%global _empty_manifest_terminate_build 0 Name: python-voicefixer Version: 0.1.2 Release: 1 Summary: This package is written for the restoration of degraded speech License: MIT URL: https://github.com/haoheliu/voicefixer Source0: https://mirrors.aliyun.com/pypi/web/packages/f1/ee/56f925d5aa7827d637f6ff94cd05400c8e5ad63473d6b4eb60206d270f8c/voicefixer-0.1.2.tar.gz BuildArch: noarch Requires: python3-librosa Requires: python3-matplotlib Requires: python3-torch Requires: python3-progressbar Requires: python3-torchlibrosa Requires: python3-GitPython Requires: python3-streamlit %description [![arXiv](https://img.shields.io/badge/arXiv-2109.13731-brightgreen.svg?style=flat-square)](https://arxiv.org/abs/2109.13731) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1HYYUepIsl2aXsdET6P_AmNVXuWP1MCMf?usp=sharing) [![PyPI version](https://badge.fury.io/py/voicefixer.svg)](https://badge.fury.io/py/voicefixer) [![githubio](https://img.shields.io/badge/GitHub.io-Audio_Samples-blue?logo=Github&style=flat-square)](https://haoheliu.github.io/demopage-voicefixer)[![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/spaces/akhaliq/VoiceFixer) - [VoiceFixer](#voicefixer) - [Demo](#demo) - [Usage](#usage) - [Desktop App](#desktop-app) - [Command line](#command-line) - [Python Examples](#python-examples) - [Others Features](#others-features) - [Materials](#materials) - [Change log](#change-log) # VoiceFixer *Voicefixer* aims at the restoration of human speech regardless how serious its degraded. It can handle noise, reveberation, low resolution (2kHz~44.1kHz) and clipping (0.1-1.0 threshold) effect within one model. This package provides: - A pretrained *Voicefixer*, which is build based on neural vocoder. - A pretrained 44.1k universal speaker-independent neural vocoder. ![main](test/figure.png) - If you found this repo helpful, please consider citing ```bib @misc{liu2021voicefixer, title={VoiceFixer: Toward General Speech Restoration With Neural Vocoder}, author={Haohe Liu and Qiuqiang Kong and Qiao Tian and Yan Zhao and DeLiang Wang and Chuanzeng Huang and Yuxuan Wang}, year={2021}, eprint={2109.13731}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## Demo Please visit [demo page](https://haoheliu.github.io/demopage-voicefixer/) to view what voicefixer can do. ## Usage ### Desktop App First, install voicefixer via pip: ```shell script pip install voicefixer==0.1.2 ``` You can test audio samples on your desktop by running website (powered by [streamlit](https://streamlit.io/)) 1. Clone the repo first. ```shell script git clone https://github.com/haoheliu/voicefixer.git cd voicefixer ``` :warning: **For windows users**, please make sure you have installed [WGET](https://eternallybored.org/misc/wget) and added the wget command to the system path (thanks @justinjohn0306). 1. Initialize and start web page. ```shell script # Run streamlit streamlit run test/streamlit.py ``` - If you run for the first time: the web page may leave blank for several minutes for downloading models. You can checkout the terminal for downloading progresses. - You can use [this low quality speech file](https://github.com/haoheliu/voicefixer/blob/main/test/utterance/original/original.wav) we provided for a test run. The page after processing will look like the following.

