%global _empty_manifest_terminate_build 0 Name: python-hypatie Version: 2.20.1 Release: 1 Summary: A python package for astronomical calculations License: MIT URL: https://github.com/behrouzz/hypatie Source0: https://mirrors.nju.edu.cn/pypi/web/packages/99/80/bf6508a9d4c23a80578db5dc68822a8f4ec63175bd2f0d214af0e98abe82/hypatie-2.20.1.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scipy Requires: python3-matplotlib Requires: python3-pandas Requires: python3-requests %description **Author:** [Behrouz Safari](https://behrouzz.github.io/)
**License:** [MIT](https://opensource.org/licenses/MIT)
# hypatie *A python package for astronomical calculations* ## Installation Install the latest version of *hypatie* from [PyPI](https://pypi.org/project/hypatie/): pip install hypatie Requirements are *numpy*, *pandas* and *matplotlib*. ## NASA JPL's Horizons Let's get the positions of the sun between two times: ```python import hypatie as hp t1 = '2021-03-20 08:00:00' t2 = '2021-03-20 10:00:00' ``` If you want the apparent RA and DEC of the Sun with respect to Earth's center (geocentric): ```python obs = hp.Observer('sun', t1, t2, step=5) ``` Now you can access the time intervals with *.time* attribute: ```python print(obs.time) [datetime.datetime(2021, 3, 20, 8, 0) datetime.datetime(2021, 3, 20, 8, 24) datetime.datetime(2021, 3, 20, 8, 48) datetime.datetime(2021, 3, 20, 9, 12) datetime.datetime(2021, 3, 20, 9, 36) datetime.datetime(2021, 3, 20, 10, 0)] ``` To acces the position you can use *obs.pos*, *obs.ra*, or *obs.dec*: ```python print(obs.pos) [[ 3.59938235e+02 -2.66803120e-02] [ 3.59953431e+02 -2.00920520e-02] [ 3.59968627e+02 -1.35038600e-02] [ 3.59983823e+02 -6.91573600e-03] [ 3.59999018e+02 -3.27680000e-04] [ 1.42132560e-02 6.26030600e-03]] ``` The first column in the above array is RA and the second column is DEC. It is possible to get the apparent RA & DEC of a targer with respect to a specified location on the surface of a body. For example, if you want to get the apparent RA & DEC of the Sun for the Eiffel Tower : ```python obs = hp.Observer('sun', t1, t2, step=5, center='2.2945,48.8584,300@399') ``` Note that 2.2945 is the longtitude, 48.8584 is the latitude and 300 (meters) is the elevation of the Eiffel Tower. We have specified '@399' at the end which means that this coordinates is situated on the Earth (399 is the Earth's code). You can request the cartesian positions (x,y,z) of a target with *Vector* class. ```python vec = hp.Vector('sun', t1, t2, step=5) ``` As with the *Observer* class, there are two attributes *.time* and *.pos* for *Vector* class. Note that when creating a Vector class, you have *.x*, *.y* and *.z* attributes instead of *.ra* and *.dec*. For both *Vector* and *Observer* classes you can pass a single time to get position/state of a body at a single time: ```python vec = hp.Vector('sun', t1) ``` Both *Vector* and *Observer* classes have *.plot()* method. ```python # plot polar coordinates obs.plot() # plot cartesian coordinates vec.plot() ``` ## Example: animating James Webb Space Telescope In addition to *.plot()* method of *Vector* and *Observer* classes, there's a *play()* function that you can pass it a list of Vector objects as well as some other lists as shown in the example below: ```python import hypatie as hp import matplotlib.pyplot as plt t1 = '2018-10-01 14:18:00' t2 = '2024-12-31 12:18:00' # get positions with respect to the barycenter of earth-moon earth = hp.Vector('399', t1, t2, center='500@3', step=1000) moon = hp.Vector('301', t1, t2, center='500@3', step=1000) jwst = hp.Vector('-170', t1, t2, center='500@3', step=1000) bodies = [earth, moon, jwst] names = ['Earth', 'Moon', 'James Webb'] colors = ['b','g','r'] sizes = [20, 8, 3] # play the animation anim = hp.play(bodies, names, colors, sizes) plt.show() ``` ## Transformations There are several functions in *hypatie.transform* module. As an example, let's use the *to_tete* function which transforms the GCRS coordinates to True Equator True Equinox (of date): ```python from