%global _empty_manifest_terminate_build 0 Name: python-napari-skimage-regionprops Version: 0.10.1 Release: 1 Summary: A regionprops table widget plugin for napari License: BSD-3 URL: https://github.com/haesleinhuepf/napari-skimage-regionprops Source0: https://mirrors.aliyun.com/pypi/web/packages/01/68/b016a3a76e631bbf0b74104f0c073e1d5065a71ab4476a370e52e153450a/napari-skimage-regionprops-0.10.1.tar.gz BuildArch: noarch Requires: python3-napari-plugin-engine Requires: python3-numpy Requires: python3-scikit-image Requires: python3-napari Requires: python3-pandas Requires: python3-napari-tools-menu Requires: python3-napari-workflows Requires: python3-imageio Requires: python3-Deprecated %description # napari-skimage-regionprops (nsr) [![License](https://img.shields.io/pypi/l/napari-skimage-regionprops.svg?color=green)](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/LICENSE) [![PyPI](https://img.shields.io/pypi/v/napari-skimage-regionprops.svg?color=green)](https://pypi.org/project/napari-skimage-regionprops) [![Python Version](https://img.shields.io/pypi/pyversions/napari-skimage-regionprops.svg?color=green)](https://python.org) [![tests](https://github.com/haesleinhuepf/napari-skimage-regionprops/workflows/tests/badge.svg)](https://github.com/haesleinhuepf/napari-skimage-regionprops/actions) [![codecov](https://codecov.io/gh/haesleinhuepf/napari-skimage-regionprops/branch/master/graph/badge.svg)](https://codecov.io/gh/haesleinhuepf/napari-skimage-regionprops) [![Development Status](https://img.shields.io/pypi/status/napari-skimage-regionprops.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha) [![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-skimage-regionprops)](https://napari-hub.org/plugins/napari-skimage-regionprops) A [napari] plugin for measuring properties of labeled objects based on [scikit-image] ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/interactive.gif) ## Usage: measure region properties From the menu `Tools > Measurement > Regionprops (nsr)` you can open a dialog where you can choose an intensity image, a corresponding label image and the features you want to measure: ![img.png](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/dialog.png) If you want to interface with the labels and see which table row corresponds to which labeled object, use the label picker and activate the `show selected` checkbox. ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/interactive.png) If you closed a table and want to reopen it, you can use the menu `Tools > Measurements > Show table (nsr)` to reopen it. You just need to select the labels layer the properties are associated with. For visualizing measurements with different grey values, as parametric images, you can double-click table headers. ![img.png](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/label_value_visualization.gif) ## Usage: measure point intensities Analogously, also the intensity and coordinates of point layers can be measured using the menu `Tools > Measurement > Measure intensity at point coordinates (nsr)`. Also these measurements can be visualized by double-clicking table headers: ![img.png](measure_point_intensity.png) ![img_1.png](measure_point_coordinate.png) ## Working with time-lapse and tracking data Note that tables for time-lapse data should include a column named "frame", which indicates which slice in time the given row refers to. If you want to import your own csv files for time-lapse data make sure to include this column. If you have tracking data where each column specifies measurements for a track instead of a label at a specific time point, this column must not be added. In case you have 2D time-lapse data you need to convert it into a suitable shape using the function: `Tools > Utilities > Convert 3D stack to 2D time-lapse (time-slicer)`, which can be found in the [napari time slicer](https://www.napari-hub.org/plugins/napari-time-slicer). Last but not least, make sure that in case of time-lapse data the label image has labels that are subsquently labeled per timepoint. E.g. a dataset where label 5 is missing at timepoint 4 may be visualized incorrectly. ## Usage: multichannel or multi-label data If you want to relate objects from one channels to objects from another channel, you can use `Tools > Measurement tables > Object Features/Properties (scikit-image, nsr)`. This plugin module allos you to answer questions like: - how many objects I have inside other objects? - what is the average intensity of the objects inside other objects? For that, you need at least two labeled images in napari. You can relate objects along with their features. If intensity features are also wanted, then you also need to provide two intensity images. Below, there is a small example on how to use it. Also, take a look at [this example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/measure_relationship_to_other_channels_plugin.ipynb). ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/things_inside_things_demo.gif) ## Usage, programmatically You can also control the tables programmatically. See this [example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/tables.ipynb) for details on regionprops and [this example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/measure_points.ipynb) for details on measuring intensity at point coordinates. For creating parametric map images, see [this notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/map_measurements.ipynb). ## Features The user can select categories of features for feature extraction in the user interface. These categories contain measurements from the scikit-image [regionprops list of measurements](https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops) library: * size: * area * bbox_area * convex_area * equivalent_diameter * intensity: * max_intensity * mean_intensity * min_intensity * standard_deviation_intensity (`extra_properties` implementation using numpy) * perimeter: * perimeter * perimeter_crofton * shape * major_axis_length * minor_axis_length * orientation * solidity * eccentricity * extent * feret_diameter_max * local_centroid * roundness as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * circularity as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * aspect_ratio as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * position: * centroid * bbox * weighted_centroid * moments: * moments * moments_central * moments_hu * moments_normalized This [napari] plugin was generated with [Cookiecutter] using with [@napari]'s [cookiecutter-napari-plugin] template. ## See also There are other napari plugins with similar functionality for extracting features: * [morphometrics](https://www.napari-hub.org/plugins/morphometrics) * [PartSeg](https://www.napari-hub.org/plugins/PartSeg) * [napari-simpleitk-image-processing](https://www.napari-hub.org/plugins/napari-simpleitk-image-processing) * [napari-cupy-image-processing](https://www.napari-hub.org/plugins/napari-cupy-image-processing) * [napari-pyclesperanto-assistant](https://www.napari-hub.org/plugins/napari-pyclesperanto-assistant) Furthermore, there are plugins for postprocessing extracted measurements * [napari-feature-classifier](https://www.napari-hub.org/plugins/napari-feature-classifier) * [napari-clusters-plotter](https://www.napari-hub.org/plugins/napari-clusters-plotter) * [napari-accelerated-pixel-and-object-classification](https://www.napari-hub.org/plugins/napari-accelerated-pixel-and-object-classification) ## Installation You can install `napari-skimage-regionprops` via [pip]: pip install napari-skimage-regionprops Or if you plan to develop it: git clone https://github.com/haesleinhuepf/napari-skimage-regionprops cd napari-skimage-regionprops pip install -e . If there is an error message suggesting that git is not installed, run `conda install git`. ## Contributing Contributions are very welcome. Tests can be run with [tox], please ensure the coverage at least stays the same before you submit a pull request. ## License Distributed under the terms of the [BSD-3] license, "napari-skimage-regionprops" is free and open source software ## Issues If you encounter any problems, please create a thread on [image.sc] along with a detailed description and tag [@haesleinhuepf]. [napari]: https://github.com/napari/napari [Cookiecutter]: https://github.com/audreyr/cookiecutter [@napari]: https://github.com/napari [BSD-3]: http://opensource.org/licenses/BSD-3-Clause [cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin [image.sc]: https://image.sc [napari]: https://github.com/napari/napari [tox]: https://tox.readthedocs.io/en/latest/ [pip]: https://pypi.org/project/pip/ [PyPI]: https://pypi.org/ [scikit-image]: https://scikit-image.org/ [@haesleinhuepf]: https://twitter.com/haesleinhuepf %package -n python3-napari-skimage-regionprops Summary: A regionprops table widget plugin for napari Provides: python-napari-skimage-regionprops BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-napari-skimage-regionprops # napari-skimage-regionprops (nsr) [![License](https://img.shields.io/pypi/l/napari-skimage-regionprops.svg?color=green)](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/LICENSE) [![PyPI](https://img.shields.io/pypi/v/napari-skimage-regionprops.svg?color=green)](https://pypi.org/project/napari-skimage-regionprops) [![Python Version](https://img.shields.io/pypi/pyversions/napari-skimage-regionprops.svg?color=green)](https://python.org) [![tests](https://github.com/haesleinhuepf/napari-skimage-regionprops/workflows/tests/badge.svg)](https://github.com/haesleinhuepf/napari-skimage-regionprops/actions) [![codecov](https://codecov.io/gh/haesleinhuepf/napari-skimage-regionprops/branch/master/graph/badge.svg)](https://codecov.io/gh/haesleinhuepf/napari-skimage-regionprops) [![Development Status](https://img.shields.io/pypi/status/napari-skimage-regionprops.