figure

- For users from main land China, if you experience difficulty on downloading checkpoint. You can access them alternatively on [百度网盘](https://pan.baidu.com/s/194ufkUR_PYf1nE1KqkEZjQ) (提取密码: qis6). Please download the two checkpoints inside and place them in the following folder. - Place **vf.ckpt** inside *~/.cache/voicefixer/analysis_module/checkpoints*. (The "~" represents your home directory) - Place **model.ckpt-1490000_trimed.pt** inside *~/.cache/voicefixer/synthesis_module/44100*. (The "~" represents your home directory) ### Command line First, install voicefixer via pip: ```shell pip install voicefixer==0.1.2 ``` Process a file: ```shell # Specify the input .wav file. Output file is outfile.wav. voicefixer --infile test/utterance/original/original.wav # Or specify a output path voicefixer --infile test/utterance/original/original.wav --outfile test/utterance/original/original_processed.wav ``` Process files in a folder: ```shell voicefixer --infolder /path/to/input --outfolder /path/to/output ``` Change mode (The default mode is 0): ```shell voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode 1 ``` Run all modes: ```shell # output file saved to `/path/to/output-modeX.wav`. voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode all ``` For more helper information please run: ```shell voicefixer -h ``` ### Python Examples First, install voicefixer via pip: ```shell script pip install voicefixer==0.1.2 ``` Then run the following scripts for a test run: ```shell script git clone https://github.com/haoheliu/voicefixer.git; cd voicefixer python3 test/test.py # test script ``` We expect it will give you the following output: ```shell script Initializing VoiceFixer... Test voicefixer mode 0, Pass Test voicefixer mode 1, Pass Test voicefixer mode 2, Pass Initializing 44.1kHz speech vocoder... Test vocoder using groundtruth mel spectrogram... Pass ``` *test/test.py* mainly contains the test of the following two APIs: - voicefixer.restore - vocoder.oracle ```python ... # TEST VOICEFIXER ## Initialize a voicefixer print("Initializing VoiceFixer...") voicefixer = VoiceFixer() # Mode 0: Original Model (suggested by default) # Mode 1: Add preprocessing module (remove higher frequency) # Mode 2: Train mode (might work sometimes on seriously degraded real speech) for mode in [0,1,2]: print("Testing mode",mode) voicefixer.restore(input=os.path.join(git_root,"test/utterance/original/original.flac"), # low quality .wav/.flac file output=os.path.join(git_root,"test/utterance/output/output_mode_"+str(mode)+".flac"), # save file path cuda=False, # GPU acceleration mode=mode) if(mode != 2): check("output_mode_"+str(mode)+".flac") print("Pass") # TEST VOCODER ## Initialize a vocoder print("Initializing 44.1kHz speech vocoder...") vocoder = Vocoder(sample_rate=44100) ### read wave (fpath) -> mel spectrogram -> vocoder -> wave -> save wave (out_path) print("Test vocoder using groundtruth mel spectrogram...") vocoder.oracle(fpath=os.path.join(git_root,"test/utterance/original/p360_001_mic1.flac"), out_path=os.path.join(git_root,"test/utterance/output/oracle.flac"), cuda=False) # GPU acceleration ... ``` You can clone this repo and try to run test.py inside the *test* folder. ### Others Features - How to use your own vocoder, like pre-trained HiFi-Gan? First you need to write a following helper function with your model. Similar to the helper function in this repo: https://github.com/haoheliu/voicefixer/blob/main/voicefixer/vocoder/base.py#L35 ```shell script def convert_mel_to_wav(mel): """ :param non normalized mel spectrogram: [batchsize, 1, t-steps, n_mel] :return: [batchsize, 1, samples] """ return wav ``` Then pass this function to *voicefixer.restore*, for example: ``` voicefixer.restore(input="", # input wav file path output="", # output wav file path cuda=False, # whether to use gpu acceleration mode = 0, your_vocoder_func = convert_mel_to_wav) ``` Note: - For compatibility, your vocoder should working on 44.1kHz wave with mel frequency bins 128. - The input mel spectrogram to the helper function should not be normalized by the width of each mel filter. ## Materials - Voicefixer training: https://github.com/haoheliu/voicefixer_main.git - Demo page: https://haoheliu.github.io/demopage-voicefixer/ [![46dnPO.png](https://z3.ax1x.com/2021/09/26/46dnPO.png)](https://imgtu.com/i/46dnPO) [![46dMxH.png](https://z3.ax1x.com/2021/09/26/46dMxH.png)](https://imgtu.com/i/46dMxH) ## Change log - 2022-09-03: Fix bugs on commandline voicefixer for windows users. - 2022-08-18: Add commandline voicefixer tool to the pip package. %package -n python3-voicefixer Summary: This package is written for the restoration of degraded speech Provides: python-voicefixer BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-voicefixer [![arXiv](https://img.shields.io/badge/arXiv-2109.13731-brightgreen.svg?style=flat-square)](https://arxiv.org/abs/2109.13731) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1HYYUepIsl2aXsdET6P_AmNVXuWP1MCMf?usp=sharing) [![PyPI