%global _empty_manifest_terminate_build 0 Name: python-pfrl Version: 0.3.0 Release: 1 Summary: PFRL, a deep reinforcement learning library License: MIT License URL: https://pypi.org/project/pfrl/ Source0: https://mirrors.aliyun.com/pypi/web/packages/1c/55/053cdd48aee18a4a5d9ae5ca864ff50f7294da0f12a01cdff9f86ea4496b/pfrl-0.3.0.tar.gz BuildArch: noarch %description
# PFRL [![Documentation Status](https://readthedocs.org/projects/pfrl/badge/?version=latest)](http://pfrl.readthedocs.io/en/latest/?badge=latest) [![PyPI](https://img.shields.io/pypi/v/pfrl.svg)](https://pypi.python.org/pypi/pfrl) PFRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using [PyTorch](https://github.com/pytorch/pytorch). ![Boxing](assets/boxing.gif) ![Humanoid](assets/humanoid.gif) ![Grasping](assets/grasping.gif) ![Atlas](examples/atlas/assets/atlas.gif) ![SlimeVolley](examples/slimevolley/assets/slimevolley.gif) ## Installation PFRL is tested with Python 3.7.7. For other requirements, see [requirements.txt](requirements.txt). PFRL can be installed via PyPI: ``` pip install pfrl ``` It can also be installed from the source code: ``` python setup.py install ``` Refer to [Installation](http://pfrl.readthedocs.io/en/latest/install.html) for more information on installation. ## Getting started You can try [PFRL Quickstart Guide](examples/quickstart/quickstart.ipynb) first, or check the [examples](examples) ready for Atari 2600 and Open AI Gym. For more information, you can refer to [PFRL's documentation](http://pfrl.readthedocs.io/en/latest/index.html). ### Blog Posts - [Introducing PFRL: A PyTorch-based Deep RL Library](https://t.co/VaT06nejSC?amp=1) - [PFRL’s Pretrained Model Zoo](https://bit.ly/3fNx5xH) ## Algorithms | Algorithm | Discrete Action | Continous Action | Recurrent Model | Batch Training | CPU Async Training | Pretrained models* | |:----------|:---------------:|:----------------:|:---------------:|:--------------:|:------------------:|:------------------:| | DQN (including DoubleDQN etc.) | ✓ | ✓ (NAF) | ✓ | ✓ | x | ✓ | | Categorical DQN | ✓ | x | ✓ | ✓ | x | x | | Rainbow | ✓ | x | ✓ | ✓ | x | ✓ | | IQN | ✓ | x | ✓ | ✓ | x | ✓ | | DDPG | x | ✓ | x | ✓ | x | ✓ | | A3C | ✓ | ✓ | ✓ | ✓ (A2C) | ✓ | ✓ | | ACER | ✓ | ✓ | ✓ | x | ✓ | x | | PPO | ✓ | ✓ | ✓ | ✓ | x | ✓ | | TRPO | ✓ | ✓ | ✓ | ✓ | x | ✓ | | TD3 | x | ✓ | x | ✓ | x | ✓ | | SAC | x | ✓ | x | ✓ | x | ✓ | ***Note on Pretrained models**: PFRL provides pretrained models (sometimes called a 'model zoo') for our reproducibility scripts on [Atari environments](https://github.com/pfnet/pfrl/tree/master/examples/atari/reproduction) (DQN, IQN, Rainbow, and A3C) and [Mujoco environments](https://github.com/pfnet/pfrl/tree/master/examples/mujoco/reproduction) (DDPG, TRPO, PPO, TD3, SAC), for each benchmarked environment. Following algorithms have been implemented in PFRL: - [A2C (Synchronous variant of A3C)](https://openai.com/blog/baselines-acktr-a2c/) - examples: [[atari (batched)]](examples/atari/train_a2c_ale.py) - [A3C (Asynchronous Advantage Actor-Critic)](https://arxiv.org/abs/1602.01783) - examples: [[atari reproduction]](examples/atari/reproduction/a3c) [[atari]](examples/atari/train_a3c_ale.py) - [ACER (Actor-Critic with Experience Replay)](https://arxiv.org/abs/1611.01224) - examples: [[atari]](examples/atari/train_acer_ale.py) - [Categorical DQN](https://arxiv.org/abs/1707.06887) - examples: [[atari]](examples/atari/train_categorical_dqn_ale.py) [[general