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha) [![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-skimage-regionprops)](https://napari-hub.org/plugins/napari-skimage-regionprops) A [napari] plugin for measuring properties of labeled objects based on [scikit-image] ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/interactive.gif) ## Usage: measure region properties From the menu `Tools > Measurement > Regionprops (nsr)` you can open a dialog where you can choose an intensity image, a corresponding label image and the features you want to measure: ![img.png](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/dialog.png) If you want to interface with the labels and see which table row corresponds to which labeled object, use the label picker and activate the `show selected` checkbox. ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/interactive.png) If you closed a table and want to reopen it, you can use the menu `Tools > Measurements > Show table (nsr)` to reopen it. You just need to select the labels layer the properties are associated with. For visualizing measurements with different grey values, as parametric images, you can double-click table headers. ![img.png](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/label_value_visualization.gif) ## Usage: measure point intensities Analogously, also the intensity and coordinates of point layers can be measured using the menu `Tools > Measurement > Measure intensity at point coordinates (nsr)`. Also these measurements can be visualized by double-clicking table headers: ![img.png](measure_point_intensity.png) ![img_1.png](measure_point_coordinate.png) ## Working with time-lapse and tracking data Note that tables for time-lapse data should include a column named "frame", which indicates which slice in time the given row refers to. If you want to import your own csv files for time-lapse data make sure to include this column. If you have tracking data where each column specifies measurements for a track instead of a label at a specific time point, this column must not be added. In case you have 2D time-lapse data you need to convert it into a suitable shape using the function: `Tools > Utilities > Convert 3D stack to 2D time-lapse (time-slicer)`, which can be found in the [napari time slicer](https://www.napari-hub.org/plugins/napari-time-slicer). Last but not least, make sure that in case of time-lapse data the label image has labels that are subsquently labeled per timepoint. E.g. a dataset where label 5 is missing at timepoint 4 may be visualized incorrectly. ## Usage: multichannel or multi-label data If you want to relate objects from one channels to objects from another channel, you can use `Tools > Measurement tables > Object Features/Properties (scikit-image, nsr)`. This plugin module allos you to answer questions like: - how many objects I have inside other objects? - what is the average intensity of the objects inside other objects? For that, you need at least two labeled images in napari. You can relate objects along with their features. If intensity features are also wanted, then you also need to provide two intensity images. Below, there is a small example on how to use it. Also, take a look at [this example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/measure_relationship_to_other_channels_plugin.ipynb). ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/things_inside_things_demo.gif) ## Usage, programmatically You can also control the tables programmatically. See this [example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/tables.ipynb) for details on regionprops and [this example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/measure_points.ipynb) for details on measuring intensity at point coordinates. For creating parametric map images, see [this notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/map_measurements.ipynb). ## Features The user can select categories of features for feature extraction in the user interface. These categories contain measurements from the scikit-image [regionprops list of measurements](https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops) library: * size: * area * bbox_area * convex_area * equivalent_diameter * intensity: * max_intensity * mean_intensity * min_intensity * standard_deviation_intensity (`extra_properties` implementation using numpy) * perimeter: * perimeter * perimeter_crofton * shape * major_axis_length * minor_axis_length * orientation * solidity * eccentricity * extent * feret_diameter_max * local_centroid * roundness as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * circularity as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * aspect_ratio as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * position: * centroid * bbox * weighted_centroid * moments: * moments * moments_central * moments_hu * moments_normalized This [napari] plugin was generated with [Cookiecutter] using with [@napari]'s [cookiecutter-napari-plugin] template. ## See also There are other napari plugins with similar functionality for extracting features: * [morphometrics](https://www.napari-hub.org/plugins/morphometrics) * [PartSeg](https://www.napari-hub.org/plugins/PartSeg) * [napari-simpleitk-image-processing](https://www.napari-hub.org/plugins/napari-simpleitk-image-processing) * [napari-cupy-image-processing](https://www.napari-hub.org/plugins/napari-cupy-image-processing) * [napari-pyclesperanto-assistant](https://www.napari-hub.org/plugins/napari-pyclesperanto-assistant) Furthermore, there