%global _empty_manifest_terminate_build 0 Name: python-MetaNN Version: 0.3.2 Release: 1 Summary: MetaNN provides extensions of PyTorch nn.Module for meta learning License: MIT License URL: https://github.com/yhqjohn/MetaModule Source0: https://mirrors.aliyun.com/pypi/web/packages/6c/03/f8b81237ad7930ed19b3b7e4cdc5aa5ef4c60cc1936cdb102558d993bcb5/MetaNN-0.3.2.tar.gz BuildArch: noarch Requires: python3-torch %description 1. Introduction ____________________ In meta learner scenario, it is common use dependent variables as parameters, and back propagate the gradient of the parameters. However, parameters of PyTorch Module are designed to be leaf nodes and it is forbidden for parameters to have grad_fn. Meta learning coders are therefore forced to rewrite the basic layers to adapt the meta learning requirements. This module provide an extension of torch.nn.Module, DependentModule that has dependent parameters, allowing the differentiable dependent parameters. It also provide the method to transform nn.Module into DependentModule, and turning all of the parameters of a nn.Module into dependent parameters. 2. Installation __________________ pip install MetaNN 3. Example ___________ PyTorch suggest all parameters of a module to be independent variables. Using DependentModule arbitrary torch.nn.module can be transformed into dependent module. from metann import DependentModule from torch import nn net = torch.nn.Sequential( nn.Linear(10, 100), nn.Linear(100, 5)) net = DependentModule(net) print(net) Higher-level api such as MAML class are more recommended to use. from metann.meta import MAML, default_evaluator_classification as evaluator from torch import nn net = torch.nn.Sequential( nn.Linear(10, 100), nn.Linear(100, 5)) ) maml = MAML(net, steps_train=5, steps_eval=10, lr=0.01) output = maml(data_train) loss = evaluator(output, data_test) loss.backward() 4. Documents _____________ The documents are available at ReadTheDocs. `MetaNN `__ 5. License __________ `MIT `__ Copyright (c) 2019-present, Hanqiao Yu %package -n python3-MetaNN Summary: MetaNN provides extensions of PyTorch nn.Module for meta learning Provides: python-MetaNN BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-MetaNN 1. Introduction ____________________ In meta learner scenario, it is common use dependent variables as parameters, and back propagate the gradient of the parameters. However, parameters of PyTorch Module are designed to be leaf nodes and it is forbidden for parameters to have grad_fn. Meta learning coders are therefore forced to rewrite the basic layers to adapt the meta learning requirements. This module provide an extension of torch.nn.Module, DependentModule that has dependent parameters, allowing the differentiable dependent parameters. It also provide the method to transform nn.Module into DependentModule, and turning all of the parameters of a nn.Module into dependent parameters. 2. Installation __________________ pip install MetaNN 3. Example ___________ PyTorch suggest all parameters of a module to be independent variables. Using DependentModule arbitrary torch.nn.module can be transformed into dependent module. from metann import DependentModule from torch import nn net = torch.nn.Sequential( nn.Linear(10, 100), nn.Linear(100, 5)) net = DependentModule(net) print(net) Higher-level api such as MAML class are more recommended to use. from metann.meta import MAML, default_evaluator_classification as evaluator from torch import nn net = torch.nn.Sequential( nn.Linear(10, 100), nn.Linear(100, 5)) ) maml = MAML(net, steps_train=5, steps_eval=10, lr=0.01) output = maml(data_train) loss = evaluator(output, data_test) loss.backward() 4. Documents _____________ The documents are available at ReadTheDocs. `MetaNN `__ 5. License __________ `MIT `__ Copyright (c) 2019-present, Hanqiao Yu %package help Summary: Development documents and examples for MetaNN Provides: python3-MetaNN-doc %description help 1. Introduction ____________________ In meta learner scenario, it is common use dependent variables as parameters, and back propagate the gradient of the parameters. However, parameters of PyTorch Module are designed to be leaf nodes and it is forbidden for parameters to have grad_fn. Meta learning coders are therefore forced to rewrite the basic layers to adapt the meta learning requirements. This module provide an extension of torch.nn.Module, DependentModule that has dependent parameters, allowing the differentiable dependent parameters. It also provide the method to transform nn.Module into DependentModule, and turning all of the parameters of a nn.Module into dependent parameters. 2. Installation __________________ pip install MetaNN 3. Example ___________ PyTorch suggest all parameters of a module to be independent variables. Using DependentModule arbitrary torch.nn.module can be transformed into dependent module. from metann import DependentModule from torch import nn net = torch.nn.Sequential( nn.Linear(10, 100), nn.Linear(100, 5)) net = DependentModule(net) print(net) Higher-level api such as MAML class are more recommended to use. from metann.meta import MAML, default_evaluator_classification as evaluator from torch import nn net = torch.nn.Sequential( nn.Linear(10, 100), nn.Linear(100, 5)) ) maml = MAML(net, steps_train=5, steps_eval=10, lr=0.01) output = maml(data_train) loss = evaluator(output, data_test) loss.backward() 4. Documents _____________ The documents are available at ReadTheDocs. `MetaNN `__ 5. License __________ `MIT `__ Copyright (c) 2019-present, Hanqiao Yu %prep %autosetup -n MetaNN-0.3.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-MetaNN -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 0.3.2-1 - Package Spec generated