version](https://badge.fury.io/py/voicefixer.svg)](https://badge.fury.io/py/voicefixer) [![githubio](https://img.shields.io/badge/GitHub.io-Audio_Samples-blue?logo=Github&style=flat-square)](https://haoheliu.github.io/demopage-voicefixer)[![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/spaces/akhaliq/VoiceFixer) - [VoiceFixer](#voicefixer) - [Demo](#demo) - [Usage](#usage) - [Desktop App](#desktop-app) - [Command line](#command-line) - [Python Examples](#python-examples) - [Others Features](#others-features) - [Materials](#materials) - [Change log](#change-log) # VoiceFixer *Voicefixer* aims at the restoration of human speech regardless how serious its degraded. It can handle noise, reveberation, low resolution (2kHz~44.1kHz) and clipping (0.1-1.0 threshold) effect within one model. This package provides: - A pretrained *Voicefixer*, which is build based on neural vocoder. - A pretrained 44.1k universal speaker-independent neural vocoder. ![main](test/figure.png) - If you found this repo helpful, please consider citing ```bib @misc{liu2021voicefixer, title={VoiceFixer: Toward General Speech Restoration With Neural Vocoder}, author={Haohe Liu and Qiuqiang Kong and Qiao Tian and Yan Zhao and DeLiang Wang and Chuanzeng Huang and Yuxuan Wang}, year={2021}, eprint={2109.13731}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## Demo Please visit [demo page](https://haoheliu.github.io/demopage-voicefixer/) to view what voicefixer can do. ## Usage ### Desktop App First, install voicefixer via pip: ```shell script pip install voicefixer==0.1.2 ``` You can test audio samples on your desktop by running website (powered by [streamlit](https://streamlit.io/)) 1. Clone the repo first. ```shell script git clone https://github.com/haoheliu/voicefixer.git cd voicefixer ``` :warning: **For windows users**, please make sure you have installed [WGET](https://eternallybored.org/misc/wget) and added the wget command to the system path (thanks @justinjohn0306). 1. Initialize and start web page. ```shell script # Run streamlit streamlit run test/streamlit.py ``` - If you run for the first time: the web page may leave blank for several minutes for downloading models. You can checkout the terminal for downloading progresses. - You can use [this low quality speech file](https://github.com/haoheliu/voicefixer/blob/main/test/utterance/original/original.wav) we provided for a test run. The page after processing will look like the following.

figure

- For users from main land China, if you experience difficulty on downloading checkpoint. You can access them alternatively on [百度网盘](https://pan.baidu.com/s/194ufkUR_PYf1nE1KqkEZjQ) (提取密码: qis6). Please download the two checkpoints inside and place them in the following folder. - Place **vf.ckpt** inside *~/.cache/voicefixer/analysis_module/checkpoints*. (The "~" represents your home directory) - Place **model.ckpt-1490000_trimed.pt** inside *~/.cache/voicefixer/synthesis_module/44100*. (The "~" represents your home directory) ### Command line First, install voicefixer via pip: ```shell pip install voicefixer==0.1.2 ``` Process a file: ```shell # Specify the input .wav file. Output file is outfile.wav. voicefixer --infile test/utterance/original/original.wav # Or specify a output path voicefixer --infile test/utterance/original/original.wav --outfile test/utterance/original/original_processed.wav ``` Process files in a folder: ```shell voicefixer --infolder /path/to/input --outfolder /path/to/output ``` Change mode (The default mode is 0): ```shell voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode 1 ``` Run all modes: ```shell # output file saved to `/path/to/output-modeX.wav`. voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode all ``` For more helper information please run: ```shell voicefixer -h ``` ### Python Examples First, install voicefixer via pip: ```shell script pip install voicefixer==0.1.2 ``` Then run the following scripts for a test run: ```shell script git clone https://github.com/haoheliu/voicefixer.git; cd voicefixer python3 test/test.py # test script ``` We expect it will give you the following output: ```shell script Initializing VoiceFixer... Test voicefixer mode 0, Pass Test voicefixer mode 1, Pass Test voicefixer mode 2, Pass Initializing 44.1kHz speech vocoder... Test vocoder using groundtruth mel spectrogram... Pass ``` *test/test.py* mainly contains the test of the following two APIs: - voicefixer.restore - vocoder.oracle ```python ... # TEST VOICEFIXER ## Initialize a voicefixer print("Initializing VoiceFixer...") voicefixer = VoiceFixer() # Mode 0: Original Model (suggested by default) # Mode 1: Add preprocessing module (remove higher frequency) # Mode 2: Train mode (might work sometimes on seriously degraded real speech) for mode in [0,1,2]: print("Testing mode",mode) voicefixer.restore(input=os.path.join(git_root,"test/utterance/original/original.flac"), # low