are plugins for postprocessing extracted measurements * [napari-feature-classifier](https://www.napari-hub.org/plugins/napari-feature-classifier) * [napari-clusters-plotter](https://www.napari-hub.org/plugins/napari-clusters-plotter) * [napari-accelerated-pixel-and-object-classification](https://www.napari-hub.org/plugins/napari-accelerated-pixel-and-object-classification) ## Installation You can install `napari-skimage-regionprops` via [pip]: pip install napari-skimage-regionprops Or if you plan to develop it: git clone https://github.com/haesleinhuepf/napari-skimage-regionprops cd napari-skimage-regionprops pip install -e . If there is an error message suggesting that git is not installed, run `conda install git`. ## Contributing Contributions are very welcome. Tests can be run with [tox], please ensure the coverage at least stays the same before you submit a pull request. ## License Distributed under the terms of the [BSD-3] license, "napari-skimage-regionprops" is free and open source software ## Issues If you encounter any problems, please create a thread on [image.sc] along with a detailed description and tag [@haesleinhuepf]. [napari]: https://github.com/napari/napari [Cookiecutter]: https://github.com/audreyr/cookiecutter [@napari]: https://github.com/napari [BSD-3]: http://opensource.org/licenses/BSD-3-Clause [cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin [image.sc]: https://image.sc [napari]: https://github.com/napari/napari [tox]: https://tox.readthedocs.io/en/latest/ [pip]: https://pypi.org/project/pip/ [PyPI]: https://pypi.org/ [scikit-image]: https://scikit-image.org/ [@haesleinhuepf]: https://twitter.com/haesleinhuepf %package help Summary: Development documents and examples for napari-skimage-regionprops Provides: python3-napari-skimage-regionprops-doc %description help # napari-skimage-regionprops (nsr) [![License](https://img.shields.io/pypi/l/napari-skimage-regionprops.svg?color=green)](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/LICENSE) [![PyPI](https://img.shields.io/pypi/v/napari-skimage-regionprops.svg?color=green)](https://pypi.org/project/napari-skimage-regionprops) [![Python Version](https://img.shields.io/pypi/pyversions/napari-skimage-regionprops.svg?color=green)](https://python.org) [![tests](https://github.com/haesleinhuepf/napari-skimage-regionprops/workflows/tests/badge.svg)](https://github.com/haesleinhuepf/napari-skimage-regionprops/actions) [![codecov](https://codecov.io/gh/haesleinhuepf/napari-skimage-regionprops/branch/master/graph/badge.svg)](https://codecov.io/gh/haesleinhuepf/napari-skimage-regionprops) [![Development Status](https://img.shields.io/pypi/status/napari-skimage-regionprops.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha) [![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-skimage-regionprops)](https://napari-hub.org/plugins/napari-skimage-regionprops) A [napari] plugin for measuring properties of labeled objects based on [scikit-image] ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/interactive.gif) ## Usage: measure region properties From the menu `Tools > Measurement > Regionprops (nsr)` you can open a dialog where you can choose an intensity image, a corresponding label image and the features you want to measure: ![img.png](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/dialog.png) If you want to interface with the labels and see which table row corresponds to which labeled object, use the label picker and activate the `show selected` checkbox. ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/interactive.png) If you closed a table and want to reopen it, you can use the menu `Tools > Measurements > Show table (nsr)` to reopen it. You just need to select the labels layer the properties are associated with. For visualizing measurements with different grey values, as parametric images, you can double-click table headers. ![img.png](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/label_value_visualization.gif) ## Usage: measure point intensities Analogously, also the intensity and coordinates of point layers can be measured using the menu `Tools > Measurement > Measure intensity at point coordinates (nsr)`. Also these measurements can be visualized by double-clicking table headers: ![img.png](measure_point_intensity.png) ![img_1.png](measure_point_coordinate.png) ## Working with time-lapse and tracking data Note that tables for time-lapse data should include a column named "frame", which indicates which slice in time the given row refers to. If you want to import your own csv files for time-lapse data make sure to include this column. If you have tracking data where each column specifies measurements for a track instead of a label at a specific time point, this column must not be added. In case you have 2D time-lapse data you need to convert it into a suitable shape using the function: `Tools > Utilities > Convert 3D stack to 2D time-lapse (time-slicer)`, which can be found in the [napari time slicer](https://www.napari-hub.org/plugins/napari-time-slicer). Last but not least, make sure that in case of