hypatie.transform import to_tete import numpy as np from datetime import datetime t = datetime(2022, 3, 18) # GCRS coordinates pos = np.array([0.73859258, 0.13935437, 0.65959182]) # True Equator and True equinox of t pos_tete = to_tete(pos, t) print(pos_tete) #[0.73649269 0.14295327 0.66116782] ``` ## Deep sky You can download data from astronomical catalogues: ```python from hypatie.catalogues import Catalogue cat = Catalogue('gaia3') data, meta = cat.download() ``` or, plot the star chart for your location: ```python from hypatie.plots import star_chart fig, ax = star_chart(lon=2.2945, lat=48.8584) plt.show() ``` or, use a virtual telescope: ```python from hypatie.plots import Telescope target = (10.6847,41.2687) # az,alt of a point in the sky paris = (2.2945, 48.8584) # location of observer # get image with 3 degrees field of view tel = Telescope(target_loc=target, obs_loc=paris, fov=3) tel.show() ``` ## Explore proper motion Let's create a chart showing the proper motion of stars near the Sgr A* (Milky Way's central supermassive black hole). The coordinates of the black hole are given and shown with the red '+' in the chart. ```python from hypatie.plots import explore_pm import matplotlib.pyplot as plt ra = 266.41681662499997 dec = -29.00782497222222 df, fig, ax = explore_pm(ra, dec, r=0.001, otype='star') plt.show() ``` ![alt text](https://raw.githubusercontent.com/behrouzz/astronomy/main/images/sgr_A_pm.png) See more examples at [astrodatascience.net](https://astrodatascience.net/) %package -n python3-hypatie Summary: A python package for astronomical calculations Provides: python-hypatie BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-hypatie **Author:** [Behrouz Safari](https://behrouzz.github.io/)
**License:** [MIT](https://opensource.org/licenses/MIT)
# hypatie *A python package for astronomical calculations* ## Installation Install the latest version of *hypatie* from [PyPI](https://pypi.org/project/hypatie/): pip install hypatie Requirements are *numpy*, *pandas* and *matplotlib*. ## NASA JPL's Horizons Let's get the positions of the sun between two times: ```python import hypatie as hp t1 = '2021-03-20 08:00:00' t2 = '2021-03-20 10:00:00' ``` If you want the apparent RA and DEC of the Sun with respect to Earth's center (geocentric): ```python obs = hp.Observer('sun', t1, t2, step=5) ``` Now you can access the time intervals with *.time* attribute: ```python print(obs.time) [datetime.datetime(2021, 3, 20, 8, 0) datetime.datetime(2021, 3, 20, 8, 24) datetime.datetime(2021, 3, 20, 8, 48) datetime.datetime(2021, 3, 20, 9, 12) datetime.datetime(2021, 3, 20, 9, 36) datetime.datetime(2021, 3, 20, 10, 0)] ``` To acces the position you can use *obs.pos*, *obs.ra*, or *obs.dec*: ```python print(obs.pos) [[ 3.59938235e+02 -2.66803120e-02] [ 3.59953431e+02 -2.00920520e-02] [ 3.59968627e+02 -1.35038600e-02] [ 3.59983823e+02 -6.91573600e-03] [ 3.59999018e+02 -3.27680000e-04] [ 1.42132560e-02 6.26030600e-03]] ``` The first column in the above array is RA and the second column is DEC. It is possible to get the apparent RA & DEC of a targer with respect to a specified location on the surface of a body. For example, if you want to get the apparent RA & DEC of the Sun for the Eiffel Tower : ```python obs = hp.Observer('sun', t1, t2, step=5, center='2.2945,48.8584,300@399') ``` Note that 2.2945 is the longtitude, 48.8584 is the latitude and 300 (meters) is the elevation of the Eiffel Tower. We have specified '@399' at the end which means that this coordinates is situated on the Earth (399 is the Earth's code). You can request the cartesian positions (x,y,z) of a target with *Vector* class. ```python vec = hp.Vector('sun', t1, t2, step=5) ``` As with the *Observer* class, there are two attributes *.time* and *.pos* for *Vector* class. Note that when creating a Vector class, you have *.x*, *.y* and *.z* attributes instead of *.ra* and *.dec*. For both *Vector* and *Observer* classes you can pass a single time to get position/state of a body at a single time: ```python vec = hp.Vector('sun', t1) ``` Both *Vector* and *Observer* classes have *.plot()* method. ```python # plot polar coordinates obs.plot() # plot cartesian coordinates vec.plot() ``` ## Example: animating James Webb Space Telescope In addition to *.plot()* method of *Vector* and *Observer* classes, there's a *play()* function that you can pass it a list of Vector objects as well as some other lists as shown in the example below: ```python import hypatie as hp import matplotlib.pyplot as plt t1 = '2018-10-01 14:18:00' t2 = '2024-12-31 12:18:00' # get positions with respect to the barycenter of earth-moon earth = hp.Vector('399', t1, t2, center='500@3', step=1000) moon = hp.Vector('301', t1, t2, center='500@3', step=1000) jwst = hp.Vector('-170', t1, t2, center='500@3', step=1000) bodies = [earth, moon, jwst] names = ['Earth', 'Moon', 'James Webb'] colors = ['b','g','r'] sizes = [20, 8, 3] # play the animation anim = hp.play(bodies, names, colors, sizes) plt.show() ``` ## Transformations There are several functions in *hypatie.transform* module. As an example, let's use the *to_tete* function which transforms the GCRS coordinates to True Equator True Equinox (of date): ```python from hypatie.transform import to_tete import numpy as np from datetime import datetime t = datetime(2022, 3, 18) # GCRS coordinates pos = np.array([0.73859258, 0.13935437, 0.65959182]) # True Equator and True equinox of t pos_tete = to_tete(pos, t) print(pos_tete) #[0.73649269 0.14295327 0.66116782] ``` ## Deep sky You can download data from astronomical catalogues: ```python from hypatie.catalogues import Catalogue cat = Catalogue('gaia3') data, meta = cat.download() ``` or, plot the star chart for your location: ```python from hypatie.plots import star_chart fig, ax = star_chart(lon=2.2945, lat=48.8584) plt.show() ``` or, use a virtual telescope: ```python from hypatie.plots import Telescope target = (10.6847,41.2687) # az,alt of a point in the sky paris = (2.2945, 48.8584) # location of observer # get image with 3 degrees field of view tel = Telescope(target_loc=target, obs_loc=paris, fov=3) tel.show() ``` ## Explore proper motion Let's create a chart showing the proper motion of stars near the Sgr A* (Milky Way's central supermassive black hole). The coordinates of the black hole are given and shown with the red '+' in the chart. ```python from hypatie.plots import explore_pm import matplotlib.pyplot as plt ra = 266.41681662499997 dec = -29.00782497222222 df, fig, ax = explore_pm(ra, dec, r=0.001, otype='star') plt.show() ``` ![alt text](https://raw.githubusercontent.com/behrouzz/astronomy/main/images/sgr_A_pm.png) See more examples at [astrodatascience.net](https://astrodatascience.net/) %package help Summary: Development documents and examples for hypatie Provides: python3-hypatie-doc %description help **Author:** [Behrouz Safari](https://behrouzz.github.io/)
**License:** [MIT](https://opensource.org/licenses/MIT)
# hypatie *A python package for astronomical calculations* ## Installation Install the latest version of *hypatie* from [PyPI](https://pypi.org/project/hypatie/): pip install hypatie Requirements are *numpy*, *pandas* and *matplotlib*. ## NASA JPL's Horizons Let's get the positions of the sun between two times: ```python import hypatie as hp t1 = '2021-03-20 08:00:00' t2 = '2021-03-20 10:00:00' ``` If you want the apparent RA and DEC of the Sun with respect to Earth's center (geocentric): ```python obs = hp.Observer('sun', t1, t2, step=5) ``` Now you can access the time intervals with *.time* attribute: ```python print(obs.time) [datetime.datetime(2021, 3, 20, 8, 0) datetime.datetime(2021, 3, 20, 8, 24) datetime.datetime(2021, 3, 20, 8, 48) datetime.datetime(2021, 3, 20, 9, 12) datetime.datetime(2021, 3, 20, 9, 36) datetime.datetime(2021, 3, 20, 10, 0)] ``` To acces the position you can use *obs.pos*, *obs.ra*, or *obs.dec*: ```python print(obs.pos) [[ 3.59938235e+02 -2.66803120e-02] [ 3.59953431e+02 -2.00920520e-02] [ 3.59968627e+02 -1.35038600e-02] [ 3.59983823e+02 -6.91573600e-03] [ 3.59999018e+02 -3.27680000e-04] [ 1.42132560e-02 6.26030600e-03]] ``` The first column in the above array is RA and the second column is DEC. It is possible to get the apparent RA & DEC of a targer with respect to a specified location on the surface of a body. For example, if you want to get the apparent RA & DEC of the Sun for the Eiffel Tower : ```python obs = hp.Observer('sun', t1, t2, step=5, center='2.2945,48.8584,300@399') ``` Note that 2.2945 is the longtitude, 48.8584 is the latitude and 300 (meters) is the elevation of the Eiffel Tower. We have specified '@399' at the end which means that this coordinates is situated on the Earth (399 is the Earth's code). You can request the cartesian positions (x,y,z) of a target with *Vector* class. ```python vec = hp.Vector('sun', t1, t2, step=5) ``` As with the *Observer* class, there are two attributes *.time* and *.pos* for *Vector* class. Note that when creating a Vector class, you have *.x*, *.y* and *.z* attributes instead of *.ra* and *.dec*. For both *Vector* and *Observer* classes you can pass a single time to get position/state of a body at a single time: ```python vec = hp.Vector('sun', t1) ``` Both *Vector* and *Observer* classes have *.plot()* method. ```python # plot polar coordinates obs.plot() # plot cartesian coordinates vec.plot() ``` ## Example: animating James Webb Space Telescope In addition to *.plot()* method of *Vector* and *Observer* classes, there's a *play()* function that you can pass it a list of Vector objects as well as some other lists as shown in the example below: ```python import hypatie as hp import matplotlib.pyplot as plt t1 = '2018-10-01 14:18:00' t2 = '2024-12-31 12:18:00' # get positions with respect to the barycenter of earth-moon earth = hp.Vector('399', t1, t2, center='500@3', step=1000) moon = hp.Vector('301', t1, t2, center='500@3', step=1000) jwst = hp.Vector('-170', t1, t2, center='500@3', step=1000) bodies = [earth, moon, jwst] names = ['Earth', 'Moon', 'James Webb'] colors = ['b','g','r'] sizes = [20, 8, 3] # play the animation anim = hp.play(bodies, names, colors, sizes) plt.show() ``` ## Transformations There are several functions in *hypatie.transform* module. As an example, let's use the *to_tete* function which transforms the GCRS coordinates to True Equator True Equinox (of date): ```python from hypatie.transform import to_tete import numpy as np from datetime import datetime t = datetime(2022, 3, 18) # GCRS coordinates pos = np.array([0.73859258, 0.13935437, 0.65959182]) # True Equator and True equinox of t pos_tete = to_tete(pos, t) print(pos_tete) #[0.73649269 0.14295327 0.66116782] ``` ## Deep sky You can download data from astronomical catalogues: ```python from hypatie.catalogues import Catalogue cat = Catalogue('gaia3') data, meta = cat.download() ``` or, plot the star chart for your location: ```python from hypatie.plots import star_chart fig, ax = star_chart(lon=2.2945, lat=48.8584) plt.show() ``` or, use a virtual telescope: ```python from hypatie.plots import Telescope target = (10.6847,41.2687) # az,alt of a point in the sky paris = (2.2945, 48.8584) # location of observer # get image with 3 degrees field of view tel = Telescope(target_loc=target, obs_loc=paris, fov=3) tel.show() ``` ## Explore proper motion Let's create a chart showing the proper motion of stars near the Sgr A* (Milky Way's central supermassive black hole). The coordinates of the black hole are given and shown with the red '+' in the chart. ```python from hypatie.plots import explore_pm import matplotlib.pyplot as plt ra = 266.41681662499997 dec = -29.00782497222222 df, fig, ax = explore_pm(ra, dec, r=0.001, otype='star') plt.show() ``` ![alt text](https://raw.githubusercontent.com/behrouzz/astronomy/main/images/sgr_A_pm.png) See more examples at [astrodatascience.net](https://astrodatascience.net/) %prep %autosetup -n hypatie-2.20.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-hypatie -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 31 2023 Python_Bot - 2.20.1-1 - Package Spec generated