%global _empty_manifest_terminate_build 0 Name: python-quinn Version: 0.10.0 Release: 1 Summary: Pyspark helper methods to maximize developer efficiency License: Apache-2.0 URL: https://github.com/MrPowers/quinn/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4e/0e/d8b9bf53c17d3007590bc3bea3aec3ff45bafe5a25736004ce69e6152845/quinn-0.10.0.tar.gz BuildArch: noarch %description # Quinn ![CI](https://github.com/MrPowers/quinn/workflows/CI/badge.svg?branch=master) Pyspark helper methods to maximize developer productivity. Quinn validates DataFrames, extends core classes, defines DataFrame transformations, and provides SQL functions. ![quinn](https://github.com/MrPowers/quinn/blob/master/quinn.png) ## Setup Quinn is [uploaded to PyPi](https://pypi.org/project/quinn/) and can be installed with this command: ``` pip install quinn ``` ## Pyspark Core Class Extensions ``` from quinn.extensions import * ``` ### Column Extensions **isFalsy()** ```python source_df.withColumn("is_stuff_falsy", F.col("has_stuff").isFalsy()) ``` Returns `True` if `has_stuff` is `None` or `False`. **isTruthy()** ```python source_df.withColumn("is_stuff_truthy", F.col("has_stuff").isTruthy()) ``` Returns `True` unless `has_stuff` is `None` or `False`. **isNullOrBlank()** ```python source_df.withColumn("is_blah_null_or_blank", F.col("blah").isNullOrBlank()) ``` Returns `True` if `blah` is `null` or blank (the empty string or a string that only contains whitespace). **isNotIn()** ```python source_df.withColumn("is_not_bobs_hobby", F.col("fun_thing").isNotIn(bobs_hobbies)) ``` Returns `True` if `fun_thing` is not included in the `bobs_hobbies` list. **nullBetween()** ```python source_df.withColumn("is_between", F.col("age").nullBetween(F.col("lower_age"), F.col("upper_age"))) ``` Returns `True` if `age` is between `lower_age` and `upper_age`. If `lower_age` is populated and `upper_age` is `null`, it will return `True` if `age` is greater than or equal to `lower_age`. If `lower_age` is `null` and `upper_age` is populate, it will return `True` if `age` is lower than or equal to `upper_age`. ### SparkSession Extensions **create_df()** ```python spark.create_df( [("jose", "a"), ("li", "b"), ("sam", "c")], [("name", StringType(), True), ("blah", StringType(), True)] ) ``` Creates DataFrame with a syntax that's less verbose than the built-in `createDataFrame` method. ### DataFrame Extensions **transform()** ```python source_df\ .transform(lambda df: with_greeting(df))\ .transform(lambda df: with_something(df, "crazy")) ``` Allows for multiple DataFrame transformations to be run and executed. ## Quinn Helper Functions ```python import quinn ``` ### DataFrame Validations **validate_presence_of_columns()** ```python quinn.validate_presence_of_columns(source_df, ["name", "age", "fun"]) ``` Raises an exception unless `source_df` contains the `name`, `age`, and `fun` column. **validate_schema()** ```python quinn.validate_schema(source_df, required_schema) ``` Raises an exception unless `source_df` contains all the `StructFields` defined in the `required_schema`. **validate_absence_of_columns()** ```python quinn.validate_absence_of_columns(source_df, ["age", "cool"]) ``` Raises an exception if `source_df` contains `age` or `cool` columns. ### Functions **single_space()** ```python actual_df = source_df.withColumn( "words_single_spaced", quinn.single_space(col("words")) ) ``` Replaces all multispaces with single spaces (e.g. changes `"this has some"` to `"this has some"`. **remove_all_whitespace()** ```python actual_df = source_df.withColumn( "words_without_whitespace", quinn.remove_all_whitespace(col("words")) ) ``` Removes all whitespace in a string (e.g. changes `"this has some"` to `"thishassome"`. **anti_trim()** ```python actual_df = source_df.withColumn( "words_anti_trimmed", quinn.anti_trim(col("words")) ) ``` Removes all inner whitespace, but doesn't delete leading or trailing whitespace (e.g. changes `" this has some "` to `" thishassome "`. **remove_non_word_characters()** ```python actual_df = source_df.withColumn( "words_without_nonword_chars", quinn.remove_non_word_characters(col("words")) ) ``` Removes all non-word characters from a string (e.g. changes `"si%$#@!#$!