ```python from jmetal.algorithm.multiobjective import NSGAII from jmetal.operator import SBXCrossover, PolynomialMutation from jmetal.problem import ZDT1 from jmetal.util.termination_criterion import StoppingByEvaluations problem = ZDT1() algorithm = NSGAII( problem=problem, population_size=100, offspring_population_size=100, mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBXCrossover(probability=1.0, distribution_index=20), termination_criterion=StoppingByEvaluations(max_evaluations=25000) ) algorithm.run() ``` We can then proceed to explore the results: ```python from jmetal.util.solution import get_non_dominated_solutions, print_function_values_to_file, \ print_variables_to_file front = get_non_dominated_solutions(algorithm.get_result()) # save to files print_function_values_to_file(front, 'FUN.NSGAII.ZDT1') print_variables_to_file(front, 'VAR.NSGAII.ZDT1') ``` Or visualize the Pareto front approximation produced by the algorithm: ```python from jmetal.lab.visualization import Plot plot_front = Plot(title='Pareto front approximation', axis_labels=['x', 'y']) plot_front.plot(front, label='NSGAII-ZDT1', filename='NSGAII-ZDT1', format='png') ``` Pareto front approximation ## Features The current release of jMetalPy (v1.5.7) contains the following components: * Algorithms: local search, genetic algorithm, evolution strategy, simulated annealing, random search, NSGA-II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, MOEA/D-IEpsilon, GDE3, SPEA2, HYPE, IBEA. Preference articulation-based algorithms (G-NSGA-II, G-GDE3, G-SPEA2, SMPSO/RP); Dynamic versions of NSGA-II, SMPSO, and GDE3. * Parallel computing based on Apache Spark and Dask. * Benchmark problems: ZDT1-6, DTLZ1-2, FDA, LZ09, LIR-CMOP, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka). * Encodings: real, binary, permutations. * Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random). * Quality indicators: hypervolume, additive epsilon, GD, IGD. * Pareto front approximation plotting in real-time, static or interactive. * Experiment class for performing studies either alone or alongside [jMetal](https://github.com/jMetal/jMetal). * Pairwise and multiple hypothesis testing for statistical analysis, including several frequentist and Bayesian testing methods, critical distance plots and posterior diagrams. | ![Scatter plot 2D](docs/source/_static/2D.gif) | ![Scatter plot 3D](docs/source/_static/3D.gif) | |-------------- | ---------------- | | ![Parallel coordinates](docs/source/_static/p-c.gif) | ![Interactive chord plot](docs/source/_static/chordplot.gif) | ## Changelog * [v1.6.0] Refactor class Problem, the single-objective genetic algorithm can solve constrained problems, performance improvements in NSGA-II, generation of Latex tables summarizing the results of the Wilcoxon rank sum test, added a notebook folder with examples. * [v1.5.7] Use of linters for catching errors and formatters to fix style, minor bug fixes. * [v1.5.6] Removed warnings when using Python 3.8. * [v1.5.5] Minor bug fixes. * [v1.5.4] Refactored quality indicators to accept numpy array as input parameter. * [v1.5.4] Added [CompositeSolution](https://github.com/jMetal/jMetalPy/blob/master/jmetal/core/solution.py#L111) class to support mixed combinatorial problems. [#69](https://github.com/jMetal/jMetalPy/issues/69) ## License This project is licensed under the terms of the MIT - see the [LICENSE](LICENSE) file for details. %prep %autosetup -n jmetalpy-1.6.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-jmetalpy -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 1.6.0-1 - Package Spec generated