time-lapse data the label image has labels that are subsquently labeled per timepoint. E.g. a dataset where label 5 is missing at timepoint 4 may be visualized incorrectly. ## Usage: multichannel or multi-label data If you want to relate objects from one channels to objects from another channel, you can use `Tools > Measurement tables > Object Features/Properties (scikit-image, nsr)`. This plugin module allos you to answer questions like: - how many objects I have inside other objects? - what is the average intensity of the objects inside other objects? For that, you need at least two labeled images in napari. You can relate objects along with their features. If intensity features are also wanted, then you also need to provide two intensity images. Below, there is a small example on how to use it. Also, take a look at [this example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/measure_relationship_to_other_channels_plugin.ipynb). ![](https://github.com/haesleinhuepf/napari-skimage-regionprops/raw/master/images/things_inside_things_demo.gif) ## Usage, programmatically You can also control the tables programmatically. See this [example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/tables.ipynb) for details on regionprops and [this example notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/measure_points.ipynb) for details on measuring intensity at point coordinates. For creating parametric map images, see [this notebook](https://github.com/haesleinhuepf/napari-skimage-regionprops/blob/master/demo/map_measurements.ipynb). ## Features The user can select categories of features for feature extraction in the user interface. These categories contain measurements from the scikit-image [regionprops list of measurements](https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops) library: * size: * area * bbox_area * convex_area * equivalent_diameter * intensity: * max_intensity * mean_intensity * min_intensity * standard_deviation_intensity (`extra_properties` implementation using numpy) * perimeter: * perimeter * perimeter_crofton * shape * major_axis_length * minor_axis_length * orientation * solidity * eccentricity * extent * feret_diameter_max * local_centroid * roundness as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * circularity as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * aspect_ratio as defined for 2D labels [by ImageJ](https://imagej.nih.gov/ij/docs/menus/analyze.html#set) * position: * centroid * bbox * weighted_centroid * moments: * moments * moments_central * moments_hu * moments_normalized This [napari] plugin was generated with [Cookiecutter] using with [@napari]'s [cookiecutter-napari-plugin] template. ## See also There are other napari plugins with similar functionality for extracting features: * [morphometrics](https://www.napari-hub.org/plugins/morphometrics) * [PartSeg](https://www.napari-hub.org/plugins/PartSeg) * [napari-simpleitk-image-processing](https://www.napari-hub.org/plugins/napari-simpleitk-image-processing) * [napari-cupy-image-processing](https://www.napari-hub.org/plugins/napari-cupy-image-processing) * [napari-pyclesperanto-assistant](https://www.napari-hub.org/plugins/napari-pyclesperanto-assistant) Furthermore, there are plugins for postprocessing extracted measurements * [napari-feature-classifier](https://www.napari-hub.org/plugins/napari-feature-classifier) * [napari-clusters-plotter](https://www.napari-hub.org/plugins/napari-clusters-plotter) * [napari-accelerated-pixel-and-object-classification](https://www.napari-hub.org/plugins/napari-accelerated-pixel-and-object-classification) ## Installation You can install `napari-skimage-regionprops` via [pip]: pip install napari-skimage-regionprops Or if you plan to develop it: git clone https://github.com/haesleinhuepf/napari-skimage-regionprops cd napari-skimage-regionprops pip install -e . If there is an error message suggesting that git is not installed, run `conda install git`. ## Contributing Contributions are very welcome. Tests can be run with [tox], please ensure the coverage at least stays the same before you submit a pull request. ## License Distributed under the terms of the [BSD-3] license, "napari-skimage-regionprops" is free and open source software ## Issues If you encounter any problems, please create a thread on [image.sc] along with a detailed description and tag [@haesleinhuepf]. [napari]: https://github.com/napari/napari [Cookiecutter]: https://github.com/audreyr/cookiecutter [@napari]: https://github.com/napari [BSD-3]: http://opensource.org/licenses/BSD-3-Clause [cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin [image.sc]: https://image.sc [napari]: https://github.com/napari/napari [tox]: https://tox.readthedocs.io/en/latest/ [pip]: https://pypi.org/project/pip/ [PyPI]: https://pypi.org/ [scikit-image]: https://scikit-image.org/ [@haesleinhuepf]: https://twitter.com/haesleinhuepf %prep %autosetup -n napari-skimage-regionprops-0.10.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-napari-skimage-regionprops -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 0.10.1-1 - Package Spec generated