gym]](examples/gym/train_categorical_dqn_gym.py) - [DQN (Deep Q-Network)](https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf) (including [Double DQN](https://arxiv.org/abs/1509.06461), [Persistent Advantage Learning (PAL)](https://arxiv.org/abs/1512.04860), Double PAL, [Dynamic Policy Programming (DPP)](http://www.jmlr.org/papers/volume13/azar12a/azar12a.pdf)) - examples: [[atari reproduction]](examples/atari/reproduction/dqn) [[atari]](examples/atari/train_dqn_ale.py) [[atari (batched)]](examples/atari/train_dqn_batch_ale.py) [[flickering atari]](examples/atari/train_drqn_ale.py) [[general gym]](examples/gym/train_dqn_gym.py) - [DDPG (Deep Deterministic Policy Gradients)](https://arxiv.org/abs/1509.02971) (including [SVG(0)](https://arxiv.org/abs/1510.09142)) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/ddpg) - [IQN (Implicit Quantile Networks)](https://arxiv.org/abs/1806.06923) - examples: [[atari reproduction]](examples/atari/reproduction/iqn) - [PPO (Proximal Policy Optimization)](https://arxiv.org/abs/1707.06347) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/ppo) [[atari]](examples/atari/train_ppo_ale.py) - [Rainbow](https://arxiv.org/abs/1710.02298) - examples: [[atari reproduction]](examples/atari/reproduction/rainbow) [[Slime volleyball]](examples/slimevolley/) - [REINFORCE](http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf) - examples: [[general gym]](examples/gym/train_reinforce_gym.py) - [SAC (Soft Actor-Critic)](https://arxiv.org/abs/1812.05905) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/soft_actor_critic) [[Atlas walk]](examples/atlas/) - [TRPO (Trust Region Policy Optimization)](https://arxiv.org/abs/1502.05477) with [GAE (Generalized Advantage Estimation)](https://arxiv.org/abs/1506.02438) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/trpo) - [TD3 (Twin Delayed Deep Deterministic policy gradient algorithm)](https://arxiv.org/abs/1802.09477) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/td3) Following useful techniques have been also implemented in PFRL: - [NoisyNet](https://arxiv.org/abs/1706.10295) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Prioritized Experience Replay](https://arxiv.org/abs/1511.05952) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Dueling Network](https://arxiv.org/abs/1511.06581) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Normalized Advantage Function](https://arxiv.org/abs/1603.00748) - examples: [[DQN]](examples/gym/train_dqn_gym.py) (for continuous-action envs only) - [Deep Recurrent Q-Network](https://arxiv.org/abs/1507.06527) - examples: [[DQN]](examples/atari/train_drqn_ale.py) ## Environments Environments that support the subset of OpenAI Gym's interface (`reset` and `step` methods) can be used. ## Contributing Any kind of contribution to PFRL would be highly appreciated! If you are interested in contributing to PFRL, please read [CONTRIBUTING.md](CONTRIBUTING.md). ## License [MIT License](LICENSE). ## Citations To cite PFRL in publications, please cite our [paper](https://www.jmlr.org/papers/v22/20-376.html) on ChainerRL, the library on which PFRL is based: ``` @article{JMLR:v22:20-376, author = {Yasuhiro Fujita and Prabhat Nagarajan and Toshiki Kataoka and Takahiro Ishikawa}, title = {ChainerRL: A Deep Reinforcement Learning Library}, journal = {Journal of Machine Learning Research}, year = {2021}, volume = {22}, number = {77}, pages = {1-14}, url = {http://jmlr.org/papers/v22/20-376.html} } ``` %package -n python3-pfrl Summary: PFRL, a deep reinforcement learning library Provides: python-pfrl BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pfrl # PFRL [![Documentation Status](https://readthedocs.org/projects/pfrl/badge/?version=latest)](http://pfrl.readthedocs.io/en/latest/?badge=latest) [![PyPI](https://img.shields.io/pypi/v/pfrl.svg)](https://pypi.python.org/pypi/pfrl) PFRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using [PyTorch](https://github.com/pytorch/pytorch). ![Boxing](assets/boxing.gif) ![Humanoid](assets/humanoid.gif) ![Grasping](assets/grasping.gif) ![Atlas](examples/atlas/assets/atlas.gif) ![SlimeVolley](examples/slimevolley/assets/slimevolley.gif) ## Installation PFRL is tested with Python 3.7.7. For other requirements, see [requirements.txt](requirements.txt). PFRL can be installed via PyPI: ``` pip install pfrl ``` It can also be installed from the source code: ``` python setup.py install ``` Refer to [Installation](http://pfrl.readthedocs.io/en/latest/install.html) for more information on installation. ## Getting started You can try [PFRL Quickstart Guide](examples/quickstart/quickstart.ipynb) first, or check the [examples](examples) ready for Atari 2600 and Open AI Gym. For more information, you can refer to [PFRL's documentation](http://pfrl.readthedocs.io/en/latest/index.html). ### Blog Posts - [Introducing PFRL: A PyTorch-based Deep RL Library](https://t.co/VaT06nejSC?amp=1) - [PFRL’s Pretrained Model Zoo](https://bit.ly/3fNx5xH) ## Algorithms | Algorithm | Discrete Action | Continous Action | Recurrent Model | Batch Training | CPU Async Training | Pretrained models* | |:----------|:---------------:|:----------------:|:---------------:|:--------------:|:------------------:|:------------------:| | DQN (including DoubleDQN etc.) | ✓ | ✓ (NAF) | ✓ | ✓ | x | ✓ | | Categorical DQN | ✓ | x | ✓ | ✓ | x | x | | Rainbow | ✓ | x | ✓ | ✓ | x | ✓ | | IQN | ✓ | x | ✓ | ✓ | x | ✓ | | DDPG | x | ✓ | x | ✓ | x | ✓ | | A3C | ✓ | ✓ | ✓ | ✓ (A2C) | ✓ | ✓ | | ACER | ✓ | ✓ | ✓ | x | ✓ | x | | PPO | ✓ | ✓ | ✓ | ✓ | x | ✓ | | TRPO | ✓ | ✓ | ✓ | ✓ | x | ✓ | | TD3 | x | ✓ | x | ✓ | x | ✓ | | SAC | x | ✓ | x | ✓ | x | ✓ | ***Note on Pretrained models**: PFRL provides pretrained models (sometimes called a 'model zoo') for our reproducibility scripts on [Atari environments](https://github.com/pfnet/pfrl/tree/master/examples/atari/reproduction) (DQN, IQN, Rainbow, and A3C) and [Mujoco environments](https://github.com/pfnet/pfrl/tree/master/examples/mujoco/reproduction) (DDPG, TRPO, PPO, TD3, SAC), for each benchmarked environment. Following algorithms have been implemented in PFRL: - [A2C (Synchronous variant of A3C)](https://openai.com/blog/baselines-acktr-a2c/) - examples: [[atari (batched)]](examples/atari/train_a2c_ale.py) - [A3C (Asynchronous Advantage Actor-Critic)](https://arxiv.org/abs/1602.01783) - examples: [[atari reproduction]](examples/atari/reproduction/a3c) [[atari]](examples/atari/train_a3c_ale.py) - [ACER (Actor-Critic with Experience Replay)](https://arxiv.org/abs/1611.01224) - examples: [[atari]](examples/atari/train_acer_ale.py) - [Categorical DQN](https://arxiv.org/abs/1707.06887) - examples: [[atari]](examples/atari/train_categorical_dqn_ale.py) [[general gym]](examples/gym/train_categorical_dqn_gym.py) - [DQN (Deep