quality .wav/.flac file output=os.path.join(git_root,"test/utterance/output/output_mode_"+str(mode)+".flac"), # save file path cuda=False, # GPU acceleration mode=mode) if(mode != 2): check("output_mode_"+str(mode)+".flac") print("Pass") # TEST VOCODER ## Initialize a vocoder print("Initializing 44.1kHz speech vocoder...") vocoder = Vocoder(sample_rate=44100) ### read wave (fpath) -> mel spectrogram -> vocoder -> wave -> save wave (out_path) print("Test vocoder using groundtruth mel spectrogram...") vocoder.oracle(fpath=os.path.join(git_root,"test/utterance/original/p360_001_mic1.flac"), out_path=os.path.join(git_root,"test/utterance/output/oracle.flac"), cuda=False) # GPU acceleration ... ``` You can clone this repo and try to run test.py inside the *test* folder. ### Others Features - How to use your own vocoder, like pre-trained HiFi-Gan? First you need to write a following helper function with your model. Similar to the helper function in this repo: https://github.com/haoheliu/voicefixer/blob/main/voicefixer/vocoder/base.py#L35 ```shell script def convert_mel_to_wav(mel): """ :param non normalized mel spectrogram: [batchsize, 1, t-steps, n_mel] :return: [batchsize, 1, samples] """ return wav ``` Then pass this function to *voicefixer.restore*, for example: ``` voicefixer.restore(input="", # input wav file path output="", # output wav file path cuda=False, # whether to use gpu acceleration mode = 0, your_vocoder_func = convert_mel_to_wav) ``` Note: - For compatibility, your vocoder should working on 44.1kHz wave with mel frequency bins 128. - The input mel spectrogram to the helper function should not be normalized by the width of each mel filter. ## Materials - Voicefixer training: https://github.com/haoheliu/voicefixer_main.git - Demo page: https://haoheliu.github.io/demopage-voicefixer/ [![46dnPO.png](https://z3.ax1x.com/2021/09/26/46dnPO.png)](https://imgtu.com/i/46dnPO) [![46dMxH.png](https://z3.ax1x.com/2021/09/26/46dMxH.png)](https://imgtu.com/i/46dMxH) ## Change log - 2022-09-03: Fix bugs on commandline voicefixer for windows users. - 2022-08-18: Add commandline voicefixer tool to the pip package. %package help Summary: Development documents and examples for voicefixer Provides: python3-voicefixer-doc %description help [![arXiv](https://img.shields.io/badge/arXiv-2109.13731-brightgreen.svg?style=flat-square)](https://arxiv.org/abs/2109.13731) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1HYYUepIsl2aXsdET6P_AmNVXuWP1MCMf?usp=sharing) [![PyPI version](https://badge.fury.io/py/voicefixer.svg)](https://badge.fury.io/py/voicefixer) [![githubio](https://img.shields.io/badge/GitHub.io-Audio_Samples-blue?logo=Github&style=flat-square)](https://haoheliu.github.io/demopage-voicefixer)[![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/spaces/akhaliq/VoiceFixer) - [VoiceFixer](#voicefixer) - [Demo](#demo) - [Usage](#usage) - [Desktop App](#desktop-app) - [Command line](#command-line) - [Python Examples](#python-examples) - [Others Features](#others-features) - [Materials](#materials) - [Change log](#change-log) # VoiceFixer *Voicefixer* aims at the restoration of human speech regardless how serious its degraded. It can handle noise, reveberation, low resolution (2kHz~44.1kHz) and clipping (0.1-1.0 threshold) effect within one model. This package provides: - A pretrained *Voicefixer*, which is build based on neural vocoder. - A pretrained 44.1k universal speaker-independent neural vocoder. ![main](test/figure.png) - If you found this repo helpful, please consider citing ```bib @misc{liu2021voicefixer, title={VoiceFixer: Toward General Speech Restoration With Neural Vocoder}, author={Haohe Liu and Qiuqiang Kong and Qiao Tian and Yan Zhao and DeLiang Wang and Chuanzeng Huang and Yuxuan Wang}, year={2021}, eprint={2109.13731}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## Demo Please visit [demo page](https://haoheliu.github.io/demopage-voicefixer/) to view what voicefixer can do. ## Usage ### Desktop App First, install voicefixer via pip: ```shell script pip install voicefixer==0.1.2 ``` You can test audio samples on your desktop by running website (powered by [streamlit](https://streamlit.io/)) 1. Clone the repo first. ```shell script git clone https://github.com/haoheliu/voicefixer.git cd voicefixer ``` :warning: **For windows users**, please make sure you have installed [WGET](https://eternallybored.org/misc/wget) and added the wget command to the system path (thanks @justinjohn0306). 1. Initialize and start web page. ```shell script # Run streamlit streamlit run test/streamlit.py ``` - If you run for the first time: the web page may leave blank for several minutes for downloading models. You can checkout the terminal for downloading progresses. - You can use [this low quality speech file](https://github.com/haoheliu/voicefixer/blob/main/test/utterance/original/original.wav) we provided for a test run. The page after processing will look like the following.