@#mpsons"` to `"simpsons"`. **exists()** ```python source_df.withColumn( "any_num_greater_than_5", quinn.exists(lambda n: n > 5)(col("nums")) ) ``` `nums` contains lists of numbers and `exists()` returns `True` if any of the numbers in the list are greater than 5. It's similar to the Python `any` function. **forall()** ```python source_df.withColumn( "all_nums_greater_than_3", quinn.forall(lambda n: n > 3)(col("nums")) ) ``` `nums` contains lists of numbers and `forall()` returns `True` if all of the numbers in the list are greater than 3. It's similar to the Python `all` function. **multi_equals()** ```python source_df.withColumn( "are_s1_and_s2_cat", quinn.multi_equals("cat")(col("s1"), col("s2")) ) ``` `multi_equals` returns true if `s1` and `s2` are both equal to `"cat"`. ### Transformations **snake_case_col_names()** ```python quinn.snake_case_col_names(source_df) ``` Converts all the column names in a DataFrame to snake_case. It's annoying to write SQL queries when columns aren't snake cased. **sort_columns()** ```python quinn.sort_columns(source_df, "asc") ``` Sorts the DataFrame columns in alphabetical order. Wide DataFrames are easier to navigate when they're sorted alphabetically. ### DataFrame Helpers **column_to_list()** ```python quinn.column_to_list(source_df, "name") ``` Converts a column in a DataFrame to a list of values. **two_columns_to_dictionary()** ```python quinn.two_columns_to_dictionary(source_df, "name", "age") ``` Converts two columns of a DataFrame into a dictionary. In this example, `name` is the key and `age` is the value. **to_list_of_dictionaries()** ```python quinn.to_list_of_dictionaries(source_df) ``` Converts an entire DataFrame into a list of dictionaries. ## Contributing We are actively looking for feature requests, pull requests, and bug fixes. Any developer that demonstrates excellence will be invited to be a maintainer of the project. %package -n python3-quinn Summary: Pyspark helper methods to maximize developer efficiency Provides: python-quinn BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-quinn # Quinn ![CI](https://github.com/MrPowers/quinn/workflows/CI/badge.svg?branch=master) Pyspark helper methods to maximize developer productivity. Quinn validates DataFrames, extends core classes, defines DataFrame transformations, and provides SQL functions. ![quinn](https://github.com/MrPowers/quinn/blob/master/quinn.png) ## Setup Quinn is [uploaded to PyPi](https://pypi.org/project/quinn/) and can be installed with this command: ``` pip install quinn ``` ## Pyspark Core Class Extensions ``` from quinn.extensions import * ``` ### Column Extensions **isFalsy()** ```python source_df.withColumn("is_stuff_falsy", F.col("has_stuff").isFalsy()) ``` Returns `True` if `has_stuff` is `None` or `False`. **isTruthy()** ```python source_df.withColumn("is_stuff_truthy", F.col("has_stuff").isTruthy()) ``` Returns `True` unless `has_stuff` is `None` or `False`. **isNullOrBlank()** ```python source_df.withColumn("is_blah_null_or_blank", F.col("blah").isNullOrBlank()) ``` Returns `True` if `blah` is `null` or blank (the empty string or a string that only contains whitespace). **isNotIn()** ```python source_df.withColumn("is_not_bobs_hobby", F.col("fun_thing").isNotIn(bobs_hobbies)) ``` Returns `True` if `fun_thing` is not included in the `bobs_hobbies` list. **nullBetween()** ```python source_df.withColumn("is_between", F.col("age").nullBetween(F.col("lower_age"), F.col("upper_age"))) ``` Returns `True` if `age` is between `lower_age` and `upper_age`. If `lower_age` is populated and `upper_age` is `null`, it will return `True` if `age` is greater than or equal to `lower_age`. If `lower_age` is `null` and `upper_age` is populate, it will return `True` if `age` is lower than or equal to `upper_age`. ### SparkSession Extensions **create_df()** ```python spark.create_df( [("jose", "a"), ("li", "b"), ("sam", "c")], [("name", StringType(), True), ("blah", StringType(), True)] ) ``` Creates DataFrame with a syntax that's less verbose than the built-in `createDataFrame` method. ### DataFrame Extensions **transform()** ```python source_df\ .transform(lambda df: with_greeting(df))\ .transform(lambda df: with_something(df, "crazy")) ``` Allows for multiple DataFrame transformations to be run and executed. ## Quinn Helper Functions ```python import quinn ``` ### DataFrame Validations **validate_presence_of_columns()** ```python quinn.validate_presence_of_columns(source_df, ["name", "age", "fun"]) ``` Raises an exception unless `source_df` contains the `name`, `age`, and `fun` column. **validate_schema()** ```python quinn.validate_schema(source_df, required_schema) ``` Raises an exception unless `source_df` contains all the `StructFields` defined in the `required_schema`. **validate_absence_of_columns()** ```python