Q-Network)](https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf) (including [Double DQN](https://arxiv.org/abs/1509.06461), [Persistent Advantage Learning (PAL)](https://arxiv.org/abs/1512.04860), Double PAL, [Dynamic Policy Programming (DPP)](http://www.jmlr.org/papers/volume13/azar12a/azar12a.pdf)) - examples: [[atari reproduction]](examples/atari/reproduction/dqn) [[atari]](examples/atari/train_dqn_ale.py) [[atari (batched)]](examples/atari/train_dqn_batch_ale.py) [[flickering atari]](examples/atari/train_drqn_ale.py) [[general gym]](examples/gym/train_dqn_gym.py) - [DDPG (Deep Deterministic Policy Gradients)](https://arxiv.org/abs/1509.02971) (including [SVG(0)](https://arxiv.org/abs/1510.09142)) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/ddpg) - [IQN (Implicit Quantile Networks)](https://arxiv.org/abs/1806.06923) - examples: [[atari reproduction]](examples/atari/reproduction/iqn) - [PPO (Proximal Policy Optimization)](https://arxiv.org/abs/1707.06347) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/ppo) [[atari]](examples/atari/train_ppo_ale.py) - [Rainbow](https://arxiv.org/abs/1710.02298) - examples: [[atari reproduction]](examples/atari/reproduction/rainbow) [[Slime volleyball]](examples/slimevolley/) - [REINFORCE](http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf) - examples: [[general gym]](examples/gym/train_reinforce_gym.py) - [SAC (Soft Actor-Critic)](https://arxiv.org/abs/1812.05905) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/soft_actor_critic) [[Atlas walk]](examples/atlas/) - [TRPO (Trust Region Policy Optimization)](https://arxiv.org/abs/1502.05477) with [GAE (Generalized Advantage Estimation)](https://arxiv.org/abs/1506.02438) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/trpo) - [TD3 (Twin Delayed Deep Deterministic policy gradient algorithm)](https://arxiv.org/abs/1802.09477) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/td3) Following useful techniques have been also implemented in PFRL: - [NoisyNet](https://arxiv.org/abs/1706.10295) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Prioritized Experience Replay](https://arxiv.org/abs/1511.05952) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Dueling Network](https://arxiv.org/abs/1511.06581) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Normalized Advantage Function](https://arxiv.org/abs/1603.00748) - examples: [[DQN]](examples/gym/train_dqn_gym.py) (for continuous-action envs only) - [Deep Recurrent Q-Network](https://arxiv.org/abs/1507.06527) - examples: [[DQN]](examples/atari/train_drqn_ale.py) ## Environments Environments that support the subset of OpenAI Gym's interface (`reset` and `step` methods) can be used. ## Contributing Any kind of contribution to PFRL would be highly appreciated! If you are interested in contributing to PFRL, please read [CONTRIBUTING.md](CONTRIBUTING.md). ## License [MIT License](LICENSE). ## Citations To cite PFRL in publications, please cite our [paper](https://www.jmlr.org/papers/v22/20-376.html) on ChainerRL, the library on which PFRL is based: ``` @article{JMLR:v22:20-376, author = {Yasuhiro Fujita and Prabhat Nagarajan and Toshiki Kataoka and Takahiro Ishikawa}, title = {ChainerRL: A Deep Reinforcement Learning Library}, journal = {Journal of Machine Learning Research}, year = {2021}, volume = {22}, number = {77}, pages = {1-14}, url = {http://jmlr.org/papers/v22/20-376.html} } ``` %package help Summary: Development documents and