figure

- For users from main land China, if you experience difficulty on downloading checkpoint. You can access them alternatively on [百度网盘](https://pan.baidu.com/s/194ufkUR_PYf1nE1KqkEZjQ) (提取密码: qis6). Please download the two checkpoints inside and place them in the following folder. - Place **vf.ckpt** inside *~/.cache/voicefixer/analysis_module/checkpoints*. (The "~" represents your home directory) - Place **model.ckpt-1490000_trimed.pt** inside *~/.cache/voicefixer/synthesis_module/44100*. (The "~" represents your home directory) ### Command line First, install voicefixer via pip: ```shell pip install voicefixer==0.1.2 ``` Process a file: ```shell # Specify the input .wav file. Output file is outfile.wav. voicefixer --infile test/utterance/original/original.wav # Or specify a output path voicefixer --infile test/utterance/original/original.wav --outfile test/utterance/original/original_processed.wav ``` Process files in a folder: ```shell voicefixer --infolder /path/to/input --outfolder /path/to/output ``` Change mode (The default mode is 0): ```shell voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode 1 ``` Run all modes: ```shell # output file saved to `/path/to/output-modeX.wav`. voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode all ``` For more helper information please run: ```shell voicefixer -h ``` ### Python Examples First, install voicefixer via pip: ```shell script pip install voicefixer==0.1.2 ``` Then run the following scripts for a test run: ```shell script git clone https://github.com/haoheliu/voicefixer.git; cd voicefixer python3 test/test.py # test script ``` We expect it will give you the following output: ```shell script Initializing VoiceFixer... Test voicefixer mode 0, Pass Test voicefixer mode 1, Pass Test voicefixer mode 2, Pass Initializing 44.1kHz speech vocoder... Test vocoder using groundtruth mel spectrogram... Pass ``` *test/test.py* mainly contains the test of the following two APIs: - voicefixer.restore - vocoder.oracle ```python ... # TEST VOICEFIXER ## Initialize a voicefixer print("Initializing VoiceFixer...") voicefixer = VoiceFixer() # Mode 0: Original Model (suggested by default) # Mode 1: Add preprocessing module (remove higher frequency) # Mode 2: Train mode (might work sometimes on seriously degraded real speech) for mode in [0,1,2]: print("Testing mode",mode) voicefixer.restore(input=os.path.join(git_root,"test/utterance/original/original.flac"), # low quality .wav/.flac file output=os.path.join(git_root,"test/utterance/output/output_mode_"+str(mode)+".flac"), # save file path cuda=False, # GPU acceleration mode=mode) if(mode != 2): check("output_mode_"+str(mode)+".flac") print("Pass") # TEST VOCODER ## Initialize a vocoder print("Initializing 44.1kHz speech vocoder...") vocoder = Vocoder(sample_rate=44100) ### read wave (fpath) -> mel spectrogram -> vocoder -> wave -> save wave (out_path) print("Test vocoder using groundtruth mel spectrogram...") vocoder.oracle(fpath=os.path.join(git_root,"test/utterance/original/p360_001_mic1.flac"), out_path=os.path.join(git_root,"test/utterance/output/oracle.flac"), cuda=False) # GPU acceleration ... ``` You can clone this repo and try to run test.py inside the *test* folder. ### Others Features - How to use your own vocoder, like pre-trained HiFi-Gan? First you need to write a following helper function with your model. Similar to the helper function in this repo: https://github.com/haoheliu/voicefixer/blob/main/voicefixer/vocoder/base.py#L35 ```shell script def convert_mel_to_wav(mel): """ :param non normalized mel spectrogram: [batchsize, 1, t-steps, n_mel] :return: [batchsize, 1, samples] """ return wav ``` Then pass this function to *voicefixer.restore*, for example: ``` voicefixer.restore(input="", # input wav file path output="", # output wav file path cuda=False, # whether to use gpu acceleration mode = 0, your_vocoder_func = convert_mel_to_wav) ``` Note: - For compatibility, your vocoder should working on 44.1kHz wave with mel frequency bins 128. - The input mel spectrogram to the helper function should not be normalized by the width of each mel filter. ## Materials - Voicefixer training: https://github.com/haoheliu/voicefixer_main.git - Demo page: https://haoheliu.github.io/demopage-voicefixer/ [![46dnPO.png](https://z3.ax1x.com/2021/09/26/46dnPO.png)](https://imgtu.com/i/46dnPO) [![46dMxH.png](https://z3.ax1x.com/2021/09/26/46dMxH.png)](https://imgtu.com/i/46dMxH) ## Change log - 2022-09-03: Fix bugs on commandline voicefixer for windows users. - 2022-08-18: Add commandline voicefixer tool to the pip package. %prep %autosetup -n voicefixer-0.1.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-voicefixer -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 0.1.2-1 - Package Spec generated