quinn.validate_absence_of_columns(source_df, ["age", "cool"]) ``` Raises an exception if `source_df` contains `age` or `cool` columns. ### Functions **single_space()** ```python actual_df = source_df.withColumn( "words_single_spaced", quinn.single_space(col("words")) ) ``` Replaces all multispaces with single spaces (e.g. changes `"this has some"` to `"this has some"`. **remove_all_whitespace()** ```python actual_df = source_df.withColumn( "words_without_whitespace", quinn.remove_all_whitespace(col("words")) ) ``` Removes all whitespace in a string (e.g. changes `"this has some"` to `"thishassome"`. **anti_trim()** ```python actual_df = source_df.withColumn( "words_anti_trimmed", quinn.anti_trim(col("words")) ) ``` Removes all inner whitespace, but doesn't delete leading or trailing whitespace (e.g. changes `" this has some "` to `" thishassome "`. **remove_non_word_characters()** ```python actual_df = source_df.withColumn( "words_without_nonword_chars", quinn.remove_non_word_characters(col("words")) ) ``` Removes all non-word characters from a string (e.g. changes `"si%$#@!#$!@#mpsons"` to `"simpsons"`. **exists()** ```python source_df.withColumn( "any_num_greater_than_5", quinn.exists(lambda n: n > 5)(col("nums")) ) ``` `nums` contains lists of numbers and `exists()` returns `True` if any of the numbers in the list are greater than 5. It's similar to the Python `any` function. **forall()** ```python source_df.withColumn( "all_nums_greater_than_3", quinn.forall(lambda n: n > 3)(col("nums")) ) ``` `nums` contains lists of numbers and `forall()` returns `True` if all of the numbers in the list are greater than 3. It's similar to the Python `all` function. **multi_equals()** ```python source_df.withColumn( "are_s1_and_s2_cat", quinn.multi_equals("cat")(col("s1"), col("s2")) ) ``` `multi_equals` returns true if `s1` and `s2` are both equal to `"cat"`. ### Transformations **snake_case_col_names()** ```python quinn.snake_case_col_names(source_df) ``` Converts all the column names in a DataFrame to snake_case. It's annoying to write SQL queries when columns aren't snake cased. **sort_columns()** ```python quinn.sort_columns(source_df, "asc") ``` Sorts the DataFrame columns in alphabetical order. Wide DataFrames are easier to navigate when they're sorted alphabetically. ### DataFrame Helpers **column_to_list()** ```python quinn.column_to_list(source_df, "name") ``` Converts a column in a DataFrame to a list of values. **two_columns_to_dictionary()** ```python quinn.two_columns_to_dictionary(source_df, "name", "age") ``` Converts two columns of a DataFrame into a dictionary. In this example, `name` is the key and `age` is the value. **to_list_of_dictionaries()** ```python quinn.to_list_of_dictionaries(source_df) ``` Converts an entire DataFrame into a list of dictionaries. ## Contributing We are actively looking for feature requests, pull requests, and bug fixes. Any developer that demonstrates excellence will be invited to be a maintainer of the project. %package help Summary: Development documents and examples for quinn Provides: python3-quinn-doc %description help # Quinn ![CI](https://github.com/MrPowers/quinn/workflows/CI/badge.svg?branch=master) Pyspark helper methods to maximize developer productivity. Quinn validates DataFrames, extends core classes, defines DataFrame transformations, and provides SQL functions. ![quinn](https://github.com/MrPowers/quinn/blob/master/quinn.png) ## Setup Quinn is [uploaded to PyPi](https://pypi.org/project/quinn/) and can be installed with this command: ``` pip install quinn ``` ## Pyspark Core Class Extensions ``` from quinn.extensions import * ``` ### Column Extensions **isFalsy()** ```python source_df.withColumn("is_stuff_falsy", F.col("has_stuff").isFalsy()) ``` Returns `True` if `has_stuff` is `None` or `False`. **isTruthy()** ```python source_df.withColumn("is_stuff_truthy", F.col("has_stuff").isTruthy()) ``` Returns `True` unless `has_stuff` is `None` or `False`. **isNullOrBlank()** ```python source_df.withColumn("is_blah_null_or_blank", F.col("blah").isNullOrBlank()) ``` Returns `True` if `blah` is `null` or blank (the empty string or a string that only contains whitespace). **isNotIn()** ```python source_df.withColumn("is_not_bobs_hobby", F.col("fun_thing").isNotIn(bobs_hobbies)) ``` Returns `True` if `fun_thing` is not included in the `bobs_hobbies` list. **nullBetween()** ```python source_df.withColumn("is_between", F.col("age").nullBetween(F.col("lower_age"), F.col("upper_age"))) ``` Returns `True` if `age` is between `lower_age` and `upper_age`. If `lower_age` is populated and `upper_age` is `null`, it will return `True` if `age` is greater than or equal to `lower_age`. If `lower_age` is `null` and `upper_age` is populate, it will return `True` if `age` is lower than or equal to `upper_age`. ### SparkSession Extensions **create_df()** ```python spark.create_df( [("jose", "a"), ("li", "b"), ("sam", "c")], [("name", StringType(), True), ("blah", StringType(), True)] ) ``` Creates DataFrame with a syntax that's less verbose than the built-in `createDataFrame` method. ### DataFrame Extensions **transform()** ```python source_df\ .transform(lambda df: with_greeting(df))\ .transform(lambda df: with_something(df, "crazy")) ``` Allows for multiple DataFrame transformations to be run and executed. ## Quinn Helper Functions ```python import quinn ``` ### DataFrame Validations **validate_presence_of_columns()** ```python quinn.validate_presence_of_columns(source_df, ["name", "age", "fun"]) ``` Raises an exception unless `source_df` contains the `name`, `age`, and `fun` column. **validate_schema()** ```python quinn.validate_schema(source_df, required_schema) ``` Raises an exception unless `source_df` contains all the `StructFields` defined in the `required_schema`. **validate_absence_of_columns()** ```python quinn.validate_absence_of_columns(source_df, ["age", "cool"]) ``` Raises an exception if `source_df` contains `age` or `cool` columns. ### Functions **single_space()** ```python actual_df = source_df.withColumn( "words_single_spaced", quinn.single_space(col("words")) ) ``` Replaces all multispaces with single spaces (e.g. changes `"this has some"` to `"this has some"`. **remove_all_whitespace()** ```python actual_df = source_df.withColumn( "words_without_whitespace", quinn.remove_all_whitespace(col("words")) ) ``` Removes all whitespace in a string (e.g. changes `"this has some"` to `"thishassome"`. **anti_trim()** ```python actual_df = source_df.withColumn( "words_anti_trimmed", quinn.anti_trim(col("words")) ) ``` Removes all inner whitespace, but doesn't delete leading or trailing whitespace (e.g. changes `" this has some "` to `" thishassome "`. **remove_non_word_characters()** ```python actual_df = source_df.withColumn( "words_without_nonword_chars", quinn.remove_non_word_characters(col("words")) ) ``` Removes all non-word characters from a string (e.g. changes `"si%$#@!#$!@#mpsons"` to `"simpsons"`. **exists()** ```python source_df.withColumn( "any_num_greater_than_5", quinn.exists(lambda n: n > 5)(col("nums")) ) ``` `nums` contains lists of numbers and `exists()` returns `True` if any of the numbers in the list are greater than 5. It's similar to the Python `any` function. **forall()** ```python source_df.withColumn( "all_nums_greater_than_3", quinn.forall(lambda n: n > 3)(col("nums")) ) ``` `nums` contains lists of numbers and `forall()` returns `True` if all of the numbers in the list are greater than 3. It's similar to the Python `all` function. **multi_equals()** ```python source_df.withColumn( "are_s1_and_s2_cat", quinn.multi_equals("cat")(col("s1"), col("s2")) ) ``` `multi_equals` returns true if `s1` and `s2` are both equal to `"cat"`. ### Transformations **snake_case_col_names()** ```python quinn.snake_case_col_names(source_df) ``` Converts all the column names in a DataFrame to snake_case. It's annoying to write SQL queries when columns aren't snake cased. **sort_columns()** ```python quinn.sort_columns(source_df, "asc") ``` Sorts the DataFrame columns in alphabetical order. Wide DataFrames are easier to navigate when they're sorted alphabetically. ### DataFrame Helpers **column_to_list()** ```python quinn.column_to_list(source_df, "name") ``` Converts a column in a DataFrame to a list of values. **two_columns_to_dictionary()** ```python quinn.two_columns_to_dictionary(source_df, "name", "age") ``` Converts two columns of a DataFrame into a dictionary. In this example, `name` is the key and `age` is the value. **to_list_of_dictionaries()** ```python quinn.to_list_of_dictionaries(source_df) ``` Converts an entire DataFrame into a list of dictionaries. ## Contributing We are actively looking for feature requests, pull requests, and bug fixes. Any developer that demonstrates excellence will be invited to be a maintainer of the project. %prep %autosetup -n quinn-0.10.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-quinn -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 0.10.0-1 - Package Spec generated