examples for pfrl Provides: python3-pfrl-doc %description help # PFRL [![Documentation Status](https://readthedocs.org/projects/pfrl/badge/?version=latest)](http://pfrl.readthedocs.io/en/latest/?badge=latest) [![PyPI](https://img.shields.io/pypi/v/pfrl.svg)](https://pypi.python.org/pypi/pfrl) PFRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using [PyTorch](https://github.com/pytorch/pytorch). ![Boxing](assets/boxing.gif) ![Humanoid](assets/humanoid.gif) ![Grasping](assets/grasping.gif) ![Atlas](examples/atlas/assets/atlas.gif) ![SlimeVolley](examples/slimevolley/assets/slimevolley.gif) ## Installation PFRL is tested with Python 3.7.7. For other requirements, see [requirements.txt](requirements.txt). PFRL can be installed via PyPI: ``` pip install pfrl ``` It can also be installed from the source code: ``` python setup.py install ``` Refer to [Installation](http://pfrl.readthedocs.io/en/latest/install.html) for more information on installation. ## Getting started You can try [PFRL Quickstart Guide](examples/quickstart/quickstart.ipynb) first, or check the [examples](examples) ready for Atari 2600 and Open AI Gym. For more information, you can refer to [PFRL's documentation](http://pfrl.readthedocs.io/en/latest/index.html). ### Blog Posts - [Introducing PFRL: A PyTorch-based Deep RL Library](https://t.co/VaT06nejSC?amp=1) - [PFRL’s Pretrained Model Zoo](https://bit.ly/3fNx5xH) ## Algorithms | Algorithm | Discrete Action | Continous Action | Recurrent Model | Batch Training | CPU Async Training | Pretrained models* | |:----------|:---------------:|:----------------:|:---------------:|:--------------:|:------------------:|:------------------:| | DQN (including DoubleDQN etc.) | ✓ | ✓ (NAF) | ✓ | ✓ | x | ✓ | | Categorical DQN | ✓ | x | ✓ | ✓ | x | x | | Rainbow | ✓ | x | ✓ | ✓ | x | ✓ | | IQN | ✓ | x | ✓ | ✓ | x | ✓ | | DDPG | x | ✓ | x | ✓ | x | ✓ | | A3C | ✓ | ✓ | ✓ | ✓ (A2C) | ✓ | ✓ | | ACER | ✓ | ✓ | ✓ | x | ✓ | x | | PPO | ✓ | ✓ | ✓ | ✓ | x | ✓ | | TRPO | ✓ | ✓ | ✓ | ✓ | x | ✓ | | TD3 | x | ✓ | x | ✓ | x | ✓ | | SAC | x | ✓ | x | ✓ | x | ✓ | ***Note on Pretrained models**: PFRL provides pretrained models (sometimes called a 'model zoo') for our reproducibility scripts on [Atari environments](https://github.com/pfnet/pfrl/tree/master/examples/atari/reproduction) (DQN, IQN, Rainbow, and A3C) and [Mujoco environments](https://github.com/pfnet/pfrl/tree/master/examples/mujoco/reproduction) (DDPG, TRPO, PPO, TD3, SAC), for each benchmarked environment. Following algorithms have been implemented in PFRL: - [A2C (Synchronous variant of A3C)](https://openai.com/blog/baselines-acktr-a2c/) - examples: [[atari (batched)]](examples/atari/train_a2c_ale.py) - [A3C (Asynchronous Advantage Actor-Critic)](https://arxiv.org/abs/1602.01783) - examples: [[atari reproduction]](examples/atari/reproduction/a3c) [[atari]](examples/atari/train_a3c_ale.py) - [ACER (Actor-Critic with Experience Replay)](https://arxiv.org/abs/1611.01224) - examples: [[atari]](examples/atari/train_acer_ale.py) - [Categorical DQN](https://arxiv.org/abs/1707.06887) - examples: [[atari]](examples/atari/train_categorical_dqn_ale.py) [[general gym]](examples/gym/train_categorical_dqn_gym.py) - [DQN (Deep Q-Network)](https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf) (including [Double DQN](https://arxiv.org/abs/1509.06461), [Persistent Advantage Learning (PAL)](https://arxiv.org/abs/1512.04860), Double PAL, [Dynamic Policy Programming (DPP)](http://www.jmlr.org/papers/volume13/azar12a/azar12a.pdf)) - examples: [[atari reproduction]](examples/atari/reproduction/dqn) [[atari]](examples/atari/train_dqn_ale.py) [[atari (batched)]](examples/atari/train_dqn_batch_ale.py) [[flickering atari]](examples/atari/train_drqn_ale.py) [[general gym]](examples/gym/train_dqn_gym.py) - [DDPG (Deep Deterministic Policy Gradients)](https://arxiv.org/abs/1509.02971) (including [SVG(0)](https://arxiv.org/abs/1510.09142)) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/ddpg) - [IQN (Implicit Quantile Networks)](https://arxiv.org/abs/1806.06923) - examples: [[atari reproduction]](examples/atari/reproduction/iqn) - [PPO (Proximal Policy Optimization)](https://arxiv.org/abs/1707.06347) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/ppo) [[atari]](examples/atari/train_ppo_ale.py) - [Rainbow](https://arxiv.org/abs/1710.02298) - examples: [[atari reproduction]](examples/atari/reproduction/rainbow) [[Slime volleyball]](examples/slimevolley/) - [REINFORCE](http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf) - examples: [[general gym]](examples/gym/train_reinforce_gym.py) - [SAC (Soft Actor-Critic)](https://arxiv.org/abs/1812.05905) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/soft_actor_critic) [[Atlas walk]](examples/atlas/) - [TRPO (Trust Region Policy Optimization)](https://arxiv.org/abs/1502.05477) with [GAE (Generalized Advantage Estimation)](https://arxiv.org/abs/1506.02438) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/trpo) - [TD3 (Twin Delayed Deep Deterministic policy gradient algorithm)](https://arxiv.org/abs/1802.09477) - examples: [[mujoco reproduction]](examples/mujoco/reproduction/td3) Following useful techniques have been also implemented in PFRL: - [NoisyNet](https://arxiv.org/abs/1706.10295) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Prioritized Experience Replay](https://arxiv.org/abs/1511.05952) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Dueling Network](https://arxiv.org/abs/1511.06581) - examples: [[Rainbow]](examples/atari/reproduction/rainbow) [[DQN/DoubleDQN/PAL]](examples/atari/train_dqn_ale.py) - [Normalized Advantage Function](https://arxiv.org/abs/1603.00748) - examples: [[DQN]](examples/gym/train_dqn_gym.py) (for continuous-action envs only) - [Deep Recurrent Q-Network](https://arxiv.org/abs/1507.06527) - examples: [[DQN]](examples/atari/train_drqn_ale.py) ## Environments Environments that support the subset of OpenAI Gym's interface (`reset` and `step` methods) can be used. ## Contributing Any kind of contribution to PFRL would be highly appreciated! If you are interested in contributing to PFRL, please read [CONTRIBUTING.md](CONTRIBUTING.md). ## License [MIT License](LICENSE). ## Citations To cite PFRL in publications, please cite our [paper](https://www.jmlr.org/papers/v22/20-376.html) on ChainerRL, the library on which PFRL is based: ``` @article{JMLR:v22:20-376, author = {Yasuhiro Fujita and Prabhat Nagarajan and Toshiki Kataoka and Takahiro Ishikawa}, title = {ChainerRL: A Deep Reinforcement Learning Library}, journal = {Journal of Machine Learning Research}, year = {2021}, volume = {22}, number = {77}, pages = {1-14}, url = {http://jmlr.org/papers/v22/20-376.html} } ``` %prep %autosetup -n pfrl-0.3.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pfrl -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot